mirror of
https://github.com/pacnpal/Roo-Code.git
synced 2025-12-20 04:11:10 -05:00
Add test coverage
This commit is contained in:
168
src/api/providers/__tests__/anthropic.test.ts
Normal file
168
src/api/providers/__tests__/anthropic.test.ts
Normal file
@@ -0,0 +1,168 @@
|
||||
import { AnthropicHandler } from '../anthropic';
|
||||
import { ApiHandlerOptions } from '../../../shared/api';
|
||||
import { ApiStream } from '../../transform/stream';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
|
||||
// Mock Anthropic client
|
||||
const mockBetaCreate = jest.fn();
|
||||
const mockCreate = jest.fn();
|
||||
jest.mock('@anthropic-ai/sdk', () => {
|
||||
return {
|
||||
Anthropic: jest.fn().mockImplementation(() => ({
|
||||
beta: {
|
||||
promptCaching: {
|
||||
messages: {
|
||||
create: mockBetaCreate.mockImplementation(async () => ({
|
||||
async *[Symbol.asyncIterator]() {
|
||||
yield {
|
||||
type: 'message_start',
|
||||
message: {
|
||||
usage: {
|
||||
input_tokens: 100,
|
||||
output_tokens: 50,
|
||||
cache_creation_input_tokens: 20,
|
||||
cache_read_input_tokens: 10
|
||||
}
|
||||
}
|
||||
};
|
||||
yield {
|
||||
type: 'content_block_start',
|
||||
index: 0,
|
||||
content_block: {
|
||||
type: 'text',
|
||||
text: 'Hello'
|
||||
}
|
||||
};
|
||||
yield {
|
||||
type: 'content_block_delta',
|
||||
delta: {
|
||||
type: 'text_delta',
|
||||
text: ' world'
|
||||
}
|
||||
};
|
||||
}
|
||||
}))
|
||||
}
|
||||
}
|
||||
},
|
||||
messages: {
|
||||
create: mockCreate
|
||||
}
|
||||
}))
|
||||
};
|
||||
});
|
||||
|
||||
describe('AnthropicHandler', () => {
|
||||
let handler: AnthropicHandler;
|
||||
let mockOptions: ApiHandlerOptions;
|
||||
|
||||
beforeEach(() => {
|
||||
mockOptions = {
|
||||
apiKey: 'test-api-key',
|
||||
apiModelId: 'claude-3-5-sonnet-20241022'
|
||||
};
|
||||
handler = new AnthropicHandler(mockOptions);
|
||||
mockBetaCreate.mockClear();
|
||||
mockCreate.mockClear();
|
||||
});
|
||||
|
||||
describe('constructor', () => {
|
||||
it('should initialize with provided options', () => {
|
||||
expect(handler).toBeInstanceOf(AnthropicHandler);
|
||||
expect(handler.getModel().id).toBe(mockOptions.apiModelId);
|
||||
});
|
||||
|
||||
it('should initialize with undefined API key', () => {
|
||||
// The SDK will handle API key validation, so we just verify it initializes
|
||||
const handlerWithoutKey = new AnthropicHandler({
|
||||
...mockOptions,
|
||||
apiKey: undefined
|
||||
});
|
||||
expect(handlerWithoutKey).toBeInstanceOf(AnthropicHandler);
|
||||
});
|
||||
|
||||
it('should use custom base URL if provided', () => {
|
||||
const customBaseUrl = 'https://custom.anthropic.com';
|
||||
const handlerWithCustomUrl = new AnthropicHandler({
|
||||
...mockOptions,
|
||||
anthropicBaseUrl: customBaseUrl
|
||||
});
|
||||
expect(handlerWithCustomUrl).toBeInstanceOf(AnthropicHandler);
|
||||
});
|
||||
});
|
||||
|
||||
describe('createMessage', () => {
|
||||
const systemPrompt = 'You are a helpful assistant.';
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: [{
|
||||
type: 'text' as const,
|
||||
text: 'Hello!'
|
||||
}]
|
||||
}
|
||||
];
|
||||
|
||||
it('should handle prompt caching for supported models', async () => {
|
||||
const stream = handler.createMessage(systemPrompt, [
|
||||
{
|
||||
role: 'user',
|
||||
content: [{ type: 'text' as const, text: 'First message' }]
|
||||
},
|
||||
{
|
||||
role: 'assistant',
|
||||
content: [{ type: 'text' as const, text: 'Response' }]
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
content: [{ type: 'text' as const, text: 'Second message' }]
|
||||
}
|
||||
]);
|
||||
|
||||
const chunks: any[] = [];
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
// Verify usage information
|
||||
const usageChunk = chunks.find(chunk => chunk.type === 'usage');
|
||||
expect(usageChunk).toBeDefined();
|
||||
expect(usageChunk?.inputTokens).toBe(100);
|
||||
expect(usageChunk?.outputTokens).toBe(50);
|
||||
expect(usageChunk?.cacheWriteTokens).toBe(20);
|
||||
expect(usageChunk?.cacheReadTokens).toBe(10);
|
||||
|
||||
// Verify text content
|
||||
const textChunks = chunks.filter(chunk => chunk.type === 'text');
|
||||
expect(textChunks).toHaveLength(2);
|
||||
expect(textChunks[0].text).toBe('Hello');
|
||||
expect(textChunks[1].text).toBe(' world');
|
||||
|
||||
// Verify beta API was used
|
||||
expect(mockBetaCreate).toHaveBeenCalled();
|
||||
expect(mockCreate).not.toHaveBeenCalled();
|
||||
});
|
||||
});
|
||||
|
||||
describe('getModel', () => {
|
||||
it('should return default model if no model ID is provided', () => {
|
||||
const handlerWithoutModel = new AnthropicHandler({
|
||||
...mockOptions,
|
||||
apiModelId: undefined
|
||||
});
|
||||
const model = handlerWithoutModel.getModel();
|
||||
expect(model.id).toBeDefined();
|
||||
expect(model.info).toBeDefined();
|
||||
});
|
||||
|
||||
it('should return specified model if valid model ID is provided', () => {
|
||||
const model = handler.getModel();
|
||||
expect(model.id).toBe(mockOptions.apiModelId);
|
||||
expect(model.info).toBeDefined();
|
||||
expect(model.info.maxTokens).toBe(8192);
|
||||
expect(model.info.contextWindow).toBe(200_000);
|
||||
expect(model.info.supportsImages).toBe(true);
|
||||
expect(model.info.supportsPromptCache).toBe(true);
|
||||
});
|
||||
});
|
||||
});
|
||||
@@ -1,191 +1,144 @@
|
||||
import { AwsBedrockHandler } from '../bedrock'
|
||||
import { ApiHandlerOptions, ModelInfo } from '../../../shared/api'
|
||||
import { Anthropic } from '@anthropic-ai/sdk'
|
||||
import { StreamEvent } from '../bedrock'
|
||||
|
||||
// Simplified mock for BedrockRuntimeClient
|
||||
class MockBedrockRuntimeClient {
|
||||
private _region: string
|
||||
private mockStream: StreamEvent[] = []
|
||||
|
||||
constructor(config: { region: string }) {
|
||||
this._region = config.region
|
||||
}
|
||||
|
||||
async send(command: any): Promise<{ stream: AsyncIterableIterator<StreamEvent> }> {
|
||||
return {
|
||||
stream: this.createMockStream()
|
||||
}
|
||||
}
|
||||
|
||||
private createMockStream(): AsyncIterableIterator<StreamEvent> {
|
||||
const self = this;
|
||||
return {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
for (const event of self.mockStream) {
|
||||
yield event;
|
||||
}
|
||||
},
|
||||
next: async () => {
|
||||
const value = this.mockStream.shift();
|
||||
return value ? { value, done: false } : { value: undefined, done: true };
|
||||
},
|
||||
return: async () => ({ value: undefined, done: true }),
|
||||
throw: async (e) => { throw e; }
|
||||
};
|
||||
}
|
||||
|
||||
setMockStream(stream: StreamEvent[]) {
|
||||
this.mockStream = stream;
|
||||
}
|
||||
|
||||
get config() {
|
||||
return { region: this._region };
|
||||
}
|
||||
}
|
||||
import { AwsBedrockHandler } from '../bedrock';
|
||||
import { MessageContent } from '../../../shared/api';
|
||||
import { BedrockRuntimeClient } from '@aws-sdk/client-bedrock-runtime';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
|
||||
describe('AwsBedrockHandler', () => {
|
||||
const mockOptions: ApiHandlerOptions = {
|
||||
awsRegion: 'us-east-1',
|
||||
awsAccessKey: 'mock-access-key',
|
||||
awsSecretKey: 'mock-secret-key',
|
||||
apiModelId: 'anthropic.claude-v2',
|
||||
}
|
||||
let handler: AwsBedrockHandler;
|
||||
|
||||
// Override the BedrockRuntimeClient creation in the constructor
|
||||
class TestAwsBedrockHandler extends AwsBedrockHandler {
|
||||
constructor(options: ApiHandlerOptions, mockClient?: MockBedrockRuntimeClient) {
|
||||
super(options)
|
||||
if (mockClient) {
|
||||
// Force type casting to bypass strict type checking
|
||||
(this as any)['client'] = mockClient
|
||||
}
|
||||
}
|
||||
}
|
||||
beforeEach(() => {
|
||||
handler = new AwsBedrockHandler({
|
||||
apiModelId: 'anthropic.claude-3-5-sonnet-20241022-v2:0',
|
||||
awsAccessKey: 'test-access-key',
|
||||
awsSecretKey: 'test-secret-key',
|
||||
awsRegion: 'us-east-1'
|
||||
});
|
||||
});
|
||||
|
||||
test('constructor initializes with correct AWS credentials', () => {
|
||||
const mockClient = new MockBedrockRuntimeClient({
|
||||
region: 'us-east-1'
|
||||
})
|
||||
describe('constructor', () => {
|
||||
it('should initialize with provided config', () => {
|
||||
expect(handler['options'].awsAccessKey).toBe('test-access-key');
|
||||
expect(handler['options'].awsSecretKey).toBe('test-secret-key');
|
||||
expect(handler['options'].awsRegion).toBe('us-east-1');
|
||||
expect(handler['options'].apiModelId).toBe('anthropic.claude-3-5-sonnet-20241022-v2:0');
|
||||
});
|
||||
|
||||
const handler = new TestAwsBedrockHandler(mockOptions, mockClient)
|
||||
|
||||
// Verify that the client is created with the correct configuration
|
||||
expect(handler['client']).toBeDefined()
|
||||
expect(handler['client'].config.region).toBe('us-east-1')
|
||||
})
|
||||
it('should initialize with missing AWS credentials', () => {
|
||||
const handlerWithoutCreds = new AwsBedrockHandler({
|
||||
apiModelId: 'anthropic.claude-3-5-sonnet-20241022-v2:0',
|
||||
awsRegion: 'us-east-1'
|
||||
});
|
||||
expect(handlerWithoutCreds).toBeInstanceOf(AwsBedrockHandler);
|
||||
});
|
||||
});
|
||||
|
||||
test('getModel returns correct model info', () => {
|
||||
const mockClient = new MockBedrockRuntimeClient({
|
||||
region: 'us-east-1'
|
||||
})
|
||||
|
||||
const handler = new TestAwsBedrockHandler(mockOptions, mockClient)
|
||||
const result = handler.getModel()
|
||||
|
||||
expect(result).toEqual({
|
||||
id: 'anthropic.claude-v2',
|
||||
info: {
|
||||
maxTokens: 5000,
|
||||
contextWindow: 128_000,
|
||||
supportsPromptCache: false
|
||||
}
|
||||
})
|
||||
})
|
||||
|
||||
test('createMessage handles successful stream events', async () => {
|
||||
const mockClient = new MockBedrockRuntimeClient({
|
||||
region: 'us-east-1'
|
||||
})
|
||||
|
||||
// Mock stream events
|
||||
const mockStreamEvents: StreamEvent[] = [
|
||||
describe('createMessage', () => {
|
||||
const mockMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
metadata: {
|
||||
usage: {
|
||||
inputTokens: 50,
|
||||
outputTokens: 100
|
||||
}
|
||||
}
|
||||
role: 'user',
|
||||
content: 'Hello'
|
||||
},
|
||||
{
|
||||
contentBlockStart: {
|
||||
start: {
|
||||
text: 'Hello'
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
contentBlockDelta: {
|
||||
delta: {
|
||||
text: ' world'
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
messageStop: {
|
||||
stopReason: 'end_turn'
|
||||
}
|
||||
role: 'assistant',
|
||||
content: 'Hi there!'
|
||||
}
|
||||
]
|
||||
];
|
||||
|
||||
mockClient.setMockStream(mockStreamEvents)
|
||||
const systemPrompt = 'You are a helpful assistant';
|
||||
|
||||
const handler = new TestAwsBedrockHandler(mockOptions, mockClient)
|
||||
it('should handle text messages correctly', async () => {
|
||||
const mockResponse = {
|
||||
messages: [{
|
||||
role: 'assistant',
|
||||
content: [{ type: 'text', text: 'Hello! How can I help you?' }]
|
||||
}],
|
||||
usage: {
|
||||
input_tokens: 10,
|
||||
output_tokens: 5
|
||||
}
|
||||
};
|
||||
|
||||
const systemPrompt = 'You are a helpful assistant'
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{ role: 'user', content: 'Say hello' }
|
||||
]
|
||||
// Mock AWS SDK invoke
|
||||
const mockStream = {
|
||||
[Symbol.asyncIterator]: async function* () {
|
||||
yield {
|
||||
metadata: {
|
||||
usage: {
|
||||
inputTokens: 10,
|
||||
outputTokens: 5
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const chunks = []
|
||||
const mockInvoke = jest.fn().mockResolvedValue({
|
||||
stream: mockStream
|
||||
});
|
||||
|
||||
for await (const chunk of generator) {
|
||||
chunks.push(chunk)
|
||||
}
|
||||
handler['client'] = {
|
||||
send: mockInvoke
|
||||
} as unknown as BedrockRuntimeClient;
|
||||
|
||||
// Verify the chunks match expected stream events
|
||||
expect(chunks).toHaveLength(3)
|
||||
expect(chunks[0]).toEqual({
|
||||
type: 'usage',
|
||||
inputTokens: 50,
|
||||
outputTokens: 100
|
||||
})
|
||||
expect(chunks[1]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Hello'
|
||||
})
|
||||
expect(chunks[2]).toEqual({
|
||||
type: 'text',
|
||||
text: ' world'
|
||||
})
|
||||
})
|
||||
|
||||
test('createMessage handles error scenarios', async () => {
|
||||
const mockClient = new MockBedrockRuntimeClient({
|
||||
region: 'us-east-1'
|
||||
})
|
||||
|
||||
// Simulate an error by overriding the send method
|
||||
mockClient.send = () => {
|
||||
throw new Error('API request failed')
|
||||
}
|
||||
|
||||
const handler = new TestAwsBedrockHandler(mockOptions, mockClient)
|
||||
|
||||
const systemPrompt = 'You are a helpful assistant'
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{ role: 'user', content: 'Cause an error' }
|
||||
]
|
||||
|
||||
await expect(async () => {
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const chunks = []
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
const chunks = [];
|
||||
|
||||
for await (const chunk of generator) {
|
||||
chunks.push(chunk)
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
}).rejects.toThrow('API request failed')
|
||||
})
|
||||
})
|
||||
|
||||
expect(chunks.length).toBeGreaterThan(0);
|
||||
expect(chunks[0]).toEqual({
|
||||
type: 'usage',
|
||||
inputTokens: 10,
|
||||
outputTokens: 5
|
||||
});
|
||||
|
||||
expect(mockInvoke).toHaveBeenCalledWith(expect.objectContaining({
|
||||
input: expect.objectContaining({
|
||||
modelId: 'anthropic.claude-3-5-sonnet-20241022-v2:0'
|
||||
})
|
||||
}));
|
||||
});
|
||||
|
||||
it('should handle API errors', async () => {
|
||||
// Mock AWS SDK invoke with error
|
||||
const mockInvoke = jest.fn().mockRejectedValue(new Error('AWS Bedrock error'));
|
||||
|
||||
handler['client'] = {
|
||||
send: mockInvoke
|
||||
} as unknown as BedrockRuntimeClient;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
|
||||
await expect(async () => {
|
||||
for await (const chunk of stream) {
|
||||
// Should throw before yielding any chunks
|
||||
}
|
||||
}).rejects.toThrow('AWS Bedrock error');
|
||||
});
|
||||
});
|
||||
|
||||
describe('getModel', () => {
|
||||
it('should return correct model info in test environment', () => {
|
||||
const modelInfo = handler.getModel();
|
||||
expect(modelInfo.id).toBe('anthropic.claude-3-5-sonnet-20241022-v2:0');
|
||||
expect(modelInfo.info).toBeDefined();
|
||||
expect(modelInfo.info.maxTokens).toBe(5000); // Test environment value
|
||||
expect(modelInfo.info.contextWindow).toBe(128_000); // Test environment value
|
||||
});
|
||||
|
||||
it('should return test model info for invalid model in test environment', () => {
|
||||
const invalidHandler = new AwsBedrockHandler({
|
||||
apiModelId: 'invalid-model',
|
||||
awsAccessKey: 'test-access-key',
|
||||
awsSecretKey: 'test-secret-key',
|
||||
awsRegion: 'us-east-1'
|
||||
});
|
||||
const modelInfo = invalidHandler.getModel();
|
||||
expect(modelInfo.id).toBe('invalid-model'); // In test env, returns whatever is passed
|
||||
expect(modelInfo.info.maxTokens).toBe(5000);
|
||||
expect(modelInfo.info.contextWindow).toBe(128_000);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -1,167 +1,203 @@
|
||||
import { DeepSeekHandler } from '../deepseek'
|
||||
import { ApiHandlerOptions } from '../../../shared/api'
|
||||
import OpenAI from 'openai'
|
||||
import { Anthropic } from '@anthropic-ai/sdk'
|
||||
import { DeepSeekHandler } from '../deepseek';
|
||||
import { ApiHandlerOptions, deepSeekDefaultModelId } from '../../../shared/api';
|
||||
import OpenAI from 'openai';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
|
||||
// Mock dependencies
|
||||
jest.mock('openai')
|
||||
// Mock OpenAI client
|
||||
const mockCreate = jest.fn();
|
||||
jest.mock('openai', () => {
|
||||
return {
|
||||
__esModule: true,
|
||||
default: jest.fn().mockImplementation(() => ({
|
||||
chat: {
|
||||
completions: {
|
||||
create: mockCreate.mockImplementation(async (options) => {
|
||||
if (!options.stream) {
|
||||
return {
|
||||
id: 'test-completion',
|
||||
choices: [{
|
||||
message: { role: 'assistant', content: 'Test response', refusal: null },
|
||||
finish_reason: 'stop',
|
||||
index: 0
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5,
|
||||
total_tokens: 15
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// Return async iterator for streaming
|
||||
return {
|
||||
[Symbol.asyncIterator]: async function* () {
|
||||
yield {
|
||||
choices: [{
|
||||
delta: { content: 'Test response' },
|
||||
index: 0
|
||||
}],
|
||||
usage: null
|
||||
};
|
||||
yield {
|
||||
choices: [{
|
||||
delta: {},
|
||||
index: 0
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5,
|
||||
total_tokens: 15
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
})
|
||||
}
|
||||
}
|
||||
}))
|
||||
};
|
||||
});
|
||||
|
||||
describe('DeepSeekHandler', () => {
|
||||
|
||||
const mockOptions: ApiHandlerOptions = {
|
||||
deepSeekApiKey: 'test-key',
|
||||
deepSeekModelId: 'deepseek-chat',
|
||||
}
|
||||
let handler: DeepSeekHandler;
|
||||
let mockOptions: ApiHandlerOptions;
|
||||
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
})
|
||||
mockOptions = {
|
||||
deepSeekApiKey: 'test-api-key',
|
||||
deepSeekModelId: 'deepseek-chat',
|
||||
deepSeekBaseUrl: 'https://api.deepseek.com/v1'
|
||||
};
|
||||
handler = new DeepSeekHandler(mockOptions);
|
||||
mockCreate.mockClear();
|
||||
});
|
||||
|
||||
test('constructor initializes with correct options', () => {
|
||||
const handler = new DeepSeekHandler(mockOptions)
|
||||
expect(handler).toBeInstanceOf(DeepSeekHandler)
|
||||
expect(OpenAI).toHaveBeenCalledWith({
|
||||
baseURL: 'https://api.deepseek.com/v1',
|
||||
apiKey: mockOptions.deepSeekApiKey,
|
||||
})
|
||||
})
|
||||
describe('constructor', () => {
|
||||
it('should initialize with provided options', () => {
|
||||
expect(handler).toBeInstanceOf(DeepSeekHandler);
|
||||
expect(handler.getModel().id).toBe(mockOptions.deepSeekModelId);
|
||||
});
|
||||
|
||||
test('getModel returns correct model info', () => {
|
||||
const handler = new DeepSeekHandler(mockOptions)
|
||||
const result = handler.getModel()
|
||||
|
||||
expect(result).toEqual({
|
||||
id: mockOptions.deepSeekModelId,
|
||||
info: expect.objectContaining({
|
||||
maxTokens: 8192,
|
||||
contextWindow: 64000,
|
||||
supportsPromptCache: false,
|
||||
supportsImages: false,
|
||||
inputPrice: 0.014,
|
||||
outputPrice: 0.28,
|
||||
})
|
||||
})
|
||||
})
|
||||
it('should throw error if API key is missing', () => {
|
||||
expect(() => {
|
||||
new DeepSeekHandler({
|
||||
...mockOptions,
|
||||
deepSeekApiKey: undefined
|
||||
});
|
||||
}).toThrow('DeepSeek API key is required');
|
||||
});
|
||||
|
||||
test('getModel returns default model info when no model specified', () => {
|
||||
const handler = new DeepSeekHandler({ deepSeekApiKey: 'test-key' })
|
||||
const result = handler.getModel()
|
||||
|
||||
expect(result.id).toBe('deepseek-chat')
|
||||
expect(result.info.maxTokens).toBe(8192)
|
||||
})
|
||||
it('should use default model ID if not provided', () => {
|
||||
const handlerWithoutModel = new DeepSeekHandler({
|
||||
...mockOptions,
|
||||
deepSeekModelId: undefined
|
||||
});
|
||||
expect(handlerWithoutModel.getModel().id).toBe(deepSeekDefaultModelId);
|
||||
});
|
||||
|
||||
test('createMessage handles string content correctly', async () => {
|
||||
const handler = new DeepSeekHandler(mockOptions)
|
||||
const mockStream = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
yield {
|
||||
choices: [{
|
||||
delta: {
|
||||
content: 'test response'
|
||||
}
|
||||
}]
|
||||
}
|
||||
}
|
||||
}
|
||||
it('should use default base URL if not provided', () => {
|
||||
const handlerWithoutBaseUrl = new DeepSeekHandler({
|
||||
...mockOptions,
|
||||
deepSeekBaseUrl: undefined
|
||||
});
|
||||
expect(handlerWithoutBaseUrl).toBeInstanceOf(DeepSeekHandler);
|
||||
// The base URL is passed to OpenAI client internally
|
||||
expect(OpenAI).toHaveBeenCalledWith(expect.objectContaining({
|
||||
baseURL: 'https://api.deepseek.com/v1'
|
||||
}));
|
||||
});
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockStream)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
it('should use custom base URL if provided', () => {
|
||||
const customBaseUrl = 'https://custom.deepseek.com/v1';
|
||||
const handlerWithCustomUrl = new DeepSeekHandler({
|
||||
...mockOptions,
|
||||
deepSeekBaseUrl: customBaseUrl
|
||||
});
|
||||
expect(handlerWithCustomUrl).toBeInstanceOf(DeepSeekHandler);
|
||||
// The custom base URL is passed to OpenAI client
|
||||
expect(OpenAI).toHaveBeenCalledWith(expect.objectContaining({
|
||||
baseURL: customBaseUrl
|
||||
}));
|
||||
});
|
||||
|
||||
const systemPrompt = 'test system prompt'
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{ role: 'user', content: 'test message' }
|
||||
]
|
||||
it('should set includeMaxTokens to true', () => {
|
||||
// Create a new handler and verify OpenAI client was called with includeMaxTokens
|
||||
new DeepSeekHandler(mockOptions);
|
||||
expect(OpenAI).toHaveBeenCalledWith(expect.objectContaining({
|
||||
apiKey: mockOptions.deepSeekApiKey
|
||||
}));
|
||||
});
|
||||
});
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const chunks = []
|
||||
|
||||
for await (const chunk of generator) {
|
||||
chunks.push(chunk)
|
||||
}
|
||||
describe('getModel', () => {
|
||||
it('should return model info for valid model ID', () => {
|
||||
const model = handler.getModel();
|
||||
expect(model.id).toBe(mockOptions.deepSeekModelId);
|
||||
expect(model.info).toBeDefined();
|
||||
expect(model.info.maxTokens).toBe(8192);
|
||||
expect(model.info.contextWindow).toBe(64_000);
|
||||
expect(model.info.supportsImages).toBe(false);
|
||||
expect(model.info.supportsPromptCache).toBe(false);
|
||||
});
|
||||
|
||||
expect(chunks).toHaveLength(1)
|
||||
expect(chunks[0]).toEqual({
|
||||
type: 'text',
|
||||
text: 'test response'
|
||||
})
|
||||
it('should return provided model ID with default model info if model does not exist', () => {
|
||||
const handlerWithInvalidModel = new DeepSeekHandler({
|
||||
...mockOptions,
|
||||
deepSeekModelId: 'invalid-model'
|
||||
});
|
||||
const model = handlerWithInvalidModel.getModel();
|
||||
expect(model.id).toBe('invalid-model'); // Returns provided ID
|
||||
expect(model.info).toBeDefined();
|
||||
expect(model.info).toBe(handler.getModel().info); // But uses default model info
|
||||
});
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith(expect.objectContaining({
|
||||
model: mockOptions.deepSeekModelId,
|
||||
messages: [
|
||||
{ role: 'system', content: systemPrompt },
|
||||
{ role: 'user', content: 'test message' }
|
||||
],
|
||||
temperature: 0,
|
||||
stream: true,
|
||||
max_tokens: 8192,
|
||||
stream_options: { include_usage: true }
|
||||
}))
|
||||
})
|
||||
it('should return default model if no model ID is provided', () => {
|
||||
const handlerWithoutModel = new DeepSeekHandler({
|
||||
...mockOptions,
|
||||
deepSeekModelId: undefined
|
||||
});
|
||||
const model = handlerWithoutModel.getModel();
|
||||
expect(model.id).toBe(deepSeekDefaultModelId);
|
||||
expect(model.info).toBeDefined();
|
||||
});
|
||||
});
|
||||
|
||||
test('createMessage handles complex content correctly', async () => {
|
||||
const handler = new DeepSeekHandler(mockOptions)
|
||||
const mockStream = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
yield {
|
||||
choices: [{
|
||||
delta: {
|
||||
content: 'test response'
|
||||
}
|
||||
}]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockStream)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
|
||||
const systemPrompt = 'test system prompt'
|
||||
describe('createMessage', () => {
|
||||
const systemPrompt = 'You are a helpful assistant.';
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{ type: 'text', text: 'part 1' },
|
||||
{ type: 'text', text: 'part 2' }
|
||||
]
|
||||
content: [{
|
||||
type: 'text' as const,
|
||||
text: 'Hello!'
|
||||
}]
|
||||
}
|
||||
]
|
||||
];
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
await generator.next()
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith(expect.objectContaining({
|
||||
messages: [
|
||||
{ role: 'system', content: systemPrompt },
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{ type: 'text', text: 'part 1' },
|
||||
{ type: 'text', text: 'part 2' }
|
||||
]
|
||||
}
|
||||
]
|
||||
}))
|
||||
})
|
||||
|
||||
test('createMessage handles API errors', async () => {
|
||||
const handler = new DeepSeekHandler(mockOptions)
|
||||
const mockStream = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
throw new Error('API Error')
|
||||
it('should handle streaming responses', async () => {
|
||||
const stream = handler.createMessage(systemPrompt, messages);
|
||||
const chunks: any[] = [];
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
}
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockStream)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
expect(chunks.length).toBeGreaterThan(0);
|
||||
const textChunks = chunks.filter(chunk => chunk.type === 'text');
|
||||
expect(textChunks).toHaveLength(1);
|
||||
expect(textChunks[0].text).toBe('Test response');
|
||||
});
|
||||
|
||||
const generator = handler.createMessage('test', [])
|
||||
await expect(generator.next()).rejects.toThrow('API Error')
|
||||
})
|
||||
})
|
||||
it('should include usage information', async () => {
|
||||
const stream = handler.createMessage(systemPrompt, messages);
|
||||
const chunks: any[] = [];
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
const usageChunks = chunks.filter(chunk => chunk.type === 'usage');
|
||||
expect(usageChunks.length).toBeGreaterThan(0);
|
||||
expect(usageChunks[0].inputTokens).toBe(10);
|
||||
expect(usageChunks[0].outputTokens).toBe(5);
|
||||
});
|
||||
});
|
||||
});
|
||||
154
src/api/providers/__tests__/gemini.test.ts
Normal file
154
src/api/providers/__tests__/gemini.test.ts
Normal file
@@ -0,0 +1,154 @@
|
||||
import { GeminiHandler } from '../gemini';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
import { GoogleGenerativeAI } from '@google/generative-ai';
|
||||
|
||||
// Mock the Google Generative AI SDK
|
||||
jest.mock('@google/generative-ai', () => ({
|
||||
GoogleGenerativeAI: jest.fn().mockImplementation(() => ({
|
||||
getGenerativeModel: jest.fn().mockReturnValue({
|
||||
generateContentStream: jest.fn()
|
||||
})
|
||||
}))
|
||||
}));
|
||||
|
||||
describe('GeminiHandler', () => {
|
||||
let handler: GeminiHandler;
|
||||
|
||||
beforeEach(() => {
|
||||
handler = new GeminiHandler({
|
||||
apiKey: 'test-key',
|
||||
apiModelId: 'gemini-2.0-flash-thinking-exp-1219',
|
||||
geminiApiKey: 'test-key'
|
||||
});
|
||||
});
|
||||
|
||||
describe('constructor', () => {
|
||||
it('should initialize with provided config', () => {
|
||||
expect(handler['options'].geminiApiKey).toBe('test-key');
|
||||
expect(handler['options'].apiModelId).toBe('gemini-2.0-flash-thinking-exp-1219');
|
||||
});
|
||||
|
||||
it('should throw if API key is missing', () => {
|
||||
expect(() => {
|
||||
new GeminiHandler({
|
||||
apiModelId: 'gemini-2.0-flash-thinking-exp-1219',
|
||||
geminiApiKey: ''
|
||||
});
|
||||
}).toThrow('API key is required for Google Gemini');
|
||||
});
|
||||
});
|
||||
|
||||
describe('createMessage', () => {
|
||||
const mockMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: 'Hello'
|
||||
},
|
||||
{
|
||||
role: 'assistant',
|
||||
content: 'Hi there!'
|
||||
}
|
||||
];
|
||||
|
||||
const systemPrompt = 'You are a helpful assistant';
|
||||
|
||||
it('should handle text messages correctly', async () => {
|
||||
// Mock the stream response
|
||||
const mockStream = {
|
||||
stream: [
|
||||
{ text: () => 'Hello' },
|
||||
{ text: () => ' world!' }
|
||||
],
|
||||
response: {
|
||||
usageMetadata: {
|
||||
promptTokenCount: 10,
|
||||
candidatesTokenCount: 5
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Setup the mock implementation
|
||||
const mockGenerateContentStream = jest.fn().mockResolvedValue(mockStream);
|
||||
const mockGetGenerativeModel = jest.fn().mockReturnValue({
|
||||
generateContentStream: mockGenerateContentStream
|
||||
});
|
||||
|
||||
(handler['client'] as any).getGenerativeModel = mockGetGenerativeModel;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
const chunks = [];
|
||||
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
// Should have 3 chunks: 'Hello', ' world!', and usage info
|
||||
expect(chunks.length).toBe(3);
|
||||
expect(chunks[0]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Hello'
|
||||
});
|
||||
expect(chunks[1]).toEqual({
|
||||
type: 'text',
|
||||
text: ' world!'
|
||||
});
|
||||
expect(chunks[2]).toEqual({
|
||||
type: 'usage',
|
||||
inputTokens: 10,
|
||||
outputTokens: 5
|
||||
});
|
||||
|
||||
// Verify the model configuration
|
||||
expect(mockGetGenerativeModel).toHaveBeenCalledWith({
|
||||
model: 'gemini-2.0-flash-thinking-exp-1219',
|
||||
systemInstruction: systemPrompt
|
||||
});
|
||||
|
||||
// Verify generation config
|
||||
expect(mockGenerateContentStream).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
generationConfig: {
|
||||
temperature: 0
|
||||
}
|
||||
})
|
||||
);
|
||||
});
|
||||
|
||||
it('should handle API errors', async () => {
|
||||
const mockError = new Error('Gemini API error');
|
||||
const mockGenerateContentStream = jest.fn().mockRejectedValue(mockError);
|
||||
const mockGetGenerativeModel = jest.fn().mockReturnValue({
|
||||
generateContentStream: mockGenerateContentStream
|
||||
});
|
||||
|
||||
(handler['client'] as any).getGenerativeModel = mockGetGenerativeModel;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
|
||||
await expect(async () => {
|
||||
for await (const chunk of stream) {
|
||||
// Should throw before yielding any chunks
|
||||
}
|
||||
}).rejects.toThrow('Gemini API error');
|
||||
});
|
||||
});
|
||||
|
||||
describe('getModel', () => {
|
||||
it('should return correct model info', () => {
|
||||
const modelInfo = handler.getModel();
|
||||
expect(modelInfo.id).toBe('gemini-2.0-flash-thinking-exp-1219');
|
||||
expect(modelInfo.info).toBeDefined();
|
||||
expect(modelInfo.info.maxTokens).toBe(8192);
|
||||
expect(modelInfo.info.contextWindow).toBe(32_767);
|
||||
});
|
||||
|
||||
it('should return default model if invalid model specified', () => {
|
||||
const invalidHandler = new GeminiHandler({
|
||||
apiModelId: 'invalid-model',
|
||||
geminiApiKey: 'test-key'
|
||||
});
|
||||
const modelInfo = invalidHandler.getModel();
|
||||
expect(modelInfo.id).toBe('gemini-2.0-flash-thinking-exp-1219'); // Default model
|
||||
});
|
||||
});
|
||||
});
|
||||
148
src/api/providers/__tests__/lmstudio.test.ts
Normal file
148
src/api/providers/__tests__/lmstudio.test.ts
Normal file
@@ -0,0 +1,148 @@
|
||||
import { LmStudioHandler } from '../lmstudio';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
import OpenAI from 'openai';
|
||||
|
||||
// Mock OpenAI SDK
|
||||
jest.mock('openai', () => ({
|
||||
__esModule: true,
|
||||
default: jest.fn().mockImplementation(() => ({
|
||||
chat: {
|
||||
completions: {
|
||||
create: jest.fn()
|
||||
}
|
||||
}
|
||||
}))
|
||||
}));
|
||||
|
||||
describe('LmStudioHandler', () => {
|
||||
let handler: LmStudioHandler;
|
||||
|
||||
beforeEach(() => {
|
||||
handler = new LmStudioHandler({
|
||||
lmStudioModelId: 'mistral-7b',
|
||||
lmStudioBaseUrl: 'http://localhost:1234'
|
||||
});
|
||||
});
|
||||
|
||||
describe('constructor', () => {
|
||||
it('should initialize with provided config', () => {
|
||||
expect(OpenAI).toHaveBeenCalledWith({
|
||||
baseURL: 'http://localhost:1234/v1',
|
||||
apiKey: 'noop'
|
||||
});
|
||||
});
|
||||
|
||||
it('should use default base URL if not provided', () => {
|
||||
const defaultHandler = new LmStudioHandler({
|
||||
lmStudioModelId: 'mistral-7b'
|
||||
});
|
||||
|
||||
expect(OpenAI).toHaveBeenCalledWith({
|
||||
baseURL: 'http://localhost:1234/v1',
|
||||
apiKey: 'noop'
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
describe('createMessage', () => {
|
||||
const mockMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: 'Hello'
|
||||
},
|
||||
{
|
||||
role: 'assistant',
|
||||
content: 'Hi there!'
|
||||
}
|
||||
];
|
||||
|
||||
const systemPrompt = 'You are a helpful assistant';
|
||||
|
||||
it('should handle streaming responses correctly', async () => {
|
||||
const mockStream = [
|
||||
{
|
||||
choices: [{
|
||||
delta: { content: 'Hello' }
|
||||
}]
|
||||
},
|
||||
{
|
||||
choices: [{
|
||||
delta: { content: ' world!' }
|
||||
}]
|
||||
}
|
||||
];
|
||||
|
||||
// Setup async iterator for mock stream
|
||||
const asyncIterator = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
for (const chunk of mockStream) {
|
||||
yield chunk;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(asyncIterator);
|
||||
(handler['client'].chat.completions as any).create = mockCreate;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
const chunks = [];
|
||||
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
expect(chunks.length).toBe(2);
|
||||
expect(chunks[0]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Hello'
|
||||
});
|
||||
expect(chunks[1]).toEqual({
|
||||
type: 'text',
|
||||
text: ' world!'
|
||||
});
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: 'mistral-7b',
|
||||
messages: expect.arrayContaining([
|
||||
{
|
||||
role: 'system',
|
||||
content: systemPrompt
|
||||
}
|
||||
]),
|
||||
temperature: 0,
|
||||
stream: true
|
||||
});
|
||||
});
|
||||
|
||||
it('should handle API errors with custom message', async () => {
|
||||
const mockError = new Error('LM Studio API error');
|
||||
const mockCreate = jest.fn().mockRejectedValue(mockError);
|
||||
(handler['client'].chat.completions as any).create = mockCreate;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
|
||||
await expect(async () => {
|
||||
for await (const chunk of stream) {
|
||||
// Should throw before yielding any chunks
|
||||
}
|
||||
}).rejects.toThrow('Please check the LM Studio developer logs to debug what went wrong');
|
||||
});
|
||||
});
|
||||
|
||||
describe('getModel', () => {
|
||||
it('should return model info with sane defaults', () => {
|
||||
const modelInfo = handler.getModel();
|
||||
expect(modelInfo.id).toBe('mistral-7b');
|
||||
expect(modelInfo.info).toBeDefined();
|
||||
expect(modelInfo.info.maxTokens).toBe(-1);
|
||||
expect(modelInfo.info.contextWindow).toBe(128_000);
|
||||
});
|
||||
|
||||
it('should return empty string as model ID if not provided', () => {
|
||||
const noModelHandler = new LmStudioHandler({});
|
||||
const modelInfo = noModelHandler.getModel();
|
||||
expect(modelInfo.id).toBe('');
|
||||
expect(modelInfo.info).toBeDefined();
|
||||
});
|
||||
});
|
||||
});
|
||||
148
src/api/providers/__tests__/ollama.test.ts
Normal file
148
src/api/providers/__tests__/ollama.test.ts
Normal file
@@ -0,0 +1,148 @@
|
||||
import { OllamaHandler } from '../ollama';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
import OpenAI from 'openai';
|
||||
|
||||
// Mock OpenAI SDK
|
||||
jest.mock('openai', () => ({
|
||||
__esModule: true,
|
||||
default: jest.fn().mockImplementation(() => ({
|
||||
chat: {
|
||||
completions: {
|
||||
create: jest.fn()
|
||||
}
|
||||
}
|
||||
}))
|
||||
}));
|
||||
|
||||
describe('OllamaHandler', () => {
|
||||
let handler: OllamaHandler;
|
||||
|
||||
beforeEach(() => {
|
||||
handler = new OllamaHandler({
|
||||
ollamaModelId: 'llama2',
|
||||
ollamaBaseUrl: 'http://localhost:11434'
|
||||
});
|
||||
});
|
||||
|
||||
describe('constructor', () => {
|
||||
it('should initialize with provided config', () => {
|
||||
expect(OpenAI).toHaveBeenCalledWith({
|
||||
baseURL: 'http://localhost:11434/v1',
|
||||
apiKey: 'ollama'
|
||||
});
|
||||
});
|
||||
|
||||
it('should use default base URL if not provided', () => {
|
||||
const defaultHandler = new OllamaHandler({
|
||||
ollamaModelId: 'llama2'
|
||||
});
|
||||
|
||||
expect(OpenAI).toHaveBeenCalledWith({
|
||||
baseURL: 'http://localhost:11434/v1',
|
||||
apiKey: 'ollama'
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
describe('createMessage', () => {
|
||||
const mockMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: 'Hello'
|
||||
},
|
||||
{
|
||||
role: 'assistant',
|
||||
content: 'Hi there!'
|
||||
}
|
||||
];
|
||||
|
||||
const systemPrompt = 'You are a helpful assistant';
|
||||
|
||||
it('should handle streaming responses correctly', async () => {
|
||||
const mockStream = [
|
||||
{
|
||||
choices: [{
|
||||
delta: { content: 'Hello' }
|
||||
}]
|
||||
},
|
||||
{
|
||||
choices: [{
|
||||
delta: { content: ' world!' }
|
||||
}]
|
||||
}
|
||||
];
|
||||
|
||||
// Setup async iterator for mock stream
|
||||
const asyncIterator = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
for (const chunk of mockStream) {
|
||||
yield chunk;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(asyncIterator);
|
||||
(handler['client'].chat.completions as any).create = mockCreate;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
const chunks = [];
|
||||
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
expect(chunks.length).toBe(2);
|
||||
expect(chunks[0]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Hello'
|
||||
});
|
||||
expect(chunks[1]).toEqual({
|
||||
type: 'text',
|
||||
text: ' world!'
|
||||
});
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: 'llama2',
|
||||
messages: expect.arrayContaining([
|
||||
{
|
||||
role: 'system',
|
||||
content: systemPrompt
|
||||
}
|
||||
]),
|
||||
temperature: 0,
|
||||
stream: true
|
||||
});
|
||||
});
|
||||
|
||||
it('should handle API errors', async () => {
|
||||
const mockError = new Error('Ollama API error');
|
||||
const mockCreate = jest.fn().mockRejectedValue(mockError);
|
||||
(handler['client'].chat.completions as any).create = mockCreate;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
|
||||
await expect(async () => {
|
||||
for await (const chunk of stream) {
|
||||
// Should throw before yielding any chunks
|
||||
}
|
||||
}).rejects.toThrow('Ollama API error');
|
||||
});
|
||||
});
|
||||
|
||||
describe('getModel', () => {
|
||||
it('should return model info with sane defaults', () => {
|
||||
const modelInfo = handler.getModel();
|
||||
expect(modelInfo.id).toBe('llama2');
|
||||
expect(modelInfo.info).toBeDefined();
|
||||
expect(modelInfo.info.maxTokens).toBe(-1);
|
||||
expect(modelInfo.info.contextWindow).toBe(128_000);
|
||||
});
|
||||
|
||||
it('should return empty string as model ID if not provided', () => {
|
||||
const noModelHandler = new OllamaHandler({});
|
||||
const modelInfo = noModelHandler.getModel();
|
||||
expect(modelInfo.id).toBe('');
|
||||
expect(modelInfo.info).toBeDefined();
|
||||
});
|
||||
});
|
||||
});
|
||||
230
src/api/providers/__tests__/openai-native.test.ts
Normal file
230
src/api/providers/__tests__/openai-native.test.ts
Normal file
@@ -0,0 +1,230 @@
|
||||
import { OpenAiNativeHandler } from "../openai-native"
|
||||
import OpenAI from "openai"
|
||||
import { ApiHandlerOptions, openAiNativeDefaultModelId } from "../../../shared/api"
|
||||
import { Anthropic } from "@anthropic-ai/sdk"
|
||||
|
||||
// Mock OpenAI
|
||||
jest.mock("openai")
|
||||
|
||||
describe("OpenAiNativeHandler", () => {
|
||||
let handler: OpenAiNativeHandler
|
||||
let mockOptions: ApiHandlerOptions
|
||||
let mockOpenAIClient: jest.Mocked<OpenAI>
|
||||
let mockCreate: jest.Mock
|
||||
|
||||
beforeEach(() => {
|
||||
// Reset mocks
|
||||
jest.clearAllMocks()
|
||||
|
||||
// Setup mock options
|
||||
mockOptions = {
|
||||
openAiNativeApiKey: "test-api-key",
|
||||
apiModelId: "gpt-4o", // Use the correct model ID from shared/api.ts
|
||||
}
|
||||
|
||||
// Setup mock create function
|
||||
mockCreate = jest.fn()
|
||||
|
||||
// Setup mock OpenAI client
|
||||
mockOpenAIClient = {
|
||||
chat: {
|
||||
completions: {
|
||||
create: mockCreate,
|
||||
},
|
||||
},
|
||||
} as unknown as jest.Mocked<OpenAI>
|
||||
|
||||
// Mock OpenAI constructor
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).mockImplementation(() => mockOpenAIClient)
|
||||
|
||||
// Create handler instance
|
||||
handler = new OpenAiNativeHandler(mockOptions)
|
||||
})
|
||||
|
||||
describe("constructor", () => {
|
||||
it("should initialize with provided options", () => {
|
||||
expect(OpenAI).toHaveBeenCalledWith({
|
||||
apiKey: mockOptions.openAiNativeApiKey,
|
||||
})
|
||||
})
|
||||
})
|
||||
|
||||
describe("getModel", () => {
|
||||
it("should return specified model when valid", () => {
|
||||
const result = handler.getModel()
|
||||
expect(result.id).toBe("gpt-4o") // Use the correct model ID
|
||||
})
|
||||
|
||||
it("should return default model when model ID is invalid", () => {
|
||||
handler = new OpenAiNativeHandler({
|
||||
...mockOptions,
|
||||
apiModelId: "invalid-model" as any,
|
||||
})
|
||||
const result = handler.getModel()
|
||||
expect(result.id).toBe(openAiNativeDefaultModelId)
|
||||
})
|
||||
|
||||
it("should return default model when model ID is not provided", () => {
|
||||
handler = new OpenAiNativeHandler({
|
||||
...mockOptions,
|
||||
apiModelId: undefined,
|
||||
})
|
||||
const result = handler.getModel()
|
||||
expect(result.id).toBe(openAiNativeDefaultModelId)
|
||||
})
|
||||
})
|
||||
|
||||
describe("createMessage", () => {
|
||||
const systemPrompt = "You are a helpful assistant"
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{ role: "user", content: "Hello" },
|
||||
]
|
||||
|
||||
describe("o1 models", () => {
|
||||
beforeEach(() => {
|
||||
handler = new OpenAiNativeHandler({
|
||||
...mockOptions,
|
||||
apiModelId: "o1-preview",
|
||||
})
|
||||
})
|
||||
|
||||
it("should handle non-streaming response for o1 models", async () => {
|
||||
const mockResponse = {
|
||||
choices: [{ message: { content: "Hello there!" } }],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5,
|
||||
},
|
||||
}
|
||||
|
||||
mockCreate.mockResolvedValueOnce(mockResponse)
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const results = []
|
||||
for await (const result of generator) {
|
||||
results.push(result)
|
||||
}
|
||||
|
||||
expect(results).toEqual([
|
||||
{ type: "text", text: "Hello there!" },
|
||||
{ type: "usage", inputTokens: 10, outputTokens: 5 },
|
||||
])
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: "o1-preview",
|
||||
messages: [
|
||||
{ role: "user", content: systemPrompt },
|
||||
{ role: "user", content: "Hello" },
|
||||
],
|
||||
})
|
||||
})
|
||||
|
||||
it("should handle missing content in response", async () => {
|
||||
const mockResponse = {
|
||||
choices: [{ message: { content: null } }],
|
||||
usage: null,
|
||||
}
|
||||
|
||||
mockCreate.mockResolvedValueOnce(mockResponse)
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const results = []
|
||||
for await (const result of generator) {
|
||||
results.push(result)
|
||||
}
|
||||
|
||||
expect(results).toEqual([
|
||||
{ type: "text", text: "" },
|
||||
{ type: "usage", inputTokens: 0, outputTokens: 0 },
|
||||
])
|
||||
})
|
||||
})
|
||||
|
||||
describe("streaming models", () => {
|
||||
beforeEach(() => {
|
||||
handler = new OpenAiNativeHandler({
|
||||
...mockOptions,
|
||||
apiModelId: "gpt-4o",
|
||||
})
|
||||
})
|
||||
|
||||
it("should handle streaming response", async () => {
|
||||
const mockStream = [
|
||||
{ choices: [{ delta: { content: "Hello" } }], usage: null },
|
||||
{ choices: [{ delta: { content: " there" } }], usage: null },
|
||||
{ choices: [{ delta: { content: "!" } }], usage: { prompt_tokens: 10, completion_tokens: 5 } },
|
||||
]
|
||||
|
||||
mockCreate.mockResolvedValueOnce(
|
||||
(async function* () {
|
||||
for (const chunk of mockStream) {
|
||||
yield chunk
|
||||
}
|
||||
})()
|
||||
)
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const results = []
|
||||
for await (const result of generator) {
|
||||
results.push(result)
|
||||
}
|
||||
|
||||
expect(results).toEqual([
|
||||
{ type: "text", text: "Hello" },
|
||||
{ type: "text", text: " there" },
|
||||
{ type: "text", text: "!" },
|
||||
{ type: "usage", inputTokens: 10, outputTokens: 5 },
|
||||
])
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: "gpt-4o",
|
||||
temperature: 0,
|
||||
messages: [
|
||||
{ role: "system", content: systemPrompt },
|
||||
{ role: "user", content: "Hello" },
|
||||
],
|
||||
stream: true,
|
||||
stream_options: { include_usage: true },
|
||||
})
|
||||
})
|
||||
|
||||
it("should handle empty delta content", async () => {
|
||||
const mockStream = [
|
||||
{ choices: [{ delta: {} }], usage: null },
|
||||
{ choices: [{ delta: { content: null } }], usage: null },
|
||||
{ choices: [{ delta: { content: "Hello" } }], usage: { prompt_tokens: 10, completion_tokens: 5 } },
|
||||
]
|
||||
|
||||
mockCreate.mockResolvedValueOnce(
|
||||
(async function* () {
|
||||
for (const chunk of mockStream) {
|
||||
yield chunk
|
||||
}
|
||||
})()
|
||||
)
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const results = []
|
||||
for await (const result of generator) {
|
||||
results.push(result)
|
||||
}
|
||||
|
||||
expect(results).toEqual([
|
||||
{ type: "text", text: "Hello" },
|
||||
{ type: "usage", inputTokens: 10, outputTokens: 5 },
|
||||
])
|
||||
})
|
||||
})
|
||||
|
||||
it("should handle API errors", async () => {
|
||||
mockCreate.mockRejectedValueOnce(new Error("API Error"))
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
await expect(async () => {
|
||||
for await (const _ of generator) {
|
||||
// consume generator
|
||||
}
|
||||
}).rejects.toThrow("API Error")
|
||||
})
|
||||
})
|
||||
})
|
||||
@@ -1,192 +1,198 @@
|
||||
import { OpenAiHandler } from '../openai'
|
||||
import { ApiHandlerOptions, openAiModelInfoSaneDefaults } from '../../../shared/api'
|
||||
import OpenAI, { AzureOpenAI } from 'openai'
|
||||
import { Anthropic } from '@anthropic-ai/sdk'
|
||||
import { OpenAiHandler } from '../openai';
|
||||
import { ApiHandlerOptions } from '../../../shared/api';
|
||||
import { ApiStream } from '../../transform/stream';
|
||||
import OpenAI from 'openai';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
|
||||
// Mock dependencies
|
||||
jest.mock('openai')
|
||||
// Mock OpenAI client
|
||||
const mockCreate = jest.fn();
|
||||
jest.mock('openai', () => {
|
||||
return {
|
||||
__esModule: true,
|
||||
default: jest.fn().mockImplementation(() => ({
|
||||
chat: {
|
||||
completions: {
|
||||
create: mockCreate.mockImplementation(async (options) => {
|
||||
if (!options.stream) {
|
||||
return {
|
||||
id: 'test-completion',
|
||||
choices: [{
|
||||
message: { role: 'assistant', content: 'Test response', refusal: null },
|
||||
finish_reason: 'stop',
|
||||
index: 0
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5,
|
||||
total_tokens: 15
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
return {
|
||||
[Symbol.asyncIterator]: async function* () {
|
||||
yield {
|
||||
choices: [{
|
||||
delta: { content: 'Test response' },
|
||||
index: 0
|
||||
}],
|
||||
usage: null
|
||||
};
|
||||
yield {
|
||||
choices: [{
|
||||
delta: {},
|
||||
index: 0
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5,
|
||||
total_tokens: 15
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
})
|
||||
}
|
||||
}
|
||||
}))
|
||||
};
|
||||
});
|
||||
|
||||
describe('OpenAiHandler', () => {
|
||||
const mockOptions: ApiHandlerOptions = {
|
||||
openAiApiKey: 'test-key',
|
||||
openAiModelId: 'gpt-4',
|
||||
openAiStreamingEnabled: true,
|
||||
openAiBaseUrl: 'https://api.openai.com/v1'
|
||||
}
|
||||
let handler: OpenAiHandler;
|
||||
let mockOptions: ApiHandlerOptions;
|
||||
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
})
|
||||
mockOptions = {
|
||||
openAiApiKey: 'test-api-key',
|
||||
openAiModelId: 'gpt-4',
|
||||
openAiBaseUrl: 'https://api.openai.com/v1'
|
||||
};
|
||||
handler = new OpenAiHandler(mockOptions);
|
||||
mockCreate.mockClear();
|
||||
});
|
||||
|
||||
test('constructor initializes with correct options', () => {
|
||||
const handler = new OpenAiHandler(mockOptions)
|
||||
expect(handler).toBeInstanceOf(OpenAiHandler)
|
||||
expect(OpenAI).toHaveBeenCalledWith({
|
||||
apiKey: mockOptions.openAiApiKey,
|
||||
baseURL: mockOptions.openAiBaseUrl
|
||||
})
|
||||
})
|
||||
describe('constructor', () => {
|
||||
it('should initialize with provided options', () => {
|
||||
expect(handler).toBeInstanceOf(OpenAiHandler);
|
||||
expect(handler.getModel().id).toBe(mockOptions.openAiModelId);
|
||||
});
|
||||
|
||||
test('constructor initializes Azure client when Azure URL is provided', () => {
|
||||
const azureOptions: ApiHandlerOptions = {
|
||||
...mockOptions,
|
||||
openAiBaseUrl: 'https://example.azure.com',
|
||||
azureApiVersion: '2023-05-15'
|
||||
}
|
||||
const handler = new OpenAiHandler(azureOptions)
|
||||
expect(handler).toBeInstanceOf(OpenAiHandler)
|
||||
expect(AzureOpenAI).toHaveBeenCalledWith({
|
||||
baseURL: azureOptions.openAiBaseUrl,
|
||||
apiKey: azureOptions.openAiApiKey,
|
||||
apiVersion: azureOptions.azureApiVersion
|
||||
})
|
||||
})
|
||||
it('should use custom base URL if provided', () => {
|
||||
const customBaseUrl = 'https://custom.openai.com/v1';
|
||||
const handlerWithCustomUrl = new OpenAiHandler({
|
||||
...mockOptions,
|
||||
openAiBaseUrl: customBaseUrl
|
||||
});
|
||||
expect(handlerWithCustomUrl).toBeInstanceOf(OpenAiHandler);
|
||||
});
|
||||
});
|
||||
|
||||
test('getModel returns correct model info', () => {
|
||||
const handler = new OpenAiHandler(mockOptions)
|
||||
const result = handler.getModel()
|
||||
|
||||
expect(result).toEqual({
|
||||
id: mockOptions.openAiModelId,
|
||||
info: openAiModelInfoSaneDefaults
|
||||
})
|
||||
})
|
||||
|
||||
test('createMessage handles streaming correctly when enabled', async () => {
|
||||
const handler = new OpenAiHandler({
|
||||
...mockOptions,
|
||||
openAiStreamingEnabled: true,
|
||||
includeMaxTokens: true
|
||||
})
|
||||
|
||||
const mockStream = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
yield {
|
||||
choices: [{
|
||||
delta: {
|
||||
content: 'test response'
|
||||
}
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockStream)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
|
||||
const systemPrompt = 'test system prompt'
|
||||
describe('createMessage', () => {
|
||||
const systemPrompt = 'You are a helpful assistant.';
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{ role: 'user', content: 'test message' }
|
||||
]
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const chunks = []
|
||||
|
||||
for await (const chunk of generator) {
|
||||
chunks.push(chunk)
|
||||
}
|
||||
|
||||
expect(chunks).toEqual([
|
||||
{
|
||||
type: 'text',
|
||||
text: 'test response'
|
||||
},
|
||||
{
|
||||
type: 'usage',
|
||||
inputTokens: 10,
|
||||
outputTokens: 5
|
||||
role: 'user',
|
||||
content: [{
|
||||
type: 'text' as const,
|
||||
text: 'Hello!'
|
||||
}]
|
||||
}
|
||||
])
|
||||
];
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: mockOptions.openAiModelId,
|
||||
messages: [
|
||||
{ role: 'system', content: systemPrompt },
|
||||
{ role: 'user', content: 'test message' }
|
||||
],
|
||||
temperature: 0,
|
||||
stream: true,
|
||||
stream_options: { include_usage: true },
|
||||
max_tokens: openAiModelInfoSaneDefaults.maxTokens
|
||||
})
|
||||
})
|
||||
it('should handle non-streaming mode', async () => {
|
||||
const handler = new OpenAiHandler({
|
||||
...mockOptions,
|
||||
openAiStreamingEnabled: false
|
||||
});
|
||||
|
||||
test('createMessage handles non-streaming correctly when disabled', async () => {
|
||||
const handler = new OpenAiHandler({
|
||||
...mockOptions,
|
||||
openAiStreamingEnabled: false
|
||||
})
|
||||
|
||||
const mockResponse = {
|
||||
choices: [{
|
||||
message: {
|
||||
content: 'test response'
|
||||
const stream = handler.createMessage(systemPrompt, messages);
|
||||
const chunks: any[] = [];
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
expect(chunks.length).toBeGreaterThan(0);
|
||||
const textChunk = chunks.find(chunk => chunk.type === 'text');
|
||||
const usageChunk = chunks.find(chunk => chunk.type === 'usage');
|
||||
|
||||
expect(textChunk).toBeDefined();
|
||||
expect(textChunk?.text).toBe('Test response');
|
||||
expect(usageChunk).toBeDefined();
|
||||
expect(usageChunk?.inputTokens).toBe(10);
|
||||
expect(usageChunk?.outputTokens).toBe(5);
|
||||
});
|
||||
|
||||
it('should handle streaming responses', async () => {
|
||||
const stream = handler.createMessage(systemPrompt, messages);
|
||||
const chunks: any[] = [];
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
expect(chunks.length).toBeGreaterThan(0);
|
||||
const textChunks = chunks.filter(chunk => chunk.type === 'text');
|
||||
expect(textChunks).toHaveLength(1);
|
||||
expect(textChunks[0].text).toBe('Test response');
|
||||
});
|
||||
});
|
||||
|
||||
describe('error handling', () => {
|
||||
const testMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: [{
|
||||
type: 'text' as const,
|
||||
text: 'Hello'
|
||||
}]
|
||||
}
|
||||
];
|
||||
|
||||
it('should handle API errors', async () => {
|
||||
mockCreate.mockRejectedValueOnce(new Error('API Error'));
|
||||
|
||||
const stream = handler.createMessage('system prompt', testMessages);
|
||||
|
||||
await expect(async () => {
|
||||
for await (const chunk of stream) {
|
||||
// Should not reach here
|
||||
}
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5
|
||||
}
|
||||
}
|
||||
}).rejects.toThrow('API Error');
|
||||
});
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockResponse)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
it('should handle rate limiting', async () => {
|
||||
const rateLimitError = new Error('Rate limit exceeded');
|
||||
rateLimitError.name = 'Error';
|
||||
(rateLimitError as any).status = 429;
|
||||
mockCreate.mockRejectedValueOnce(rateLimitError);
|
||||
|
||||
const systemPrompt = 'test system prompt'
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{ role: 'user', content: 'test message' }
|
||||
]
|
||||
const stream = handler.createMessage('system prompt', testMessages);
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const chunks = []
|
||||
|
||||
for await (const chunk of generator) {
|
||||
chunks.push(chunk)
|
||||
}
|
||||
await expect(async () => {
|
||||
for await (const chunk of stream) {
|
||||
// Should not reach here
|
||||
}
|
||||
}).rejects.toThrow('Rate limit exceeded');
|
||||
});
|
||||
});
|
||||
|
||||
expect(chunks).toEqual([
|
||||
{
|
||||
type: 'text',
|
||||
text: 'test response'
|
||||
},
|
||||
{
|
||||
type: 'usage',
|
||||
inputTokens: 10,
|
||||
outputTokens: 5
|
||||
}
|
||||
])
|
||||
describe('getModel', () => {
|
||||
it('should return model info with sane defaults', () => {
|
||||
const model = handler.getModel();
|
||||
expect(model.id).toBe(mockOptions.openAiModelId);
|
||||
expect(model.info).toBeDefined();
|
||||
expect(model.info.contextWindow).toBe(128_000);
|
||||
expect(model.info.supportsImages).toBe(true);
|
||||
});
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: mockOptions.openAiModelId,
|
||||
messages: [
|
||||
{ role: 'user', content: systemPrompt },
|
||||
{ role: 'user', content: 'test message' }
|
||||
]
|
||||
})
|
||||
})
|
||||
|
||||
test('createMessage handles API errors', async () => {
|
||||
const handler = new OpenAiHandler(mockOptions)
|
||||
const mockStream = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
throw new Error('API Error')
|
||||
}
|
||||
}
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockStream)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
|
||||
const generator = handler.createMessage('test', [])
|
||||
await expect(generator.next()).rejects.toThrow('API Error')
|
||||
})
|
||||
})
|
||||
it('should handle undefined model ID', () => {
|
||||
const handlerWithoutModel = new OpenAiHandler({
|
||||
...mockOptions,
|
||||
openAiModelId: undefined
|
||||
});
|
||||
const model = handlerWithoutModel.getModel();
|
||||
expect(model.id).toBe('');
|
||||
expect(model.info).toBeDefined();
|
||||
});
|
||||
});
|
||||
});
|
||||
218
src/api/providers/__tests__/vertex.test.ts
Normal file
218
src/api/providers/__tests__/vertex.test.ts
Normal file
@@ -0,0 +1,218 @@
|
||||
import { VertexHandler } from '../vertex';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
import { AnthropicVertex } from '@anthropic-ai/vertex-sdk';
|
||||
|
||||
// Mock Vertex SDK
|
||||
jest.mock('@anthropic-ai/vertex-sdk', () => ({
|
||||
AnthropicVertex: jest.fn().mockImplementation(() => ({
|
||||
messages: {
|
||||
create: jest.fn()
|
||||
}
|
||||
}))
|
||||
}));
|
||||
|
||||
describe('VertexHandler', () => {
|
||||
let handler: VertexHandler;
|
||||
|
||||
beforeEach(() => {
|
||||
handler = new VertexHandler({
|
||||
apiModelId: 'claude-3-5-sonnet-v2@20241022',
|
||||
vertexProjectId: 'test-project',
|
||||
vertexRegion: 'us-central1'
|
||||
});
|
||||
});
|
||||
|
||||
describe('constructor', () => {
|
||||
it('should initialize with provided config', () => {
|
||||
expect(AnthropicVertex).toHaveBeenCalledWith({
|
||||
projectId: 'test-project',
|
||||
region: 'us-central1'
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
describe('createMessage', () => {
|
||||
const mockMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: 'Hello'
|
||||
},
|
||||
{
|
||||
role: 'assistant',
|
||||
content: 'Hi there!'
|
||||
}
|
||||
];
|
||||
|
||||
const systemPrompt = 'You are a helpful assistant';
|
||||
|
||||
it('should handle streaming responses correctly', async () => {
|
||||
const mockStream = [
|
||||
{
|
||||
type: 'message_start',
|
||||
message: {
|
||||
usage: {
|
||||
input_tokens: 10,
|
||||
output_tokens: 0
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
type: 'content_block_start',
|
||||
index: 0,
|
||||
content_block: {
|
||||
type: 'text',
|
||||
text: 'Hello'
|
||||
}
|
||||
},
|
||||
{
|
||||
type: 'content_block_delta',
|
||||
delta: {
|
||||
type: 'text_delta',
|
||||
text: ' world!'
|
||||
}
|
||||
},
|
||||
{
|
||||
type: 'message_delta',
|
||||
usage: {
|
||||
output_tokens: 5
|
||||
}
|
||||
}
|
||||
];
|
||||
|
||||
// Setup async iterator for mock stream
|
||||
const asyncIterator = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
for (const chunk of mockStream) {
|
||||
yield chunk;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(asyncIterator);
|
||||
(handler['client'].messages as any).create = mockCreate;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
const chunks = [];
|
||||
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
expect(chunks.length).toBe(4);
|
||||
expect(chunks[0]).toEqual({
|
||||
type: 'usage',
|
||||
inputTokens: 10,
|
||||
outputTokens: 0
|
||||
});
|
||||
expect(chunks[1]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Hello'
|
||||
});
|
||||
expect(chunks[2]).toEqual({
|
||||
type: 'text',
|
||||
text: ' world!'
|
||||
});
|
||||
expect(chunks[3]).toEqual({
|
||||
type: 'usage',
|
||||
inputTokens: 0,
|
||||
outputTokens: 5
|
||||
});
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: 'claude-3-5-sonnet-v2@20241022',
|
||||
max_tokens: 8192,
|
||||
temperature: 0,
|
||||
system: systemPrompt,
|
||||
messages: mockMessages,
|
||||
stream: true
|
||||
});
|
||||
});
|
||||
|
||||
it('should handle multiple content blocks with line breaks', async () => {
|
||||
const mockStream = [
|
||||
{
|
||||
type: 'content_block_start',
|
||||
index: 0,
|
||||
content_block: {
|
||||
type: 'text',
|
||||
text: 'First line'
|
||||
}
|
||||
},
|
||||
{
|
||||
type: 'content_block_start',
|
||||
index: 1,
|
||||
content_block: {
|
||||
type: 'text',
|
||||
text: 'Second line'
|
||||
}
|
||||
}
|
||||
];
|
||||
|
||||
const asyncIterator = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
for (const chunk of mockStream) {
|
||||
yield chunk;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(asyncIterator);
|
||||
(handler['client'].messages as any).create = mockCreate;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
const chunks = [];
|
||||
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
expect(chunks.length).toBe(3);
|
||||
expect(chunks[0]).toEqual({
|
||||
type: 'text',
|
||||
text: 'First line'
|
||||
});
|
||||
expect(chunks[1]).toEqual({
|
||||
type: 'text',
|
||||
text: '\n'
|
||||
});
|
||||
expect(chunks[2]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Second line'
|
||||
});
|
||||
});
|
||||
|
||||
it('should handle API errors', async () => {
|
||||
const mockError = new Error('Vertex API error');
|
||||
const mockCreate = jest.fn().mockRejectedValue(mockError);
|
||||
(handler['client'].messages as any).create = mockCreate;
|
||||
|
||||
const stream = handler.createMessage(systemPrompt, mockMessages);
|
||||
|
||||
await expect(async () => {
|
||||
for await (const chunk of stream) {
|
||||
// Should throw before yielding any chunks
|
||||
}
|
||||
}).rejects.toThrow('Vertex API error');
|
||||
});
|
||||
});
|
||||
|
||||
describe('getModel', () => {
|
||||
it('should return correct model info', () => {
|
||||
const modelInfo = handler.getModel();
|
||||
expect(modelInfo.id).toBe('claude-3-5-sonnet-v2@20241022');
|
||||
expect(modelInfo.info).toBeDefined();
|
||||
expect(modelInfo.info.maxTokens).toBe(8192);
|
||||
expect(modelInfo.info.contextWindow).toBe(200_000);
|
||||
});
|
||||
|
||||
it('should return default model if invalid model specified', () => {
|
||||
const invalidHandler = new VertexHandler({
|
||||
apiModelId: 'invalid-model',
|
||||
vertexProjectId: 'test-project',
|
||||
vertexRegion: 'us-central1'
|
||||
});
|
||||
const modelInfo = invalidHandler.getModel();
|
||||
expect(modelInfo.id).toBe('claude-3-5-sonnet-v2@20241022'); // Default model
|
||||
});
|
||||
});
|
||||
});
|
||||
257
src/api/transform/__tests__/openai-format.test.ts
Normal file
257
src/api/transform/__tests__/openai-format.test.ts
Normal file
@@ -0,0 +1,257 @@
|
||||
import { convertToOpenAiMessages, convertToAnthropicMessage } from '../openai-format';
|
||||
import { Anthropic } from '@anthropic-ai/sdk';
|
||||
import OpenAI from 'openai';
|
||||
|
||||
type PartialChatCompletion = Omit<OpenAI.Chat.Completions.ChatCompletion, 'choices'> & {
|
||||
choices: Array<Partial<OpenAI.Chat.Completions.ChatCompletion.Choice> & {
|
||||
message: OpenAI.Chat.Completions.ChatCompletion.Choice['message'];
|
||||
finish_reason: string;
|
||||
index: number;
|
||||
}>;
|
||||
};
|
||||
|
||||
describe('OpenAI Format Transformations', () => {
|
||||
describe('convertToOpenAiMessages', () => {
|
||||
it('should convert simple text messages', () => {
|
||||
const anthropicMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: 'Hello'
|
||||
},
|
||||
{
|
||||
role: 'assistant',
|
||||
content: 'Hi there!'
|
||||
}
|
||||
];
|
||||
|
||||
const openAiMessages = convertToOpenAiMessages(anthropicMessages);
|
||||
expect(openAiMessages).toHaveLength(2);
|
||||
expect(openAiMessages[0]).toEqual({
|
||||
role: 'user',
|
||||
content: 'Hello'
|
||||
});
|
||||
expect(openAiMessages[1]).toEqual({
|
||||
role: 'assistant',
|
||||
content: 'Hi there!'
|
||||
});
|
||||
});
|
||||
|
||||
it('should handle messages with image content', () => {
|
||||
const anthropicMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: 'What is in this image?'
|
||||
},
|
||||
{
|
||||
type: 'image',
|
||||
source: {
|
||||
type: 'base64',
|
||||
media_type: 'image/jpeg',
|
||||
data: 'base64data'
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
];
|
||||
|
||||
const openAiMessages = convertToOpenAiMessages(anthropicMessages);
|
||||
expect(openAiMessages).toHaveLength(1);
|
||||
expect(openAiMessages[0].role).toBe('user');
|
||||
|
||||
const content = openAiMessages[0].content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
image_url?: { url: string };
|
||||
}>;
|
||||
|
||||
expect(Array.isArray(content)).toBe(true);
|
||||
expect(content).toHaveLength(2);
|
||||
expect(content[0]).toEqual({ type: 'text', text: 'What is in this image?' });
|
||||
expect(content[1]).toEqual({
|
||||
type: 'image_url',
|
||||
image_url: { url: '' }
|
||||
});
|
||||
});
|
||||
|
||||
it('should handle assistant messages with tool use', () => {
|
||||
const anthropicMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'assistant',
|
||||
content: [
|
||||
{
|
||||
type: 'text',
|
||||
text: 'Let me check the weather.'
|
||||
},
|
||||
{
|
||||
type: 'tool_use',
|
||||
id: 'weather-123',
|
||||
name: 'get_weather',
|
||||
input: { city: 'London' }
|
||||
}
|
||||
]
|
||||
}
|
||||
];
|
||||
|
||||
const openAiMessages = convertToOpenAiMessages(anthropicMessages);
|
||||
expect(openAiMessages).toHaveLength(1);
|
||||
|
||||
const assistantMessage = openAiMessages[0] as OpenAI.Chat.ChatCompletionAssistantMessageParam;
|
||||
expect(assistantMessage.role).toBe('assistant');
|
||||
expect(assistantMessage.content).toBe('Let me check the weather.');
|
||||
expect(assistantMessage.tool_calls).toHaveLength(1);
|
||||
expect(assistantMessage.tool_calls![0]).toEqual({
|
||||
id: 'weather-123',
|
||||
type: 'function',
|
||||
function: {
|
||||
name: 'get_weather',
|
||||
arguments: JSON.stringify({ city: 'London' })
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
it('should handle user messages with tool results', () => {
|
||||
const anthropicMessages: Anthropic.Messages.MessageParam[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: 'weather-123',
|
||||
content: 'Current temperature in London: 20°C'
|
||||
}
|
||||
]
|
||||
}
|
||||
];
|
||||
|
||||
const openAiMessages = convertToOpenAiMessages(anthropicMessages);
|
||||
expect(openAiMessages).toHaveLength(1);
|
||||
|
||||
const toolMessage = openAiMessages[0] as OpenAI.Chat.ChatCompletionToolMessageParam;
|
||||
expect(toolMessage.role).toBe('tool');
|
||||
expect(toolMessage.tool_call_id).toBe('weather-123');
|
||||
expect(toolMessage.content).toBe('Current temperature in London: 20°C');
|
||||
});
|
||||
});
|
||||
|
||||
describe('convertToAnthropicMessage', () => {
|
||||
it('should convert simple completion', () => {
|
||||
const openAiCompletion: PartialChatCompletion = {
|
||||
id: 'completion-123',
|
||||
model: 'gpt-4',
|
||||
choices: [{
|
||||
message: {
|
||||
role: 'assistant',
|
||||
content: 'Hello there!',
|
||||
refusal: null
|
||||
},
|
||||
finish_reason: 'stop',
|
||||
index: 0
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5,
|
||||
total_tokens: 15
|
||||
},
|
||||
created: 123456789,
|
||||
object: 'chat.completion'
|
||||
};
|
||||
|
||||
const anthropicMessage = convertToAnthropicMessage(openAiCompletion as OpenAI.Chat.Completions.ChatCompletion);
|
||||
expect(anthropicMessage.id).toBe('completion-123');
|
||||
expect(anthropicMessage.role).toBe('assistant');
|
||||
expect(anthropicMessage.content).toHaveLength(1);
|
||||
expect(anthropicMessage.content[0]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Hello there!'
|
||||
});
|
||||
expect(anthropicMessage.stop_reason).toBe('end_turn');
|
||||
expect(anthropicMessage.usage).toEqual({
|
||||
input_tokens: 10,
|
||||
output_tokens: 5
|
||||
});
|
||||
});
|
||||
|
||||
it('should handle tool calls in completion', () => {
|
||||
const openAiCompletion: PartialChatCompletion = {
|
||||
id: 'completion-123',
|
||||
model: 'gpt-4',
|
||||
choices: [{
|
||||
message: {
|
||||
role: 'assistant',
|
||||
content: 'Let me check the weather.',
|
||||
tool_calls: [{
|
||||
id: 'weather-123',
|
||||
type: 'function',
|
||||
function: {
|
||||
name: 'get_weather',
|
||||
arguments: '{"city":"London"}'
|
||||
}
|
||||
}],
|
||||
refusal: null
|
||||
},
|
||||
finish_reason: 'tool_calls',
|
||||
index: 0
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 15,
|
||||
completion_tokens: 8,
|
||||
total_tokens: 23
|
||||
},
|
||||
created: 123456789,
|
||||
object: 'chat.completion'
|
||||
};
|
||||
|
||||
const anthropicMessage = convertToAnthropicMessage(openAiCompletion as OpenAI.Chat.Completions.ChatCompletion);
|
||||
expect(anthropicMessage.content).toHaveLength(2);
|
||||
expect(anthropicMessage.content[0]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Let me check the weather.'
|
||||
});
|
||||
expect(anthropicMessage.content[1]).toEqual({
|
||||
type: 'tool_use',
|
||||
id: 'weather-123',
|
||||
name: 'get_weather',
|
||||
input: { city: 'London' }
|
||||
});
|
||||
expect(anthropicMessage.stop_reason).toBe('tool_use');
|
||||
});
|
||||
|
||||
it('should handle invalid tool call arguments', () => {
|
||||
const openAiCompletion: PartialChatCompletion = {
|
||||
id: 'completion-123',
|
||||
model: 'gpt-4',
|
||||
choices: [{
|
||||
message: {
|
||||
role: 'assistant',
|
||||
content: 'Testing invalid arguments',
|
||||
tool_calls: [{
|
||||
id: 'test-123',
|
||||
type: 'function',
|
||||
function: {
|
||||
name: 'test_function',
|
||||
arguments: 'invalid json'
|
||||
}
|
||||
}],
|
||||
refusal: null
|
||||
},
|
||||
finish_reason: 'tool_calls',
|
||||
index: 0
|
||||
}],
|
||||
created: 123456789,
|
||||
object: 'chat.completion'
|
||||
};
|
||||
|
||||
const anthropicMessage = convertToAnthropicMessage(openAiCompletion as OpenAI.Chat.Completions.ChatCompletion);
|
||||
expect(anthropicMessage.content).toHaveLength(2);
|
||||
expect(anthropicMessage.content[1]).toEqual({
|
||||
type: 'tool_use',
|
||||
id: 'test-123',
|
||||
name: 'test_function',
|
||||
input: {} // Should default to empty object for invalid JSON
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
114
src/api/transform/__tests__/stream.test.ts
Normal file
114
src/api/transform/__tests__/stream.test.ts
Normal file
@@ -0,0 +1,114 @@
|
||||
import { ApiStreamChunk } from '../stream';
|
||||
|
||||
describe('API Stream Types', () => {
|
||||
describe('ApiStreamChunk', () => {
|
||||
it('should correctly handle text chunks', () => {
|
||||
const textChunk: ApiStreamChunk = {
|
||||
type: 'text',
|
||||
text: 'Hello world'
|
||||
};
|
||||
|
||||
expect(textChunk.type).toBe('text');
|
||||
expect(textChunk.text).toBe('Hello world');
|
||||
});
|
||||
|
||||
it('should correctly handle usage chunks with cache information', () => {
|
||||
const usageChunk: ApiStreamChunk = {
|
||||
type: 'usage',
|
||||
inputTokens: 100,
|
||||
outputTokens: 50,
|
||||
cacheWriteTokens: 20,
|
||||
cacheReadTokens: 10
|
||||
};
|
||||
|
||||
expect(usageChunk.type).toBe('usage');
|
||||
expect(usageChunk.inputTokens).toBe(100);
|
||||
expect(usageChunk.outputTokens).toBe(50);
|
||||
expect(usageChunk.cacheWriteTokens).toBe(20);
|
||||
expect(usageChunk.cacheReadTokens).toBe(10);
|
||||
});
|
||||
|
||||
it('should handle usage chunks without cache tokens', () => {
|
||||
const usageChunk: ApiStreamChunk = {
|
||||
type: 'usage',
|
||||
inputTokens: 100,
|
||||
outputTokens: 50
|
||||
};
|
||||
|
||||
expect(usageChunk.type).toBe('usage');
|
||||
expect(usageChunk.inputTokens).toBe(100);
|
||||
expect(usageChunk.outputTokens).toBe(50);
|
||||
expect(usageChunk.cacheWriteTokens).toBeUndefined();
|
||||
expect(usageChunk.cacheReadTokens).toBeUndefined();
|
||||
});
|
||||
|
||||
it('should handle text chunks with empty strings', () => {
|
||||
const emptyTextChunk: ApiStreamChunk = {
|
||||
type: 'text',
|
||||
text: ''
|
||||
};
|
||||
|
||||
expect(emptyTextChunk.type).toBe('text');
|
||||
expect(emptyTextChunk.text).toBe('');
|
||||
});
|
||||
|
||||
it('should handle usage chunks with zero tokens', () => {
|
||||
const zeroUsageChunk: ApiStreamChunk = {
|
||||
type: 'usage',
|
||||
inputTokens: 0,
|
||||
outputTokens: 0
|
||||
};
|
||||
|
||||
expect(zeroUsageChunk.type).toBe('usage');
|
||||
expect(zeroUsageChunk.inputTokens).toBe(0);
|
||||
expect(zeroUsageChunk.outputTokens).toBe(0);
|
||||
});
|
||||
|
||||
it('should handle usage chunks with large token counts', () => {
|
||||
const largeUsageChunk: ApiStreamChunk = {
|
||||
type: 'usage',
|
||||
inputTokens: 1000000,
|
||||
outputTokens: 500000,
|
||||
cacheWriteTokens: 200000,
|
||||
cacheReadTokens: 100000
|
||||
};
|
||||
|
||||
expect(largeUsageChunk.type).toBe('usage');
|
||||
expect(largeUsageChunk.inputTokens).toBe(1000000);
|
||||
expect(largeUsageChunk.outputTokens).toBe(500000);
|
||||
expect(largeUsageChunk.cacheWriteTokens).toBe(200000);
|
||||
expect(largeUsageChunk.cacheReadTokens).toBe(100000);
|
||||
});
|
||||
|
||||
it('should handle text chunks with special characters', () => {
|
||||
const specialCharsChunk: ApiStreamChunk = {
|
||||
type: 'text',
|
||||
text: '!@#$%^&*()_+-=[]{}|;:,.<>?`~'
|
||||
};
|
||||
|
||||
expect(specialCharsChunk.type).toBe('text');
|
||||
expect(specialCharsChunk.text).toBe('!@#$%^&*()_+-=[]{}|;:,.<>?`~');
|
||||
});
|
||||
|
||||
it('should handle text chunks with unicode characters', () => {
|
||||
const unicodeChunk: ApiStreamChunk = {
|
||||
type: 'text',
|
||||
text: '你好世界👋🌍'
|
||||
};
|
||||
|
||||
expect(unicodeChunk.type).toBe('text');
|
||||
expect(unicodeChunk.text).toBe('你好世界👋🌍');
|
||||
});
|
||||
|
||||
it('should handle text chunks with multiline content', () => {
|
||||
const multilineChunk: ApiStreamChunk = {
|
||||
type: 'text',
|
||||
text: 'Line 1\nLine 2\nLine 3'
|
||||
};
|
||||
|
||||
expect(multilineChunk.type).toBe('text');
|
||||
expect(multilineChunk.text).toBe('Line 1\nLine 2\nLine 3');
|
||||
expect(multilineChunk.text.split('\n')).toHaveLength(3);
|
||||
});
|
||||
});
|
||||
});
|
||||
Reference in New Issue
Block a user