refactor: enhance search strategies with adaptive thresholds and overlapping windows

- Introduced adaptive confidence thresholds based on file size to improve search accuracy.
- Implemented overlapping window functionality in search strategies to capture matches more effectively.
- Added helper functions for evaluating content uniqueness and creating overlapping windows.
- Enhanced existing search functions (exact, similarity, and Levenshtein) to utilize new strategies for better match validation.
- Improved logging for search results to facilitate debugging and analysis of search performance.
This commit is contained in:
Daniel Riccio
2025-01-14 12:00:29 -05:00
parent f007f64344
commit 258024aa5a

View File

@@ -1,40 +1,71 @@
import { compareTwoStrings } from 'string-similarity';
import { closest } from 'fastest-levenshtein';
import { diff_match_patch } from 'diff-match-patch';
import { Change, Hunk } from './types';
import { compareTwoStrings } from "string-similarity"
import { closest } from "fastest-levenshtein"
import { diff_match_patch } from "diff-match-patch"
import { Change, Hunk } from "./types"
export type SearchResult = {
index: number;
confidence: number;
strategy: string;
};
index: number
confidence: number
strategy: string
}
//TODO: this should be configurable
const MIN_CONFIDENCE = 0.97;
const MIN_CONFIDENCE = 0.97
const MIN_CONFIDENCE_LARGE_FILE = 0.9
const LARGE_FILE_THRESHOLD = 1000 // lines
const UNIQUE_CONTENT_BOOST = 0.05
const DEFAULT_OVERLAP_SIZE = 3 // lines of overlap between windows
const MAX_WINDOW_SIZE = 500 // maximum lines in a window
// Helper function to calculate adaptive confidence threshold based on file size
function getAdaptiveThreshold(contentLength: number): number {
if (contentLength <= LARGE_FILE_THRESHOLD) {
return MIN_CONFIDENCE
}
return MIN_CONFIDENCE_LARGE_FILE
}
// Helper function to evaluate content uniqueness
function evaluateContentUniqueness(searchStr: string, content: string[]): number {
const searchLines = searchStr.split("\n")
const uniqueLines = new Set(searchLines)
const contentStr = content.join("\n")
// Calculate how many search lines are relatively unique in the content
let uniqueCount = 0
for (const line of uniqueLines) {
const regex = new RegExp(line.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"), "g")
const matches = contentStr.match(regex)
if (matches && matches.length <= 2) {
// Line appears at most twice
uniqueCount++
}
}
return uniqueCount / uniqueLines.size
}
// Helper function to prepare search string from context
export function prepareSearchString(changes: Change[]): string {
const lines = changes
.filter((c) => c.type === 'context' || c.type === 'remove')
.map((c) => c.content);
return lines.join('\n');
const lines = changes.filter((c) => c.type === "context" || c.type === "remove").map((c) => c.originalLine)
return lines.join("\n")
}
// Helper function to evaluate similarity between two texts
export function evaluateSimilarity(original: string, modified: string): number {
return compareTwoStrings(original, modified);
return compareTwoStrings(original, modified)
}
// Helper function to validate using diff-match-patch
export function getDMPSimilarity(original: string, modified: string): number {
const dmp = new diff_match_patch();
const diffs = dmp.diff_main(original, modified);
dmp.diff_cleanupSemantic(diffs);
const patches = dmp.patch_make(original, diffs);
const [expectedText] = dmp.patch_apply(patches, original);
const dmp = new diff_match_patch()
const diffs = dmp.diff_main(original, modified)
dmp.diff_cleanupSemantic(diffs)
const patches = dmp.patch_make(original, diffs)
const [expectedText] = dmp.patch_apply(patches, original)
const similarity = evaluateSimilarity(expectedText, modified);
return similarity;
const similarity = evaluateSimilarity(expectedText, modified)
return similarity
}
// Helper function to validate edit results using hunk information
@@ -43,116 +74,204 @@ export function getDMPSimilarity(original: string, modified: string): number {
// returns 0.1 (0.5 * (1 - 0.8)) to reduce confidence proportionally but with less impact.
// If similarity >= MIN_CONFIDENCE, returns 0 (no reduction).
export function validateEditResult(hunk: Hunk, result: string, strategy: string): number {
const hunkDeepCopy: Hunk = JSON.parse(JSON.stringify(hunk));
const hunkDeepCopy: Hunk = JSON.parse(JSON.stringify(hunk))
// Create skeleton of original content (context + removed lines)
const originalSkeleton = hunkDeepCopy.changes
.filter((change) => change.type === 'context' || change.type === 'remove')
.filter((change) => change.type === "context" || change.type === "remove")
.map((change) => change.content)
.join('\n');
.join("\n")
// Create skeleton of expected result (context + added lines)
const expectedSkeleton = hunkDeepCopy.changes
.filter((change) => change.type === 'context' || change.type === 'add')
.filter((change) => change.type === "context" || change.type === "add")
.map((change) => change.content)
.join('\n');
.join("\n")
// Compare with original content
const originalSimilarity = evaluateSimilarity(originalSkeleton, result);
console.log('originalSimilarity ', strategy, originalSimilarity);
const originalSimilarity = evaluateSimilarity(originalSkeleton, result)
console.log("originalSimilarity ", strategy, originalSimilarity)
// Compare with expected result
const expectedSimilarity = evaluateSimilarity(expectedSkeleton, result)
console.log("expectedSimilarity", strategy, expectedSimilarity)
console.log("result", result)
// If original similarity is 1 and expected similarity is not 1, it means changes weren't applied
if (originalSimilarity > 0.97 && expectedSimilarity !== 1) {
if (originalSimilarity === 1) {
// If original similarity is 1, it means changes weren't applied
if (originalSimilarity > 0.97) {
if (originalSimilarity === 1) {
return 0.5; // Significant confidence reduction
return 0.5 // Significant confidence reduction
} else {
return 0.8;
return 0.8
}
}
} else {
return 0.8
}
}
// Compare with expected result
const expectedSimilarity = evaluateSimilarity(expectedSkeleton, result);
console.log('expectedSimilarity', strategy, expectedSimilarity);
// Scale between 0.98 and 1.0 (4% impact) based on expected similarity
const multiplier =
expectedSimilarity < MIN_CONFIDENCE ? 0.96 + 0.04 * expectedSimilarity : 1;
const multiplier = expectedSimilarity < MIN_CONFIDENCE ? 0.96 + 0.04 * expectedSimilarity : 1
return multiplier;
return multiplier
}
// Helper function to validate context lines against original content
function validateContextLines(searchStr: string, content: string): number {
// Extract just the context lines from the search string
const contextLines = searchStr
.split('\n')
.filter((line) => !line.startsWith('-')); // Exclude removed lines
const contextLines = searchStr.split("\n").filter((line) => !line.startsWith("-")) // Exclude removed lines
// Compare context lines with content
const similarity = evaluateSimilarity(contextLines.join('\n'), content);
const similarity = evaluateSimilarity(contextLines.join("\n"), content)
// Context lines must match very closely, or confidence drops significantly
return similarity < MIN_CONFIDENCE ? similarity * 0.3 : similarity;
// Get adaptive threshold based on content size
const threshold = getAdaptiveThreshold(content.split("\n").length)
// Calculate uniqueness boost
const uniquenessScore = evaluateContentUniqueness(searchStr, content.split("\n"))
const uniquenessBoost = uniquenessScore * UNIQUE_CONTENT_BOOST
// Adjust confidence based on threshold and uniqueness
return similarity < threshold ? similarity * 0.3 + uniquenessBoost : similarity + uniquenessBoost
}
// Exact match strategy
export function findExactMatch(
searchStr: string,
// Helper function to create overlapping windows
function createOverlappingWindows(
content: string[],
startIndex: number = 0
): SearchResult {
const contentStr = content.slice(startIndex).join('\n');
const searchLines = searchStr.split('\n');
searchSize: number,
overlapSize: number = DEFAULT_OVERLAP_SIZE
): { window: string[]; startIndex: number }[] {
const windows: { window: string[]; startIndex: number }[] = []
const exactMatch = contentStr.indexOf(searchStr);
if (exactMatch !== -1) {
const matchedContent = content
.slice(
startIndex + contentStr.slice(0, exactMatch).split('\n').length - 1,
startIndex +
contentStr.slice(0, exactMatch).split('\n').length -
1 +
searchLines.length
)
.join('\n');
// Ensure minimum window size is at least searchSize
const effectiveWindowSize = Math.max(searchSize, Math.min(searchSize * 2, MAX_WINDOW_SIZE))
const similarity = getDMPSimilarity(searchStr, matchedContent);
const contextSimilarity = validateContextLines(searchStr, matchedContent);
const confidence = Math.min(similarity, contextSimilarity);
// Ensure overlap size doesn't exceed window size
const effectiveOverlapSize = Math.min(overlapSize, effectiveWindowSize - 1)
return {
index:
startIndex + contentStr.slice(0, exactMatch).split('\n').length - 1,
confidence,
strategy: 'exact',
};
// Calculate step size, ensure it's at least 1
const stepSize = Math.max(1, effectiveWindowSize - effectiveOverlapSize)
for (let i = 0; i < content.length; i += stepSize) {
const windowContent = content.slice(i, i + effectiveWindowSize)
if (windowContent.length >= searchSize) {
windows.push({ window: windowContent, startIndex: i })
}
}
return { index: -1, confidence: 0, strategy: 'exact' };
return windows
}
// Helper function to combine overlapping matches
function combineOverlappingMatches(
matches: (SearchResult & { windowIndex: number })[],
overlapSize: number = DEFAULT_OVERLAP_SIZE
): SearchResult[] {
if (matches.length === 0) {
return []
}
// Sort matches by confidence
matches.sort((a, b) => b.confidence - a.confidence)
const combinedMatches: SearchResult[] = []
const usedIndices = new Set<number>()
for (const match of matches) {
if (usedIndices.has(match.windowIndex)) {continue}
// Find overlapping matches
const overlapping = matches.filter(
(m) =>
Math.abs(m.windowIndex - match.windowIndex) === 1 &&
Math.abs(m.index - match.index) <= overlapSize &&
!usedIndices.has(m.windowIndex)
)
if (overlapping.length > 0) {
// Boost confidence if we find same match in overlapping windows
const avgConfidence =
(match.confidence + overlapping.reduce((sum, m) => sum + m.confidence, 0)) / (overlapping.length + 1)
const boost = Math.min(0.05 * overlapping.length, 0.1) // Max 10% boost
combinedMatches.push({
index: match.index,
confidence: Math.min(1, avgConfidence + boost),
strategy: `${match.strategy}-overlapping`,
})
usedIndices.add(match.windowIndex)
overlapping.forEach((m) => usedIndices.add(m.windowIndex))
} else {
combinedMatches.push({
index: match.index,
confidence: match.confidence,
strategy: match.strategy,
})
usedIndices.add(match.windowIndex)
}
}
return combinedMatches
}
// Modified search functions to use sliding windows
export function findExactMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
const searchLines = searchStr.split("\n")
const windows = createOverlappingWindows(content.slice(startIndex), searchLines.length)
const matches: (SearchResult & { windowIndex: number })[] = []
windows.forEach((windowData, windowIndex) => {
const windowStr = windowData.window.join("\n")
const exactMatch = windowStr.indexOf(searchStr)
if (exactMatch !== -1) {
const matchedContent = windowData.window
.slice(
windowStr.slice(0, exactMatch).split("\n").length - 1,
windowStr.slice(0, exactMatch).split("\n").length - 1 + searchLines.length
)
.join("\n")
const similarity = getDMPSimilarity(searchStr, matchedContent)
const contextSimilarity = validateContextLines(searchStr, matchedContent)
const confidence = Math.min(similarity, contextSimilarity)
matches.push({
index: startIndex + windowData.startIndex + windowStr.slice(0, exactMatch).split("\n").length - 1,
confidence,
strategy: "exact",
windowIndex,
})
}
})
const combinedMatches = combineOverlappingMatches(matches)
return combinedMatches.length > 0 ? combinedMatches[0] : { index: -1, confidence: 0, strategy: "exact" }
}
// String similarity strategy
export function findSimilarityMatch(
searchStr: string,
content: string[],
startIndex: number = 0
): SearchResult {
const searchLines = searchStr.split('\n');
let bestScore = 0;
let bestIndex = -1;
const minScore = 0.8;
export function findSimilarityMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
const searchLines = searchStr.split("\n")
let bestScore = 0
let bestIndex = -1
const minScore = 0.8
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
const windowStr = content.slice(i, i + searchLines.length).join('\n');
const score = compareTwoStrings(searchStr, windowStr);
const windowStr = content.slice(i, i + searchLines.length).join("\n")
const score = compareTwoStrings(searchStr, windowStr)
if (score > bestScore && score >= minScore) {
const similarity = getDMPSimilarity(searchStr, windowStr);
const contextSimilarity = validateContextLines(searchStr, windowStr);
const adjustedScore = Math.min(similarity, contextSimilarity) * score;
const similarity = getDMPSimilarity(searchStr, windowStr)
const contextSimilarity = validateContextLines(searchStr, windowStr)
const adjustedScore = Math.min(similarity, contextSimilarity) * score
if (adjustedScore > bestScore) {
bestScore = adjustedScore;
bestIndex = i;
bestScore = adjustedScore
bestIndex = i
}
}
}
@@ -160,59 +279,136 @@ export function findSimilarityMatch(
return {
index: bestIndex,
confidence: bestIndex !== -1 ? bestScore : 0,
strategy: 'similarity',
};
strategy: "similarity",
}
}
// Levenshtein strategy
export function findLevenshteinMatch(
searchStr: string,
content: string[],
startIndex: number = 0
): SearchResult {
const searchLines = searchStr.split('\n');
const candidates = [];
export function findLevenshteinMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
const searchLines = searchStr.split("\n")
const candidates = []
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
candidates.push(content.slice(i, i + searchLines.length).join('\n'));
candidates.push(content.slice(i, i + searchLines.length).join("\n"))
}
if (candidates.length > 0) {
const closestMatch = closest(searchStr, candidates);
const index = startIndex + candidates.indexOf(closestMatch);
const similarity = getDMPSimilarity(searchStr, closestMatch);
const contextSimilarity = validateContextLines(searchStr, closestMatch);
const closestMatch = closest(searchStr, candidates)
const index = startIndex + candidates.indexOf(closestMatch)
const similarity = getDMPSimilarity(searchStr, closestMatch)
const contextSimilarity = validateContextLines(searchStr, closestMatch)
const confidence = Math.min(similarity, contextSimilarity)
return {
index,
confidence: index !== -1 ? confidence : 0,
strategy: 'levenshtein',
};
strategy: "levenshtein",
}
}
return { index: -1, confidence: 0, strategy: 'levenshtein' };
return { index: -1, confidence: 0, strategy: "levenshtein" }
}
// Helper function to identify anchor lines based on uniqueness and complexity
function identifyAnchors(searchStr: string, content: string[]): { line: string; index: number; weight: number }[] {
const searchLines = searchStr.split("\n")
const contentStr = content.join("\n")
const anchors: { line: string; index: number; weight: number }[] = []
for (let i = 0; i < searchLines.length; i++) {
const line = searchLines[i]
if (!line.trim()) {continue} // Skip empty lines
// Calculate line complexity (more special chars = more unique)
const specialChars = (line.match(/[^a-zA-Z0-9\s]/g) || []).length
const complexity = specialChars / line.length
// Count occurrences in content
const regex = new RegExp(line.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"), "g")
const matches = contentStr.match(regex)
const occurrences = matches ? matches.length : 0
// Calculate uniqueness weight
const uniquenessWeight = occurrences <= 1 ? 1 : 1 / occurrences
const weight = uniquenessWeight * (0.7 + 0.3 * complexity)
if (weight > 0.5) {
// Only consider lines with high enough weight
anchors.push({ line, index: i, weight })
}
}
// Sort by weight descending
return anchors.sort((a, b) => b.weight - a.weight)
}
// Helper function to validate anchor positions
function validateAnchorPositions(
anchors: { line: string; index: number }[],
content: string[],
searchLines: string[]
): number {
for (const anchor of anchors) {
const anchorIndex = content.findIndex((line) => line === anchor.line)
if (anchorIndex !== -1) {
// Check if surrounding context matches
const contextBefore = searchLines.slice(Math.max(0, anchor.index - 2), anchor.index).join("\n")
const contextAfter = searchLines.slice(anchor.index + 1, anchor.index + 3).join("\n")
const contentBefore = content.slice(Math.max(0, anchorIndex - 2), anchorIndex).join("\n")
const contentAfter = content.slice(anchorIndex + 1, anchorIndex + 3).join("\n")
const beforeSimilarity = evaluateSimilarity(contextBefore, contentBefore)
const afterSimilarity = evaluateSimilarity(contextAfter, contentAfter)
if (beforeSimilarity > 0.8 && afterSimilarity > 0.8) {
return anchorIndex - anchor.index
}
}
}
return -1
}
// Anchor-based search strategy
export function findAnchorMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
const searchLines = searchStr.split("\n")
const anchors = identifyAnchors(searchStr, content.slice(startIndex))
if (anchors.length === 0) {
return { index: -1, confidence: 0, strategy: "anchor" }
}
// Try to validate position using top anchors
const offset = validateAnchorPositions(anchors.slice(0, 3), content.slice(startIndex), searchLines)
if (offset !== -1) {
const matchPosition = startIndex + offset
const matchedContent = content.slice(matchPosition, matchPosition + searchLines.length).join("\n")
const similarity = getDMPSimilarity(searchStr, matchedContent)
const contextSimilarity = validateContextLines(searchStr, matchedContent)
const confidence = Math.min(similarity, contextSimilarity) * (1 + anchors[0].weight * 0.1) // Boost confidence based on anchor weight
return {
index: matchPosition,
confidence: Math.min(1, confidence), // Cap at 1
strategy: "anchor",
}
}
return { index: -1, confidence: 0, strategy: "anchor" }
}
// Main search function that tries all strategies
export function findBestMatch(
searchStr: string,
content: string[],
startIndex: number = 0
): SearchResult {
const strategies = [
findExactMatch,
findSimilarityMatch,
findLevenshteinMatch,
];
export function findBestMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
const strategies = [findExactMatch, findAnchorMatch, findSimilarityMatch, findLevenshteinMatch]
let bestResult: SearchResult = { index: -1, confidence: 0, strategy: 'none' };
let bestResult: SearchResult = { index: -1, confidence: 0, strategy: "none" }
for (const strategy of strategies) {
const result = strategy(searchStr, content, startIndex);
const result = strategy(searchStr, content, startIndex)
console.log("Search result:", result)
if (result.confidence > bestResult.confidence) {
bestResult = result;
bestResult = result
}
}
return bestResult;
return bestResult
}