mirror of
https://github.com/pacnpal/Roo-Code.git
synced 2025-12-20 12:21:13 -05:00
refactor: enhance search strategies with adaptive thresholds and overlapping windows
- Introduced adaptive confidence thresholds based on file size to improve search accuracy. - Implemented overlapping window functionality in search strategies to capture matches more effectively. - Added helper functions for evaluating content uniqueness and creating overlapping windows. - Enhanced existing search functions (exact, similarity, and Levenshtein) to utilize new strategies for better match validation. - Improved logging for search results to facilitate debugging and analysis of search performance.
This commit is contained in:
@@ -1,40 +1,71 @@
|
||||
import { compareTwoStrings } from 'string-similarity';
|
||||
import { closest } from 'fastest-levenshtein';
|
||||
import { diff_match_patch } from 'diff-match-patch';
|
||||
import { Change, Hunk } from './types';
|
||||
import { compareTwoStrings } from "string-similarity"
|
||||
import { closest } from "fastest-levenshtein"
|
||||
import { diff_match_patch } from "diff-match-patch"
|
||||
import { Change, Hunk } from "./types"
|
||||
|
||||
export type SearchResult = {
|
||||
index: number;
|
||||
confidence: number;
|
||||
strategy: string;
|
||||
};
|
||||
index: number
|
||||
confidence: number
|
||||
strategy: string
|
||||
}
|
||||
|
||||
//TODO: this should be configurable
|
||||
const MIN_CONFIDENCE = 0.97;
|
||||
const MIN_CONFIDENCE = 0.97
|
||||
const MIN_CONFIDENCE_LARGE_FILE = 0.9
|
||||
const LARGE_FILE_THRESHOLD = 1000 // lines
|
||||
const UNIQUE_CONTENT_BOOST = 0.05
|
||||
const DEFAULT_OVERLAP_SIZE = 3 // lines of overlap between windows
|
||||
const MAX_WINDOW_SIZE = 500 // maximum lines in a window
|
||||
|
||||
// Helper function to calculate adaptive confidence threshold based on file size
|
||||
function getAdaptiveThreshold(contentLength: number): number {
|
||||
if (contentLength <= LARGE_FILE_THRESHOLD) {
|
||||
return MIN_CONFIDENCE
|
||||
}
|
||||
return MIN_CONFIDENCE_LARGE_FILE
|
||||
}
|
||||
|
||||
// Helper function to evaluate content uniqueness
|
||||
function evaluateContentUniqueness(searchStr: string, content: string[]): number {
|
||||
const searchLines = searchStr.split("\n")
|
||||
const uniqueLines = new Set(searchLines)
|
||||
const contentStr = content.join("\n")
|
||||
|
||||
// Calculate how many search lines are relatively unique in the content
|
||||
let uniqueCount = 0
|
||||
for (const line of uniqueLines) {
|
||||
const regex = new RegExp(line.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"), "g")
|
||||
const matches = contentStr.match(regex)
|
||||
if (matches && matches.length <= 2) {
|
||||
// Line appears at most twice
|
||||
uniqueCount++
|
||||
}
|
||||
}
|
||||
|
||||
return uniqueCount / uniqueLines.size
|
||||
}
|
||||
|
||||
// Helper function to prepare search string from context
|
||||
export function prepareSearchString(changes: Change[]): string {
|
||||
const lines = changes
|
||||
.filter((c) => c.type === 'context' || c.type === 'remove')
|
||||
.map((c) => c.content);
|
||||
return lines.join('\n');
|
||||
const lines = changes.filter((c) => c.type === "context" || c.type === "remove").map((c) => c.originalLine)
|
||||
return lines.join("\n")
|
||||
}
|
||||
|
||||
// Helper function to evaluate similarity between two texts
|
||||
export function evaluateSimilarity(original: string, modified: string): number {
|
||||
return compareTwoStrings(original, modified);
|
||||
return compareTwoStrings(original, modified)
|
||||
}
|
||||
|
||||
// Helper function to validate using diff-match-patch
|
||||
export function getDMPSimilarity(original: string, modified: string): number {
|
||||
const dmp = new diff_match_patch();
|
||||
const diffs = dmp.diff_main(original, modified);
|
||||
dmp.diff_cleanupSemantic(diffs);
|
||||
const patches = dmp.patch_make(original, diffs);
|
||||
const [expectedText] = dmp.patch_apply(patches, original);
|
||||
const dmp = new diff_match_patch()
|
||||
const diffs = dmp.diff_main(original, modified)
|
||||
dmp.diff_cleanupSemantic(diffs)
|
||||
const patches = dmp.patch_make(original, diffs)
|
||||
const [expectedText] = dmp.patch_apply(patches, original)
|
||||
|
||||
const similarity = evaluateSimilarity(expectedText, modified);
|
||||
return similarity;
|
||||
const similarity = evaluateSimilarity(expectedText, modified)
|
||||
return similarity
|
||||
}
|
||||
|
||||
// Helper function to validate edit results using hunk information
|
||||
@@ -43,176 +74,341 @@ export function getDMPSimilarity(original: string, modified: string): number {
|
||||
// returns 0.1 (0.5 * (1 - 0.8)) to reduce confidence proportionally but with less impact.
|
||||
// If similarity >= MIN_CONFIDENCE, returns 0 (no reduction).
|
||||
export function validateEditResult(hunk: Hunk, result: string, strategy: string): number {
|
||||
const hunkDeepCopy: Hunk = JSON.parse(JSON.stringify(hunk));
|
||||
const hunkDeepCopy: Hunk = JSON.parse(JSON.stringify(hunk))
|
||||
|
||||
// Create skeleton of original content (context + removed lines)
|
||||
const originalSkeleton = hunkDeepCopy.changes
|
||||
.filter((change) => change.type === 'context' || change.type === 'remove')
|
||||
.map((change) => change.content)
|
||||
.join('\n');
|
||||
// Create skeleton of original content (context + removed lines)
|
||||
const originalSkeleton = hunkDeepCopy.changes
|
||||
.filter((change) => change.type === "context" || change.type === "remove")
|
||||
.map((change) => change.content)
|
||||
.join("\n")
|
||||
|
||||
// Create skeleton of expected result (context + added lines)
|
||||
const expectedSkeleton = hunkDeepCopy.changes
|
||||
.filter((change) => change.type === 'context' || change.type === 'add')
|
||||
.map((change) => change.content)
|
||||
.join('\n');
|
||||
// Create skeleton of expected result (context + added lines)
|
||||
const expectedSkeleton = hunkDeepCopy.changes
|
||||
.filter((change) => change.type === "context" || change.type === "add")
|
||||
.map((change) => change.content)
|
||||
.join("\n")
|
||||
|
||||
// Compare with original content
|
||||
const originalSimilarity = evaluateSimilarity(originalSkeleton, result);
|
||||
console.log('originalSimilarity ', strategy, originalSimilarity);
|
||||
// If original similarity is 1, it means changes weren't applied
|
||||
if (originalSimilarity > 0.97) {
|
||||
if (originalSimilarity === 1) {
|
||||
return 0.5; // Significant confidence reduction
|
||||
} else {
|
||||
return 0.8;
|
||||
}
|
||||
}
|
||||
// Compare with original content
|
||||
const originalSimilarity = evaluateSimilarity(originalSkeleton, result)
|
||||
console.log("originalSimilarity ", strategy, originalSimilarity)
|
||||
|
||||
// Compare with expected result
|
||||
const expectedSimilarity = evaluateSimilarity(expectedSkeleton, result);
|
||||
// Compare with expected result
|
||||
const expectedSimilarity = evaluateSimilarity(expectedSkeleton, result)
|
||||
|
||||
console.log('expectedSimilarity', strategy, expectedSimilarity);
|
||||
|
||||
// Scale between 0.98 and 1.0 (4% impact) based on expected similarity
|
||||
const multiplier =
|
||||
expectedSimilarity < MIN_CONFIDENCE ? 0.96 + 0.04 * expectedSimilarity : 1;
|
||||
console.log("expectedSimilarity", strategy, expectedSimilarity)
|
||||
console.log("result", result)
|
||||
|
||||
return multiplier;
|
||||
// If original similarity is 1 and expected similarity is not 1, it means changes weren't applied
|
||||
if (originalSimilarity > 0.97 && expectedSimilarity !== 1) {
|
||||
if (originalSimilarity === 1) {
|
||||
// If original similarity is 1, it means changes weren't applied
|
||||
if (originalSimilarity > 0.97) {
|
||||
if (originalSimilarity === 1) {
|
||||
return 0.5 // Significant confidence reduction
|
||||
} else {
|
||||
return 0.8
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return 0.8
|
||||
}
|
||||
}
|
||||
|
||||
// Scale between 0.98 and 1.0 (4% impact) based on expected similarity
|
||||
const multiplier = expectedSimilarity < MIN_CONFIDENCE ? 0.96 + 0.04 * expectedSimilarity : 1
|
||||
|
||||
return multiplier
|
||||
}
|
||||
|
||||
// Helper function to validate context lines against original content
|
||||
function validateContextLines(searchStr: string, content: string): number {
|
||||
// Extract just the context lines from the search string
|
||||
const contextLines = searchStr
|
||||
.split('\n')
|
||||
.filter((line) => !line.startsWith('-')); // Exclude removed lines
|
||||
// Extract just the context lines from the search string
|
||||
const contextLines = searchStr.split("\n").filter((line) => !line.startsWith("-")) // Exclude removed lines
|
||||
|
||||
// Compare context lines with content
|
||||
const similarity = evaluateSimilarity(contextLines.join('\n'), content);
|
||||
// Compare context lines with content
|
||||
const similarity = evaluateSimilarity(contextLines.join("\n"), content)
|
||||
|
||||
// Context lines must match very closely, or confidence drops significantly
|
||||
return similarity < MIN_CONFIDENCE ? similarity * 0.3 : similarity;
|
||||
// Get adaptive threshold based on content size
|
||||
const threshold = getAdaptiveThreshold(content.split("\n").length)
|
||||
|
||||
// Calculate uniqueness boost
|
||||
const uniquenessScore = evaluateContentUniqueness(searchStr, content.split("\n"))
|
||||
const uniquenessBoost = uniquenessScore * UNIQUE_CONTENT_BOOST
|
||||
|
||||
// Adjust confidence based on threshold and uniqueness
|
||||
return similarity < threshold ? similarity * 0.3 + uniquenessBoost : similarity + uniquenessBoost
|
||||
}
|
||||
|
||||
// Exact match strategy
|
||||
export function findExactMatch(
|
||||
searchStr: string,
|
||||
content: string[],
|
||||
startIndex: number = 0
|
||||
): SearchResult {
|
||||
const contentStr = content.slice(startIndex).join('\n');
|
||||
const searchLines = searchStr.split('\n');
|
||||
// Helper function to create overlapping windows
|
||||
function createOverlappingWindows(
|
||||
content: string[],
|
||||
searchSize: number,
|
||||
overlapSize: number = DEFAULT_OVERLAP_SIZE
|
||||
): { window: string[]; startIndex: number }[] {
|
||||
const windows: { window: string[]; startIndex: number }[] = []
|
||||
|
||||
const exactMatch = contentStr.indexOf(searchStr);
|
||||
if (exactMatch !== -1) {
|
||||
const matchedContent = content
|
||||
.slice(
|
||||
startIndex + contentStr.slice(0, exactMatch).split('\n').length - 1,
|
||||
startIndex +
|
||||
contentStr.slice(0, exactMatch).split('\n').length -
|
||||
1 +
|
||||
searchLines.length
|
||||
)
|
||||
.join('\n');
|
||||
// Ensure minimum window size is at least searchSize
|
||||
const effectiveWindowSize = Math.max(searchSize, Math.min(searchSize * 2, MAX_WINDOW_SIZE))
|
||||
|
||||
const similarity = getDMPSimilarity(searchStr, matchedContent);
|
||||
const contextSimilarity = validateContextLines(searchStr, matchedContent);
|
||||
const confidence = Math.min(similarity, contextSimilarity);
|
||||
// Ensure overlap size doesn't exceed window size
|
||||
const effectiveOverlapSize = Math.min(overlapSize, effectiveWindowSize - 1)
|
||||
|
||||
return {
|
||||
index:
|
||||
startIndex + contentStr.slice(0, exactMatch).split('\n').length - 1,
|
||||
confidence,
|
||||
strategy: 'exact',
|
||||
};
|
||||
}
|
||||
// Calculate step size, ensure it's at least 1
|
||||
const stepSize = Math.max(1, effectiveWindowSize - effectiveOverlapSize)
|
||||
|
||||
return { index: -1, confidence: 0, strategy: 'exact' };
|
||||
for (let i = 0; i < content.length; i += stepSize) {
|
||||
const windowContent = content.slice(i, i + effectiveWindowSize)
|
||||
if (windowContent.length >= searchSize) {
|
||||
windows.push({ window: windowContent, startIndex: i })
|
||||
}
|
||||
}
|
||||
|
||||
return windows
|
||||
}
|
||||
|
||||
// Helper function to combine overlapping matches
|
||||
function combineOverlappingMatches(
|
||||
matches: (SearchResult & { windowIndex: number })[],
|
||||
overlapSize: number = DEFAULT_OVERLAP_SIZE
|
||||
): SearchResult[] {
|
||||
if (matches.length === 0) {
|
||||
return []
|
||||
}
|
||||
|
||||
// Sort matches by confidence
|
||||
matches.sort((a, b) => b.confidence - a.confidence)
|
||||
|
||||
const combinedMatches: SearchResult[] = []
|
||||
const usedIndices = new Set<number>()
|
||||
|
||||
for (const match of matches) {
|
||||
if (usedIndices.has(match.windowIndex)) {continue}
|
||||
|
||||
// Find overlapping matches
|
||||
const overlapping = matches.filter(
|
||||
(m) =>
|
||||
Math.abs(m.windowIndex - match.windowIndex) === 1 &&
|
||||
Math.abs(m.index - match.index) <= overlapSize &&
|
||||
!usedIndices.has(m.windowIndex)
|
||||
)
|
||||
|
||||
if (overlapping.length > 0) {
|
||||
// Boost confidence if we find same match in overlapping windows
|
||||
const avgConfidence =
|
||||
(match.confidence + overlapping.reduce((sum, m) => sum + m.confidence, 0)) / (overlapping.length + 1)
|
||||
const boost = Math.min(0.05 * overlapping.length, 0.1) // Max 10% boost
|
||||
|
||||
combinedMatches.push({
|
||||
index: match.index,
|
||||
confidence: Math.min(1, avgConfidence + boost),
|
||||
strategy: `${match.strategy}-overlapping`,
|
||||
})
|
||||
|
||||
usedIndices.add(match.windowIndex)
|
||||
overlapping.forEach((m) => usedIndices.add(m.windowIndex))
|
||||
} else {
|
||||
combinedMatches.push({
|
||||
index: match.index,
|
||||
confidence: match.confidence,
|
||||
strategy: match.strategy,
|
||||
})
|
||||
usedIndices.add(match.windowIndex)
|
||||
}
|
||||
}
|
||||
|
||||
return combinedMatches
|
||||
}
|
||||
|
||||
// Modified search functions to use sliding windows
|
||||
export function findExactMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
|
||||
const searchLines = searchStr.split("\n")
|
||||
const windows = createOverlappingWindows(content.slice(startIndex), searchLines.length)
|
||||
const matches: (SearchResult & { windowIndex: number })[] = []
|
||||
|
||||
windows.forEach((windowData, windowIndex) => {
|
||||
const windowStr = windowData.window.join("\n")
|
||||
const exactMatch = windowStr.indexOf(searchStr)
|
||||
|
||||
if (exactMatch !== -1) {
|
||||
const matchedContent = windowData.window
|
||||
.slice(
|
||||
windowStr.slice(0, exactMatch).split("\n").length - 1,
|
||||
windowStr.slice(0, exactMatch).split("\n").length - 1 + searchLines.length
|
||||
)
|
||||
.join("\n")
|
||||
|
||||
const similarity = getDMPSimilarity(searchStr, matchedContent)
|
||||
const contextSimilarity = validateContextLines(searchStr, matchedContent)
|
||||
const confidence = Math.min(similarity, contextSimilarity)
|
||||
|
||||
matches.push({
|
||||
index: startIndex + windowData.startIndex + windowStr.slice(0, exactMatch).split("\n").length - 1,
|
||||
confidence,
|
||||
strategy: "exact",
|
||||
windowIndex,
|
||||
})
|
||||
}
|
||||
})
|
||||
|
||||
const combinedMatches = combineOverlappingMatches(matches)
|
||||
return combinedMatches.length > 0 ? combinedMatches[0] : { index: -1, confidence: 0, strategy: "exact" }
|
||||
}
|
||||
|
||||
// String similarity strategy
|
||||
export function findSimilarityMatch(
|
||||
searchStr: string,
|
||||
content: string[],
|
||||
startIndex: number = 0
|
||||
): SearchResult {
|
||||
const searchLines = searchStr.split('\n');
|
||||
let bestScore = 0;
|
||||
let bestIndex = -1;
|
||||
const minScore = 0.8;
|
||||
export function findSimilarityMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
|
||||
const searchLines = searchStr.split("\n")
|
||||
let bestScore = 0
|
||||
let bestIndex = -1
|
||||
const minScore = 0.8
|
||||
|
||||
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
|
||||
const windowStr = content.slice(i, i + searchLines.length).join('\n');
|
||||
const score = compareTwoStrings(searchStr, windowStr);
|
||||
if (score > bestScore && score >= minScore) {
|
||||
const similarity = getDMPSimilarity(searchStr, windowStr);
|
||||
const contextSimilarity = validateContextLines(searchStr, windowStr);
|
||||
const adjustedScore = Math.min(similarity, contextSimilarity) * score;
|
||||
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
|
||||
const windowStr = content.slice(i, i + searchLines.length).join("\n")
|
||||
const score = compareTwoStrings(searchStr, windowStr)
|
||||
if (score > bestScore && score >= minScore) {
|
||||
const similarity = getDMPSimilarity(searchStr, windowStr)
|
||||
const contextSimilarity = validateContextLines(searchStr, windowStr)
|
||||
const adjustedScore = Math.min(similarity, contextSimilarity) * score
|
||||
|
||||
if (adjustedScore > bestScore) {
|
||||
bestScore = adjustedScore;
|
||||
bestIndex = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (adjustedScore > bestScore) {
|
||||
bestScore = adjustedScore
|
||||
bestIndex = i
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
index: bestIndex,
|
||||
confidence: bestIndex !== -1 ? bestScore : 0,
|
||||
strategy: 'similarity',
|
||||
};
|
||||
return {
|
||||
index: bestIndex,
|
||||
confidence: bestIndex !== -1 ? bestScore : 0,
|
||||
strategy: "similarity",
|
||||
}
|
||||
}
|
||||
|
||||
// Levenshtein strategy
|
||||
export function findLevenshteinMatch(
|
||||
searchStr: string,
|
||||
content: string[],
|
||||
startIndex: number = 0
|
||||
): SearchResult {
|
||||
const searchLines = searchStr.split('\n');
|
||||
const candidates = [];
|
||||
export function findLevenshteinMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
|
||||
const searchLines = searchStr.split("\n")
|
||||
const candidates = []
|
||||
|
||||
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
|
||||
candidates.push(content.slice(i, i + searchLines.length).join('\n'));
|
||||
}
|
||||
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
|
||||
candidates.push(content.slice(i, i + searchLines.length).join("\n"))
|
||||
}
|
||||
|
||||
if (candidates.length > 0) {
|
||||
const closestMatch = closest(searchStr, candidates);
|
||||
const index = startIndex + candidates.indexOf(closestMatch);
|
||||
const similarity = getDMPSimilarity(searchStr, closestMatch);
|
||||
const contextSimilarity = validateContextLines(searchStr, closestMatch);
|
||||
const confidence = Math.min(similarity, contextSimilarity)
|
||||
return {
|
||||
index,
|
||||
confidence: index !== -1 ? confidence : 0,
|
||||
strategy: 'levenshtein',
|
||||
};
|
||||
}
|
||||
if (candidates.length > 0) {
|
||||
const closestMatch = closest(searchStr, candidates)
|
||||
const index = startIndex + candidates.indexOf(closestMatch)
|
||||
const similarity = getDMPSimilarity(searchStr, closestMatch)
|
||||
const contextSimilarity = validateContextLines(searchStr, closestMatch)
|
||||
const confidence = Math.min(similarity, contextSimilarity)
|
||||
return {
|
||||
index,
|
||||
confidence: index !== -1 ? confidence : 0,
|
||||
strategy: "levenshtein",
|
||||
}
|
||||
}
|
||||
|
||||
return { index: -1, confidence: 0, strategy: 'levenshtein' };
|
||||
return { index: -1, confidence: 0, strategy: "levenshtein" }
|
||||
}
|
||||
|
||||
// Helper function to identify anchor lines based on uniqueness and complexity
|
||||
function identifyAnchors(searchStr: string, content: string[]): { line: string; index: number; weight: number }[] {
|
||||
const searchLines = searchStr.split("\n")
|
||||
const contentStr = content.join("\n")
|
||||
const anchors: { line: string; index: number; weight: number }[] = []
|
||||
|
||||
for (let i = 0; i < searchLines.length; i++) {
|
||||
const line = searchLines[i]
|
||||
if (!line.trim()) {continue} // Skip empty lines
|
||||
|
||||
// Calculate line complexity (more special chars = more unique)
|
||||
const specialChars = (line.match(/[^a-zA-Z0-9\s]/g) || []).length
|
||||
const complexity = specialChars / line.length
|
||||
|
||||
// Count occurrences in content
|
||||
const regex = new RegExp(line.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"), "g")
|
||||
const matches = contentStr.match(regex)
|
||||
const occurrences = matches ? matches.length : 0
|
||||
|
||||
// Calculate uniqueness weight
|
||||
const uniquenessWeight = occurrences <= 1 ? 1 : 1 / occurrences
|
||||
const weight = uniquenessWeight * (0.7 + 0.3 * complexity)
|
||||
|
||||
if (weight > 0.5) {
|
||||
// Only consider lines with high enough weight
|
||||
anchors.push({ line, index: i, weight })
|
||||
}
|
||||
}
|
||||
|
||||
// Sort by weight descending
|
||||
return anchors.sort((a, b) => b.weight - a.weight)
|
||||
}
|
||||
|
||||
// Helper function to validate anchor positions
|
||||
function validateAnchorPositions(
|
||||
anchors: { line: string; index: number }[],
|
||||
content: string[],
|
||||
searchLines: string[]
|
||||
): number {
|
||||
for (const anchor of anchors) {
|
||||
const anchorIndex = content.findIndex((line) => line === anchor.line)
|
||||
if (anchorIndex !== -1) {
|
||||
// Check if surrounding context matches
|
||||
const contextBefore = searchLines.slice(Math.max(0, anchor.index - 2), anchor.index).join("\n")
|
||||
const contextAfter = searchLines.slice(anchor.index + 1, anchor.index + 3).join("\n")
|
||||
const contentBefore = content.slice(Math.max(0, anchorIndex - 2), anchorIndex).join("\n")
|
||||
const contentAfter = content.slice(anchorIndex + 1, anchorIndex + 3).join("\n")
|
||||
|
||||
const beforeSimilarity = evaluateSimilarity(contextBefore, contentBefore)
|
||||
const afterSimilarity = evaluateSimilarity(contextAfter, contentAfter)
|
||||
|
||||
if (beforeSimilarity > 0.8 && afterSimilarity > 0.8) {
|
||||
return anchorIndex - anchor.index
|
||||
}
|
||||
}
|
||||
}
|
||||
return -1
|
||||
}
|
||||
|
||||
// Anchor-based search strategy
|
||||
export function findAnchorMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
|
||||
const searchLines = searchStr.split("\n")
|
||||
const anchors = identifyAnchors(searchStr, content.slice(startIndex))
|
||||
|
||||
if (anchors.length === 0) {
|
||||
return { index: -1, confidence: 0, strategy: "anchor" }
|
||||
}
|
||||
|
||||
// Try to validate position using top anchors
|
||||
const offset = validateAnchorPositions(anchors.slice(0, 3), content.slice(startIndex), searchLines)
|
||||
|
||||
if (offset !== -1) {
|
||||
const matchPosition = startIndex + offset
|
||||
const matchedContent = content.slice(matchPosition, matchPosition + searchLines.length).join("\n")
|
||||
const similarity = getDMPSimilarity(searchStr, matchedContent)
|
||||
const contextSimilarity = validateContextLines(searchStr, matchedContent)
|
||||
const confidence = Math.min(similarity, contextSimilarity) * (1 + anchors[0].weight * 0.1) // Boost confidence based on anchor weight
|
||||
|
||||
return {
|
||||
index: matchPosition,
|
||||
confidence: Math.min(1, confidence), // Cap at 1
|
||||
strategy: "anchor",
|
||||
}
|
||||
}
|
||||
|
||||
return { index: -1, confidence: 0, strategy: "anchor" }
|
||||
}
|
||||
|
||||
// Main search function that tries all strategies
|
||||
export function findBestMatch(
|
||||
searchStr: string,
|
||||
content: string[],
|
||||
startIndex: number = 0
|
||||
): SearchResult {
|
||||
const strategies = [
|
||||
findExactMatch,
|
||||
findSimilarityMatch,
|
||||
findLevenshteinMatch,
|
||||
];
|
||||
export function findBestMatch(searchStr: string, content: string[], startIndex: number = 0): SearchResult {
|
||||
const strategies = [findExactMatch, findAnchorMatch, findSimilarityMatch, findLevenshteinMatch]
|
||||
|
||||
let bestResult: SearchResult = { index: -1, confidence: 0, strategy: 'none' };
|
||||
let bestResult: SearchResult = { index: -1, confidence: 0, strategy: "none" }
|
||||
|
||||
for (const strategy of strategies) {
|
||||
const result = strategy(searchStr, content, startIndex);
|
||||
if (result.confidence > bestResult.confidence) {
|
||||
bestResult = result;
|
||||
}
|
||||
}
|
||||
for (const strategy of strategies) {
|
||||
const result = strategy(searchStr, content, startIndex)
|
||||
console.log("Search result:", result)
|
||||
if (result.confidence > bestResult.confidence) {
|
||||
bestResult = result
|
||||
}
|
||||
}
|
||||
|
||||
return bestResult;
|
||||
return bestResult
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user