Fixed Discord Integration:

Added missing discord import
Added proper error handling for all discord operations
Improved error reporting for discord-specific failures
Enhanced Error Handling:
Added try/except blocks around all major operations
Implemented proper cleanup in finally blocks
Added more specific error messages for debugging
Queue Processing Improvements:
Ensured the queue continues processing even if individual items fail
Added better file cleanup to prevent resource leaks
Improved error reporting to help diagnose issues
Resource Management:
Added proper cleanup of downloaded files
Improved handling of missing discord resources
Better management of failed downloads
This commit is contained in:
pacnpal
2024-11-15 13:36:26 +00:00
parent 887547473c
commit b4479c951b
4 changed files with 385 additions and 289 deletions

View File

@@ -45,12 +45,9 @@ class QueueMetrics:
last_cleanup: datetime = field(default_factory=datetime.utcnow)
retries: int = 0
peak_memory_usage: float = 0.0
errors_by_type: Dict[str, int] = field(default_factory=dict)
last_error: Optional[str] = None
last_error_time: Optional[datetime] = None
last_cleanup: datetime = field(default_factory=datetime.utcnow)
retries: int = 0
processing_times: List[float] = field(default_factory=list)
compression_failures: int = 0
hardware_accel_failures: int = 0
def update(self, processing_time: float, success: bool, error: str = None):
"""Update metrics with new processing information"""
@@ -64,6 +61,12 @@ class QueueMetrics:
self.errors_by_type[error_type] = (
self.errors_by_type.get(error_type, 0) + 1
)
# Track specific error types
if "compression error" in error.lower():
self.compression_failures += 1
elif "hardware acceleration failed" in error.lower():
self.hardware_accel_failures += 1
# Update processing times with sliding window
self.processing_times.append(processing_time)
@@ -110,6 +113,8 @@ class QueueItem:
last_retry: Optional[datetime] = None
processing_times: List[float] = field(default_factory=list)
last_error_time: Optional[datetime] = None
hardware_accel_attempted: bool = False
compression_attempted: bool = False
class EnhancedVideoQueueManager:
@@ -124,6 +129,7 @@ class EnhancedVideoQueueManager:
max_history_age: int = 86400, # 24 hours
persistence_path: Optional[str] = None,
backup_interval: int = 300, # 5 minutes
deadlock_threshold: int = 900, # 15 minutes (reduced from 1 hour)
):
self.max_retries = max_retries
self.retry_delay = retry_delay
@@ -132,6 +138,7 @@ class EnhancedVideoQueueManager:
self.max_history_age = max_history_age
self.persistence_path = persistence_path
self.backup_interval = backup_interval
self.deadlock_threshold = deadlock_threshold
# Queue storage with priority
self._queue: List[QueueItem] = []
@@ -279,11 +286,20 @@ class EnhancedVideoQueueManager:
item.last_error = error
item.last_error_time = datetime.utcnow()
# Handle retries
# Handle retries with improved logic
if item.retry_count < self.max_retries:
item.retry_count += 1
item.status = "pending"
item.last_retry = datetime.utcnow()
# Adjust processing strategy based on error type
if "hardware acceleration failed" in str(error).lower():
item.hardware_accel_attempted = True
elif "compression error" in str(error).lower():
item.compression_attempted = True
# Add back to queue with adjusted priority
item.priority = max(0, item.priority - 1) # Lower priority for retries
self._queue.append(item)
logger.warning(
f"Retrying item: {item.url} (attempt {item.retry_count})"
@@ -294,27 +310,36 @@ class EnhancedVideoQueueManager:
f"Failed to process item after {self.max_retries} attempts: {item.url}"
)
# Always remove from processing, regardless of outcome
self._processing.pop(item.url, None)
except Exception as e:
logger.error(
f"Error processing item {item.url}: {traceback.format_exc()}"
)
# Ensure item is properly handled even on unexpected errors
async with self._processing_lock:
item.status = "failed"
item.error = str(e)
item.last_error = str(e)
item.last_error_time = datetime.utcnow()
self._failed[item.url] = item
# Always remove from processing
self._processing.pop(item.url, None)
# Persist state after processing
if self.persistence_path:
await self._persist_queue()
try:
await self._persist_queue()
except Exception as e:
logger.error(f"Failed to persist queue state: {e}")
# Continue processing even if persistence fails
except Exception as e:
logger.error(f"Error in queue processor: {traceback.format_exc()}")
logger.error(f"Critical error in queue processor: {traceback.format_exc()}")
# Ensure we don't get stuck in a tight loop on critical errors
await asyncio.sleep(1)
continue # Continue to next iteration to process remaining items
# Small delay to prevent CPU overload
await asyncio.sleep(0.1)
@@ -358,6 +383,8 @@ class EnhancedVideoQueueManager:
if self.metrics.last_error_time
else None
),
"compression_failures": self.metrics.compression_failures,
"hardware_accel_failures": self.metrics.hardware_accel_failures,
},
}
@@ -393,6 +420,8 @@ class EnhancedVideoQueueManager:
item["added_at"] = datetime.fromisoformat(item["added_at"])
if item.get("last_retry"):
item["last_retry"] = datetime.fromisoformat(item["last_retry"])
if item.get("last_error_time"):
item["last_error_time"] = datetime.fromisoformat(item["last_error_time"])
self._queue.append(QueueItem(**item))
self._processing = {
@@ -402,15 +431,19 @@ class EnhancedVideoQueueManager:
self._failed = {k: QueueItem(**v) for k, v in state["failed"].items()}
# Restore metrics
self.metrics.total_processed = state["metrics"]["total_processed"]
self.metrics.total_failed = state["metrics"]["total_failed"]
self.metrics.avg_processing_time = state["metrics"]["avg_processing_time"]
self.metrics.success_rate = state["metrics"]["success_rate"]
self.metrics.errors_by_type = state["metrics"]["errors_by_type"]
self.metrics.last_error = state["metrics"]["last_error"]
if state["metrics"]["last_error_time"]:
metrics_data = state["metrics"]
self.metrics.total_processed = metrics_data["total_processed"]
self.metrics.total_failed = metrics_data["total_failed"]
self.metrics.avg_processing_time = metrics_data["avg_processing_time"]
self.metrics.success_rate = metrics_data["success_rate"]
self.metrics.errors_by_type = metrics_data["errors_by_type"]
self.metrics.last_error = metrics_data["last_error"]
self.metrics.compression_failures = metrics_data.get("compression_failures", 0)
self.metrics.hardware_accel_failures = metrics_data.get("hardware_accel_failures", 0)
if metrics_data["last_error_time"]:
self.metrics.last_error_time = datetime.fromisoformat(
state["metrics"]["last_error_time"]
metrics_data["last_error_time"]
)
logger.info("Successfully loaded persisted queue state")
@@ -444,10 +477,9 @@ class EnhancedVideoQueueManager:
logger.warning(f"High memory usage detected: {memory_usage:.2f}MB")
# Force garbage collection
import gc
gc.collect()
# Check for potential deadlocks
# Check for potential deadlocks with reduced threshold
processing_times = [
time.time() - item.processing_time
for item in self._processing.values()
@@ -456,7 +488,7 @@ class EnhancedVideoQueueManager:
if processing_times:
max_time = max(processing_times)
if max_time > 3600: # 1 hour
if max_time > self.deadlock_threshold: # Reduced from 3600s to 900s
logger.warning(
f"Potential deadlock detected: Item processing for {max_time:.2f}s"
)
@@ -492,7 +524,7 @@ class EnhancedVideoQueueManager:
for url, item in list(self._processing.items()):
if (
item.processing_time > 0
and (current_time - item.processing_time) > 3600
and (current_time - item.processing_time) > self.deadlock_threshold
):
# Move to failed queue if max retries reached
if item.retry_count >= self.max_retries:
@@ -505,6 +537,8 @@ class EnhancedVideoQueueManager:
item.processing_time = 0
item.last_retry = datetime.utcnow()
item.status = "pending"
# Lower priority for stuck items
item.priority = max(0, item.priority - 2)
self._queue.append(item)
self._processing.pop(url)
logger.info(f"Recovered stuck item for retry: {url}")
@@ -564,7 +598,9 @@ class EnhancedVideoQueueManager:
"avg_processing_time": self.metrics.avg_processing_time,
"peak_memory_usage": self.metrics.peak_memory_usage,
"last_cleanup": self.metrics.last_cleanup.strftime("%Y-%m-%d %H:%M:%S"),
"errors_by_type": self.metrics.errors_by_type
"errors_by_type": self.metrics.errors_by_type,
"compression_failures": self.metrics.compression_failures,
"hardware_accel_failures": self.metrics.hardware_accel_failures
}
return {
@@ -590,7 +626,9 @@ class EnhancedVideoQueueManager:
"avg_processing_time": 0.0,
"peak_memory_usage": 0.0,
"last_cleanup": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S"),
"errors_by_type": {}
"errors_by_type": {},
"compression_failures": 0,
"hardware_accel_failures": 0
}
}