mirror of
https://github.com/pacnpal/Roo-Code.git
synced 2025-12-20 04:11:10 -05:00
Modifying the usage of unbound.ts in compliance with all providers
This commit is contained in:
@@ -1,64 +1,210 @@
|
||||
import { UnboundHandler } from "../unbound"
|
||||
import { ApiHandlerOptions } from "../../../shared/api"
|
||||
import fetchMock from "jest-fetch-mock"
|
||||
import OpenAI from "openai"
|
||||
import { Anthropic } from "@anthropic-ai/sdk"
|
||||
|
||||
fetchMock.enableMocks()
|
||||
// Mock OpenAI client
|
||||
const mockCreate = jest.fn()
|
||||
const mockWithResponse = jest.fn()
|
||||
|
||||
jest.mock("openai", () => {
|
||||
return {
|
||||
__esModule: true,
|
||||
default: jest.fn().mockImplementation(() => ({
|
||||
chat: {
|
||||
completions: {
|
||||
create: (...args: any[]) => {
|
||||
const stream = {
|
||||
[Symbol.asyncIterator]: async function* () {
|
||||
yield {
|
||||
choices: [
|
||||
{
|
||||
delta: { content: "Test response" },
|
||||
index: 0,
|
||||
},
|
||||
],
|
||||
}
|
||||
yield {
|
||||
choices: [
|
||||
{
|
||||
delta: {},
|
||||
index: 0,
|
||||
},
|
||||
],
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
const result = mockCreate(...args)
|
||||
if (args[0].stream) {
|
||||
mockWithResponse.mockReturnValue(
|
||||
Promise.resolve({
|
||||
data: stream,
|
||||
response: { headers: new Map() },
|
||||
}),
|
||||
)
|
||||
result.withResponse = mockWithResponse
|
||||
}
|
||||
return result
|
||||
},
|
||||
},
|
||||
},
|
||||
})),
|
||||
}
|
||||
})
|
||||
|
||||
describe("UnboundHandler", () => {
|
||||
const mockOptions: ApiHandlerOptions = {
|
||||
unboundApiKey: "test-api-key",
|
||||
apiModelId: "test-model-id",
|
||||
}
|
||||
let handler: UnboundHandler
|
||||
let mockOptions: ApiHandlerOptions
|
||||
|
||||
beforeEach(() => {
|
||||
fetchMock.resetMocks()
|
||||
})
|
||||
|
||||
it("should initialize with options", () => {
|
||||
const handler = new UnboundHandler(mockOptions)
|
||||
expect(handler).toBeDefined()
|
||||
})
|
||||
|
||||
it("should create a message successfully", async () => {
|
||||
const handler = new UnboundHandler(mockOptions)
|
||||
const mockResponse = {
|
||||
choices: [{ message: { content: "Hello, world!" } }],
|
||||
usage: { prompt_tokens: 5, completion_tokens: 7 },
|
||||
mockOptions = {
|
||||
apiModelId: "anthropic/claude-3-5-sonnet-20241022",
|
||||
unboundApiKey: "test-api-key",
|
||||
}
|
||||
handler = new UnboundHandler(mockOptions)
|
||||
mockCreate.mockClear()
|
||||
mockWithResponse.mockClear()
|
||||
|
||||
fetchMock.mockResponseOnce(JSON.stringify(mockResponse))
|
||||
|
||||
const generator = handler.createMessage("system prompt", [])
|
||||
const textResult = await generator.next()
|
||||
const usageResult = await generator.next()
|
||||
|
||||
expect(textResult.value).toEqual({ type: "text", text: "Hello, world!" })
|
||||
expect(usageResult.value).toEqual({
|
||||
type: "usage",
|
||||
inputTokens: 5,
|
||||
outputTokens: 7,
|
||||
// Default mock implementation for non-streaming responses
|
||||
mockCreate.mockResolvedValue({
|
||||
id: "test-completion",
|
||||
choices: [
|
||||
{
|
||||
message: { role: "assistant", content: "Test response" },
|
||||
finish_reason: "stop",
|
||||
index: 0,
|
||||
},
|
||||
],
|
||||
})
|
||||
})
|
||||
|
||||
it("should handle API errors", async () => {
|
||||
const handler = new UnboundHandler(mockOptions)
|
||||
fetchMock.mockResponseOnce(JSON.stringify({ error: "API error" }), { status: 400 })
|
||||
|
||||
const generator = handler.createMessage("system prompt", [])
|
||||
await expect(generator.next()).rejects.toThrow("Unbound Gateway completion error: API error")
|
||||
describe("constructor", () => {
|
||||
it("should initialize with provided options", () => {
|
||||
expect(handler).toBeInstanceOf(UnboundHandler)
|
||||
expect(handler.getModel().id).toBe(mockOptions.apiModelId)
|
||||
})
|
||||
})
|
||||
|
||||
it("should handle network errors", async () => {
|
||||
const handler = new UnboundHandler(mockOptions)
|
||||
fetchMock.mockRejectOnce(new Error("Network error"))
|
||||
describe("createMessage", () => {
|
||||
const systemPrompt = "You are a helpful assistant."
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: "user",
|
||||
content: "Hello!",
|
||||
},
|
||||
]
|
||||
|
||||
const generator = handler.createMessage("system prompt", [])
|
||||
await expect(generator.next()).rejects.toThrow("Unbound Gateway completion error: Network error")
|
||||
it("should handle streaming responses", async () => {
|
||||
const stream = handler.createMessage(systemPrompt, messages)
|
||||
const chunks: any[] = []
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk)
|
||||
}
|
||||
|
||||
expect(chunks.length).toBe(1)
|
||||
expect(chunks[0]).toEqual({
|
||||
type: "text",
|
||||
text: "Test response",
|
||||
})
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
model: "claude-3-5-sonnet-20241022",
|
||||
messages: expect.any(Array),
|
||||
stream: true,
|
||||
}),
|
||||
expect.objectContaining({
|
||||
headers: {
|
||||
"X-Unbound-Metadata": expect.stringContaining("roo-code"),
|
||||
},
|
||||
}),
|
||||
)
|
||||
})
|
||||
|
||||
it("should handle API errors", async () => {
|
||||
mockCreate.mockImplementationOnce(() => {
|
||||
throw new Error("API Error")
|
||||
})
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, messages)
|
||||
const chunks = []
|
||||
|
||||
try {
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk)
|
||||
}
|
||||
fail("Expected error to be thrown")
|
||||
} catch (error) {
|
||||
expect(error).toBeInstanceOf(Error)
|
||||
expect(error.message).toBe("API Error")
|
||||
}
|
||||
})
|
||||
})
|
||||
|
||||
it("should return the correct model", () => {
|
||||
const handler = new UnboundHandler(mockOptions)
|
||||
const model = handler.getModel()
|
||||
expect(model.id).toBe("gpt-4o")
|
||||
describe("completePrompt", () => {
|
||||
it("should complete prompt successfully", async () => {
|
||||
const result = await handler.completePrompt("Test prompt")
|
||||
expect(result).toBe("Test response")
|
||||
expect(mockCreate).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
model: "claude-3-5-sonnet-20241022",
|
||||
messages: [{ role: "user", content: "Test prompt" }],
|
||||
temperature: 0,
|
||||
max_tokens: 8192,
|
||||
}),
|
||||
)
|
||||
})
|
||||
|
||||
it("should handle API errors", async () => {
|
||||
mockCreate.mockRejectedValueOnce(new Error("API Error"))
|
||||
await expect(handler.completePrompt("Test prompt")).rejects.toThrow("Unbound completion error: API Error")
|
||||
})
|
||||
|
||||
it("should handle empty response", async () => {
|
||||
mockCreate.mockResolvedValueOnce({
|
||||
choices: [{ message: { content: "" } }],
|
||||
})
|
||||
const result = await handler.completePrompt("Test prompt")
|
||||
expect(result).toBe("")
|
||||
})
|
||||
|
||||
it("should not set max_tokens for non-Anthropic models", async () => {
|
||||
mockCreate.mockClear()
|
||||
|
||||
const nonAnthropicOptions = {
|
||||
apiModelId: "openai/gpt-4o",
|
||||
unboundApiKey: "test-key",
|
||||
}
|
||||
const nonAnthropicHandler = new UnboundHandler(nonAnthropicOptions)
|
||||
|
||||
await nonAnthropicHandler.completePrompt("Test prompt")
|
||||
expect(mockCreate).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
model: "gpt-4o",
|
||||
messages: [{ role: "user", content: "Test prompt" }],
|
||||
temperature: 0,
|
||||
}),
|
||||
)
|
||||
expect(mockCreate.mock.calls[0][0]).not.toHaveProperty("max_tokens")
|
||||
})
|
||||
})
|
||||
|
||||
describe("getModel", () => {
|
||||
it("should return model info", () => {
|
||||
const modelInfo = handler.getModel()
|
||||
expect(modelInfo.id).toBe(mockOptions.apiModelId)
|
||||
expect(modelInfo.info).toBeDefined()
|
||||
})
|
||||
|
||||
it("should return default model when invalid model provided", () => {
|
||||
const handlerWithInvalidModel = new UnboundHandler({
|
||||
...mockOptions,
|
||||
apiModelId: "invalid/model",
|
||||
})
|
||||
const modelInfo = handlerWithInvalidModel.getModel()
|
||||
expect(modelInfo.id).toBe("openai/gpt-4o") // Default model
|
||||
expect(modelInfo.info).toBeDefined()
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
@@ -1,50 +1,108 @@
|
||||
import { ApiHandlerOptions, unboundModels, UnboundModelId, unboundDefaultModelId, ModelInfo } from "../../shared/api"
|
||||
import { ApiStream } from "../transform/stream"
|
||||
import { Anthropic } from "@anthropic-ai/sdk"
|
||||
import { ApiHandler } from "../index"
|
||||
import OpenAI from "openai"
|
||||
import { ApiHandler, SingleCompletionHandler } from "../"
|
||||
import { ApiHandlerOptions, ModelInfo, UnboundModelId, unboundDefaultModelId, unboundModels } from "../../shared/api"
|
||||
import { convertToOpenAiMessages } from "../transform/openai-format"
|
||||
import { ApiStream } from "../transform/stream"
|
||||
|
||||
export class UnboundHandler implements ApiHandler {
|
||||
private unboundBaseUrl: string = "https://api.getunbound.ai/v1"
|
||||
export class UnboundHandler implements ApiHandler, SingleCompletionHandler {
|
||||
private options: ApiHandlerOptions
|
||||
private client: OpenAI
|
||||
|
||||
constructor(options: ApiHandlerOptions) {
|
||||
this.options = options
|
||||
this.client = new OpenAI({
|
||||
baseURL: "https://api.getunbound.ai/v1",
|
||||
apiKey: this.options.unboundApiKey,
|
||||
})
|
||||
}
|
||||
|
||||
async *createMessage(systemPrompt: string, messages: Anthropic.Messages.MessageParam[]): ApiStream {
|
||||
try {
|
||||
const response = await fetch(`${this.unboundBaseUrl}/chat/completions`, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
Authorization: `Bearer ${this.options.unboundApiKey}`,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
body: JSON.stringify({
|
||||
model: this.getModel().id.split("/")[1],
|
||||
messages: [{ role: "system", content: systemPrompt }, ...messages],
|
||||
}),
|
||||
// Convert Anthropic messages to OpenAI format
|
||||
const openAiMessages: OpenAI.Chat.ChatCompletionMessageParam[] = [
|
||||
{ role: "system", content: systemPrompt },
|
||||
...convertToOpenAiMessages(messages),
|
||||
]
|
||||
|
||||
// this is specifically for claude models (some models may 'support prompt caching' automatically without this)
|
||||
if (this.getModel().id.startsWith("anthropic/claude-3")) {
|
||||
openAiMessages[0] = {
|
||||
role: "system",
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
text: systemPrompt,
|
||||
// @ts-ignore-next-line
|
||||
cache_control: { type: "ephemeral" },
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
// Add cache_control to the last two user messages
|
||||
// (note: this works because we only ever add one user message at a time,
|
||||
// but if we added multiple we'd need to mark the user message before the last assistant message)
|
||||
const lastTwoUserMessages = openAiMessages.filter((msg) => msg.role === "user").slice(-2)
|
||||
lastTwoUserMessages.forEach((msg) => {
|
||||
if (typeof msg.content === "string") {
|
||||
msg.content = [{ type: "text", text: msg.content }]
|
||||
}
|
||||
if (Array.isArray(msg.content)) {
|
||||
// NOTE: this is fine since env details will always be added at the end.
|
||||
// but if it weren't there, and the user added a image_url type message,
|
||||
// it would pop a text part before it and then move it after to the end.
|
||||
let lastTextPart = msg.content.filter((part) => part.type === "text").pop()
|
||||
|
||||
if (!lastTextPart) {
|
||||
lastTextPart = { type: "text", text: "..." }
|
||||
msg.content.push(lastTextPart)
|
||||
}
|
||||
// @ts-ignore-next-line
|
||||
lastTextPart["cache_control"] = { type: "ephemeral" }
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
const data = await response.json()
|
||||
// Required by Anthropic
|
||||
// Other providers default to max tokens allowed.
|
||||
let maxTokens: number | undefined
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(data.error.message)
|
||||
}
|
||||
if (this.getModel().id.startsWith("anthropic/")) {
|
||||
maxTokens = 8_192
|
||||
}
|
||||
|
||||
yield {
|
||||
type: "text",
|
||||
text: data.choices[0]?.message?.content || "",
|
||||
const { data: completion, response } = await this.client.chat.completions
|
||||
.create(
|
||||
{
|
||||
model: this.getModel().id.split("/")[1],
|
||||
max_tokens: maxTokens,
|
||||
temperature: 0,
|
||||
messages: openAiMessages,
|
||||
stream: true,
|
||||
},
|
||||
{
|
||||
headers: {
|
||||
"X-Unbound-Metadata": JSON.stringify({
|
||||
labels: [
|
||||
{
|
||||
key: "app",
|
||||
value: "roo-code",
|
||||
},
|
||||
],
|
||||
}),
|
||||
},
|
||||
},
|
||||
)
|
||||
.withResponse()
|
||||
|
||||
for await (const chunk of completion) {
|
||||
const delta = chunk.choices[0]?.delta
|
||||
|
||||
if (delta?.content) {
|
||||
yield {
|
||||
type: "text",
|
||||
text: delta.content,
|
||||
}
|
||||
}
|
||||
yield {
|
||||
type: "usage",
|
||||
inputTokens: data.usage?.prompt_tokens || 0,
|
||||
outputTokens: data.usage?.completion_tokens || 0,
|
||||
}
|
||||
} catch (error) {
|
||||
if (error instanceof Error) {
|
||||
throw new Error(`Unbound Gateway completion error:\n ${error.message}`)
|
||||
}
|
||||
throw error
|
||||
}
|
||||
}
|
||||
|
||||
@@ -59,4 +117,26 @@ export class UnboundHandler implements ApiHandler {
|
||||
info: unboundModels[unboundDefaultModelId],
|
||||
}
|
||||
}
|
||||
|
||||
async completePrompt(prompt: string): Promise<string> {
|
||||
try {
|
||||
const requestOptions: OpenAI.Chat.Completions.ChatCompletionCreateParamsNonStreaming = {
|
||||
model: this.getModel().id.split("/")[1],
|
||||
messages: [{ role: "user", content: prompt }],
|
||||
temperature: 0,
|
||||
}
|
||||
|
||||
if (this.getModel().id.startsWith("anthropic/")) {
|
||||
requestOptions.max_tokens = 8192
|
||||
}
|
||||
|
||||
const response = await this.client.chat.completions.create(requestOptions)
|
||||
return response.choices[0]?.message.content || ""
|
||||
} catch (error) {
|
||||
if (error instanceof Error) {
|
||||
throw new Error(`Unbound completion error: ${error.message}`)
|
||||
}
|
||||
throw error
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user