Modifying the usage of unbound.ts in compliance with all providers

This commit is contained in:
Vignesh Subbiah
2025-01-28 19:43:52 +05:30
parent 31ec687768
commit 4008a1a53e
2 changed files with 304 additions and 78 deletions

View File

@@ -1,64 +1,210 @@
import { UnboundHandler } from "../unbound"
import { ApiHandlerOptions } from "../../../shared/api"
import fetchMock from "jest-fetch-mock"
import OpenAI from "openai"
import { Anthropic } from "@anthropic-ai/sdk"
fetchMock.enableMocks()
// Mock OpenAI client
const mockCreate = jest.fn()
const mockWithResponse = jest.fn()
jest.mock("openai", () => {
return {
__esModule: true,
default: jest.fn().mockImplementation(() => ({
chat: {
completions: {
create: (...args: any[]) => {
const stream = {
[Symbol.asyncIterator]: async function* () {
yield {
choices: [
{
delta: { content: "Test response" },
index: 0,
},
],
}
yield {
choices: [
{
delta: {},
index: 0,
},
],
}
},
}
const result = mockCreate(...args)
if (args[0].stream) {
mockWithResponse.mockReturnValue(
Promise.resolve({
data: stream,
response: { headers: new Map() },
}),
)
result.withResponse = mockWithResponse
}
return result
},
},
},
})),
}
})
describe("UnboundHandler", () => {
const mockOptions: ApiHandlerOptions = {
unboundApiKey: "test-api-key",
apiModelId: "test-model-id",
}
let handler: UnboundHandler
let mockOptions: ApiHandlerOptions
beforeEach(() => {
fetchMock.resetMocks()
})
it("should initialize with options", () => {
const handler = new UnboundHandler(mockOptions)
expect(handler).toBeDefined()
})
it("should create a message successfully", async () => {
const handler = new UnboundHandler(mockOptions)
const mockResponse = {
choices: [{ message: { content: "Hello, world!" } }],
usage: { prompt_tokens: 5, completion_tokens: 7 },
mockOptions = {
apiModelId: "anthropic/claude-3-5-sonnet-20241022",
unboundApiKey: "test-api-key",
}
handler = new UnboundHandler(mockOptions)
mockCreate.mockClear()
mockWithResponse.mockClear()
fetchMock.mockResponseOnce(JSON.stringify(mockResponse))
const generator = handler.createMessage("system prompt", [])
const textResult = await generator.next()
const usageResult = await generator.next()
expect(textResult.value).toEqual({ type: "text", text: "Hello, world!" })
expect(usageResult.value).toEqual({
type: "usage",
inputTokens: 5,
outputTokens: 7,
// Default mock implementation for non-streaming responses
mockCreate.mockResolvedValue({
id: "test-completion",
choices: [
{
message: { role: "assistant", content: "Test response" },
finish_reason: "stop",
index: 0,
},
],
})
})
it("should handle API errors", async () => {
const handler = new UnboundHandler(mockOptions)
fetchMock.mockResponseOnce(JSON.stringify({ error: "API error" }), { status: 400 })
const generator = handler.createMessage("system prompt", [])
await expect(generator.next()).rejects.toThrow("Unbound Gateway completion error: API error")
describe("constructor", () => {
it("should initialize with provided options", () => {
expect(handler).toBeInstanceOf(UnboundHandler)
expect(handler.getModel().id).toBe(mockOptions.apiModelId)
})
})
it("should handle network errors", async () => {
const handler = new UnboundHandler(mockOptions)
fetchMock.mockRejectOnce(new Error("Network error"))
describe("createMessage", () => {
const systemPrompt = "You are a helpful assistant."
const messages: Anthropic.Messages.MessageParam[] = [
{
role: "user",
content: "Hello!",
},
]
const generator = handler.createMessage("system prompt", [])
await expect(generator.next()).rejects.toThrow("Unbound Gateway completion error: Network error")
it("should handle streaming responses", async () => {
const stream = handler.createMessage(systemPrompt, messages)
const chunks: any[] = []
for await (const chunk of stream) {
chunks.push(chunk)
}
expect(chunks.length).toBe(1)
expect(chunks[0]).toEqual({
type: "text",
text: "Test response",
})
expect(mockCreate).toHaveBeenCalledWith(
expect.objectContaining({
model: "claude-3-5-sonnet-20241022",
messages: expect.any(Array),
stream: true,
}),
expect.objectContaining({
headers: {
"X-Unbound-Metadata": expect.stringContaining("roo-code"),
},
}),
)
})
it("should handle API errors", async () => {
mockCreate.mockImplementationOnce(() => {
throw new Error("API Error")
})
const stream = handler.createMessage(systemPrompt, messages)
const chunks = []
try {
for await (const chunk of stream) {
chunks.push(chunk)
}
fail("Expected error to be thrown")
} catch (error) {
expect(error).toBeInstanceOf(Error)
expect(error.message).toBe("API Error")
}
})
})
it("should return the correct model", () => {
const handler = new UnboundHandler(mockOptions)
const model = handler.getModel()
expect(model.id).toBe("gpt-4o")
describe("completePrompt", () => {
it("should complete prompt successfully", async () => {
const result = await handler.completePrompt("Test prompt")
expect(result).toBe("Test response")
expect(mockCreate).toHaveBeenCalledWith(
expect.objectContaining({
model: "claude-3-5-sonnet-20241022",
messages: [{ role: "user", content: "Test prompt" }],
temperature: 0,
max_tokens: 8192,
}),
)
})
it("should handle API errors", async () => {
mockCreate.mockRejectedValueOnce(new Error("API Error"))
await expect(handler.completePrompt("Test prompt")).rejects.toThrow("Unbound completion error: API Error")
})
it("should handle empty response", async () => {
mockCreate.mockResolvedValueOnce({
choices: [{ message: { content: "" } }],
})
const result = await handler.completePrompt("Test prompt")
expect(result).toBe("")
})
it("should not set max_tokens for non-Anthropic models", async () => {
mockCreate.mockClear()
const nonAnthropicOptions = {
apiModelId: "openai/gpt-4o",
unboundApiKey: "test-key",
}
const nonAnthropicHandler = new UnboundHandler(nonAnthropicOptions)
await nonAnthropicHandler.completePrompt("Test prompt")
expect(mockCreate).toHaveBeenCalledWith(
expect.objectContaining({
model: "gpt-4o",
messages: [{ role: "user", content: "Test prompt" }],
temperature: 0,
}),
)
expect(mockCreate.mock.calls[0][0]).not.toHaveProperty("max_tokens")
})
})
describe("getModel", () => {
it("should return model info", () => {
const modelInfo = handler.getModel()
expect(modelInfo.id).toBe(mockOptions.apiModelId)
expect(modelInfo.info).toBeDefined()
})
it("should return default model when invalid model provided", () => {
const handlerWithInvalidModel = new UnboundHandler({
...mockOptions,
apiModelId: "invalid/model",
})
const modelInfo = handlerWithInvalidModel.getModel()
expect(modelInfo.id).toBe("openai/gpt-4o") // Default model
expect(modelInfo.info).toBeDefined()
})
})
})

View File

@@ -1,50 +1,108 @@
import { ApiHandlerOptions, unboundModels, UnboundModelId, unboundDefaultModelId, ModelInfo } from "../../shared/api"
import { ApiStream } from "../transform/stream"
import { Anthropic } from "@anthropic-ai/sdk"
import { ApiHandler } from "../index"
import OpenAI from "openai"
import { ApiHandler, SingleCompletionHandler } from "../"
import { ApiHandlerOptions, ModelInfo, UnboundModelId, unboundDefaultModelId, unboundModels } from "../../shared/api"
import { convertToOpenAiMessages } from "../transform/openai-format"
import { ApiStream } from "../transform/stream"
export class UnboundHandler implements ApiHandler {
private unboundBaseUrl: string = "https://api.getunbound.ai/v1"
export class UnboundHandler implements ApiHandler, SingleCompletionHandler {
private options: ApiHandlerOptions
private client: OpenAI
constructor(options: ApiHandlerOptions) {
this.options = options
this.client = new OpenAI({
baseURL: "https://api.getunbound.ai/v1",
apiKey: this.options.unboundApiKey,
})
}
async *createMessage(systemPrompt: string, messages: Anthropic.Messages.MessageParam[]): ApiStream {
try {
const response = await fetch(`${this.unboundBaseUrl}/chat/completions`, {
method: "POST",
headers: {
Authorization: `Bearer ${this.options.unboundApiKey}`,
"Content-Type": "application/json",
},
body: JSON.stringify({
model: this.getModel().id.split("/")[1],
messages: [{ role: "system", content: systemPrompt }, ...messages],
}),
// Convert Anthropic messages to OpenAI format
const openAiMessages: OpenAI.Chat.ChatCompletionMessageParam[] = [
{ role: "system", content: systemPrompt },
...convertToOpenAiMessages(messages),
]
// this is specifically for claude models (some models may 'support prompt caching' automatically without this)
if (this.getModel().id.startsWith("anthropic/claude-3")) {
openAiMessages[0] = {
role: "system",
content: [
{
type: "text",
text: systemPrompt,
// @ts-ignore-next-line
cache_control: { type: "ephemeral" },
},
],
}
// Add cache_control to the last two user messages
// (note: this works because we only ever add one user message at a time,
// but if we added multiple we'd need to mark the user message before the last assistant message)
const lastTwoUserMessages = openAiMessages.filter((msg) => msg.role === "user").slice(-2)
lastTwoUserMessages.forEach((msg) => {
if (typeof msg.content === "string") {
msg.content = [{ type: "text", text: msg.content }]
}
if (Array.isArray(msg.content)) {
// NOTE: this is fine since env details will always be added at the end.
// but if it weren't there, and the user added a image_url type message,
// it would pop a text part before it and then move it after to the end.
let lastTextPart = msg.content.filter((part) => part.type === "text").pop()
if (!lastTextPart) {
lastTextPart = { type: "text", text: "..." }
msg.content.push(lastTextPart)
}
// @ts-ignore-next-line
lastTextPart["cache_control"] = { type: "ephemeral" }
}
})
}
const data = await response.json()
// Required by Anthropic
// Other providers default to max tokens allowed.
let maxTokens: number | undefined
if (!response.ok) {
throw new Error(data.error.message)
}
if (this.getModel().id.startsWith("anthropic/")) {
maxTokens = 8_192
}
yield {
type: "text",
text: data.choices[0]?.message?.content || "",
const { data: completion, response } = await this.client.chat.completions
.create(
{
model: this.getModel().id.split("/")[1],
max_tokens: maxTokens,
temperature: 0,
messages: openAiMessages,
stream: true,
},
{
headers: {
"X-Unbound-Metadata": JSON.stringify({
labels: [
{
key: "app",
value: "roo-code",
},
],
}),
},
},
)
.withResponse()
for await (const chunk of completion) {
const delta = chunk.choices[0]?.delta
if (delta?.content) {
yield {
type: "text",
text: delta.content,
}
}
yield {
type: "usage",
inputTokens: data.usage?.prompt_tokens || 0,
outputTokens: data.usage?.completion_tokens || 0,
}
} catch (error) {
if (error instanceof Error) {
throw new Error(`Unbound Gateway completion error:\n ${error.message}`)
}
throw error
}
}
@@ -59,4 +117,26 @@ export class UnboundHandler implements ApiHandler {
info: unboundModels[unboundDefaultModelId],
}
}
async completePrompt(prompt: string): Promise<string> {
try {
const requestOptions: OpenAI.Chat.Completions.ChatCompletionCreateParamsNonStreaming = {
model: this.getModel().id.split("/")[1],
messages: [{ role: "user", content: prompt }],
temperature: 0,
}
if (this.getModel().id.startsWith("anthropic/")) {
requestOptions.max_tokens = 8192
}
const response = await this.client.chat.completions.create(requestOptions)
return response.choices[0]?.message.content || ""
} catch (error) {
if (error instanceof Error) {
throw new Error(`Unbound completion error: ${error.message}`)
}
throw error
}
}
}