mirror of
https://github.com/pacnpal/Roo-Code.git
synced 2025-12-20 04:11:10 -05:00
merge(upstream): merge upstream changes keeping VSCode LM provider and adding Glama support
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import { Anthropic } from "@anthropic-ai/sdk"
|
||||
import { GlamaHandler } from "./providers/glama"
|
||||
import { ApiConfiguration, ModelInfo } from "../shared/api"
|
||||
import { AnthropicHandler } from "./providers/anthropic"
|
||||
import { AwsBedrockHandler } from "./providers/bedrock"
|
||||
@@ -28,6 +29,8 @@ export function buildApiHandler(configuration: ApiConfiguration): ApiHandler {
|
||||
switch (apiProvider) {
|
||||
case "anthropic":
|
||||
return new AnthropicHandler(options)
|
||||
case "glama":
|
||||
return new GlamaHandler(options)
|
||||
case "openrouter":
|
||||
return new OpenRouterHandler(options)
|
||||
case "bedrock":
|
||||
|
||||
192
src/api/providers/__tests__/openai.test.ts
Normal file
192
src/api/providers/__tests__/openai.test.ts
Normal file
@@ -0,0 +1,192 @@
|
||||
import { OpenAiHandler } from '../openai'
|
||||
import { ApiHandlerOptions, openAiModelInfoSaneDefaults } from '../../../shared/api'
|
||||
import OpenAI, { AzureOpenAI } from 'openai'
|
||||
import { Anthropic } from '@anthropic-ai/sdk'
|
||||
|
||||
// Mock dependencies
|
||||
jest.mock('openai')
|
||||
|
||||
describe('OpenAiHandler', () => {
|
||||
const mockOptions: ApiHandlerOptions = {
|
||||
openAiApiKey: 'test-key',
|
||||
openAiModelId: 'gpt-4',
|
||||
openAiStreamingEnabled: true,
|
||||
openAiBaseUrl: 'https://api.openai.com/v1'
|
||||
}
|
||||
|
||||
beforeEach(() => {
|
||||
jest.clearAllMocks()
|
||||
})
|
||||
|
||||
test('constructor initializes with correct options', () => {
|
||||
const handler = new OpenAiHandler(mockOptions)
|
||||
expect(handler).toBeInstanceOf(OpenAiHandler)
|
||||
expect(OpenAI).toHaveBeenCalledWith({
|
||||
apiKey: mockOptions.openAiApiKey,
|
||||
baseURL: mockOptions.openAiBaseUrl
|
||||
})
|
||||
})
|
||||
|
||||
test('constructor initializes Azure client when Azure URL is provided', () => {
|
||||
const azureOptions: ApiHandlerOptions = {
|
||||
...mockOptions,
|
||||
openAiBaseUrl: 'https://example.azure.com',
|
||||
azureApiVersion: '2023-05-15'
|
||||
}
|
||||
const handler = new OpenAiHandler(azureOptions)
|
||||
expect(handler).toBeInstanceOf(OpenAiHandler)
|
||||
expect(AzureOpenAI).toHaveBeenCalledWith({
|
||||
baseURL: azureOptions.openAiBaseUrl,
|
||||
apiKey: azureOptions.openAiApiKey,
|
||||
apiVersion: azureOptions.azureApiVersion
|
||||
})
|
||||
})
|
||||
|
||||
test('getModel returns correct model info', () => {
|
||||
const handler = new OpenAiHandler(mockOptions)
|
||||
const result = handler.getModel()
|
||||
|
||||
expect(result).toEqual({
|
||||
id: mockOptions.openAiModelId,
|
||||
info: openAiModelInfoSaneDefaults
|
||||
})
|
||||
})
|
||||
|
||||
test('createMessage handles streaming correctly when enabled', async () => {
|
||||
const handler = new OpenAiHandler({
|
||||
...mockOptions,
|
||||
openAiStreamingEnabled: true,
|
||||
includeMaxTokens: true
|
||||
})
|
||||
|
||||
const mockStream = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
yield {
|
||||
choices: [{
|
||||
delta: {
|
||||
content: 'test response'
|
||||
}
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockStream)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
|
||||
const systemPrompt = 'test system prompt'
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{ role: 'user', content: 'test message' }
|
||||
]
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const chunks = []
|
||||
|
||||
for await (const chunk of generator) {
|
||||
chunks.push(chunk)
|
||||
}
|
||||
|
||||
expect(chunks).toEqual([
|
||||
{
|
||||
type: 'text',
|
||||
text: 'test response'
|
||||
},
|
||||
{
|
||||
type: 'usage',
|
||||
inputTokens: 10,
|
||||
outputTokens: 5
|
||||
}
|
||||
])
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: mockOptions.openAiModelId,
|
||||
messages: [
|
||||
{ role: 'system', content: systemPrompt },
|
||||
{ role: 'user', content: 'test message' }
|
||||
],
|
||||
temperature: 0,
|
||||
stream: true,
|
||||
stream_options: { include_usage: true },
|
||||
max_tokens: openAiModelInfoSaneDefaults.maxTokens
|
||||
})
|
||||
})
|
||||
|
||||
test('createMessage handles non-streaming correctly when disabled', async () => {
|
||||
const handler = new OpenAiHandler({
|
||||
...mockOptions,
|
||||
openAiStreamingEnabled: false
|
||||
})
|
||||
|
||||
const mockResponse = {
|
||||
choices: [{
|
||||
message: {
|
||||
content: 'test response'
|
||||
}
|
||||
}],
|
||||
usage: {
|
||||
prompt_tokens: 10,
|
||||
completion_tokens: 5
|
||||
}
|
||||
}
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockResponse)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
|
||||
const systemPrompt = 'test system prompt'
|
||||
const messages: Anthropic.Messages.MessageParam[] = [
|
||||
{ role: 'user', content: 'test message' }
|
||||
]
|
||||
|
||||
const generator = handler.createMessage(systemPrompt, messages)
|
||||
const chunks = []
|
||||
|
||||
for await (const chunk of generator) {
|
||||
chunks.push(chunk)
|
||||
}
|
||||
|
||||
expect(chunks).toEqual([
|
||||
{
|
||||
type: 'text',
|
||||
text: 'test response'
|
||||
},
|
||||
{
|
||||
type: 'usage',
|
||||
inputTokens: 10,
|
||||
outputTokens: 5
|
||||
}
|
||||
])
|
||||
|
||||
expect(mockCreate).toHaveBeenCalledWith({
|
||||
model: mockOptions.openAiModelId,
|
||||
messages: [
|
||||
{ role: 'user', content: systemPrompt },
|
||||
{ role: 'user', content: 'test message' }
|
||||
]
|
||||
})
|
||||
})
|
||||
|
||||
test('createMessage handles API errors', async () => {
|
||||
const handler = new OpenAiHandler(mockOptions)
|
||||
const mockStream = {
|
||||
async *[Symbol.asyncIterator]() {
|
||||
throw new Error('API Error')
|
||||
}
|
||||
}
|
||||
|
||||
const mockCreate = jest.fn().mockResolvedValue(mockStream)
|
||||
;(OpenAI as jest.MockedClass<typeof OpenAI>).prototype.chat = {
|
||||
completions: { create: mockCreate }
|
||||
} as any
|
||||
|
||||
const generator = handler.createMessage('test', [])
|
||||
await expect(generator.next()).rejects.toThrow('API Error')
|
||||
})
|
||||
})
|
||||
132
src/api/providers/glama.ts
Normal file
132
src/api/providers/glama.ts
Normal file
@@ -0,0 +1,132 @@
|
||||
import { Anthropic } from "@anthropic-ai/sdk"
|
||||
import axios from "axios"
|
||||
import OpenAI from "openai"
|
||||
import { ApiHandler } from "../"
|
||||
import { ApiHandlerOptions, ModelInfo, glamaDefaultModelId, glamaDefaultModelInfo } from "../../shared/api"
|
||||
import { convertToOpenAiMessages } from "../transform/openai-format"
|
||||
import { ApiStream } from "../transform/stream"
|
||||
import delay from "delay"
|
||||
|
||||
export class GlamaHandler implements ApiHandler {
|
||||
private options: ApiHandlerOptions
|
||||
private client: OpenAI
|
||||
|
||||
constructor(options: ApiHandlerOptions) {
|
||||
this.options = options
|
||||
this.client = new OpenAI({
|
||||
baseURL: "https://glama.ai/api/gateway/openai/v1",
|
||||
apiKey: this.options.glamaApiKey,
|
||||
})
|
||||
}
|
||||
|
||||
async *createMessage(systemPrompt: string, messages: Anthropic.Messages.MessageParam[]): ApiStream {
|
||||
// Convert Anthropic messages to OpenAI format
|
||||
const openAiMessages: OpenAI.Chat.ChatCompletionMessageParam[] = [
|
||||
{ role: "system", content: systemPrompt },
|
||||
...convertToOpenAiMessages(messages),
|
||||
]
|
||||
|
||||
// this is specifically for claude models (some models may 'support prompt caching' automatically without this)
|
||||
if (this.getModel().id.startsWith("anthropic/claude-3")) {
|
||||
openAiMessages[0] = {
|
||||
role: "system",
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
text: systemPrompt,
|
||||
// @ts-ignore-next-line
|
||||
cache_control: { type: "ephemeral" },
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
// Add cache_control to the last two user messages
|
||||
// (note: this works because we only ever add one user message at a time,
|
||||
// but if we added multiple we'd need to mark the user message before the last assistant message)
|
||||
const lastTwoUserMessages = openAiMessages.filter((msg) => msg.role === "user").slice(-2)
|
||||
lastTwoUserMessages.forEach((msg) => {
|
||||
if (typeof msg.content === "string") {
|
||||
msg.content = [{ type: "text", text: msg.content }]
|
||||
}
|
||||
if (Array.isArray(msg.content)) {
|
||||
// NOTE: this is fine since env details will always be added at the end.
|
||||
// but if it weren't there, and the user added a image_url type message,
|
||||
// it would pop a text part before it and then move it after to the end.
|
||||
let lastTextPart = msg.content.filter((part) => part.type === "text").pop()
|
||||
|
||||
if (!lastTextPart) {
|
||||
lastTextPart = { type: "text", text: "..." }
|
||||
msg.content.push(lastTextPart)
|
||||
}
|
||||
// @ts-ignore-next-line
|
||||
lastTextPart["cache_control"] = { type: "ephemeral" }
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Required by Anthropic
|
||||
// Other providers default to max tokens allowed.
|
||||
let maxTokens: number | undefined
|
||||
|
||||
if (this.getModel().id.startsWith("anthropic/")) {
|
||||
maxTokens = 8_192
|
||||
}
|
||||
|
||||
const { data: completion, response } = await this.client.chat.completions.create({
|
||||
model: this.getModel().id,
|
||||
max_tokens: maxTokens,
|
||||
temperature: 0,
|
||||
messages: openAiMessages,
|
||||
stream: true,
|
||||
}).withResponse();
|
||||
|
||||
const completionRequestId = response.headers.get(
|
||||
'x-completion-request-id',
|
||||
);
|
||||
|
||||
for await (const chunk of completion) {
|
||||
const delta = chunk.choices[0]?.delta
|
||||
|
||||
if (delta?.content) {
|
||||
yield {
|
||||
type: "text",
|
||||
text: delta.content,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
const response = await axios.get(`https://glama.ai/api/gateway/v1/completion-requests/${completionRequestId}`, {
|
||||
headers: {
|
||||
Authorization: `Bearer ${this.options.glamaApiKey}`,
|
||||
},
|
||||
})
|
||||
|
||||
const completionRequest = response.data;
|
||||
|
||||
if (completionRequest.tokenUsage) {
|
||||
yield {
|
||||
type: "usage",
|
||||
cacheWriteTokens: completionRequest.tokenUsage.cacheCreationInputTokens,
|
||||
cacheReadTokens: completionRequest.tokenUsage.cacheReadInputTokens,
|
||||
inputTokens: completionRequest.tokenUsage.promptTokens,
|
||||
outputTokens: completionRequest.tokenUsage.completionTokens,
|
||||
totalCost: parseFloat(completionRequest.totalCostUsd),
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
console.error("Error fetching Glama completion details", error)
|
||||
}
|
||||
}
|
||||
|
||||
getModel(): { id: string; info: ModelInfo } {
|
||||
const modelId = this.options.glamaModelId
|
||||
const modelInfo = this.options.glamaModelInfo
|
||||
|
||||
if (modelId && modelInfo) {
|
||||
return { id: modelId, info: modelInfo }
|
||||
}
|
||||
|
||||
return { id: glamaDefaultModelId, info: glamaDefaultModelInfo }
|
||||
}
|
||||
}
|
||||
@@ -32,42 +32,64 @@ export class OpenAiHandler implements ApiHandler {
|
||||
}
|
||||
}
|
||||
|
||||
// Include stream_options for OpenAI Compatible providers if the checkbox is checked
|
||||
async *createMessage(systemPrompt: string, messages: Anthropic.Messages.MessageParam[]): ApiStream {
|
||||
const openAiMessages: OpenAI.Chat.ChatCompletionMessageParam[] = [
|
||||
{ role: "system", content: systemPrompt },
|
||||
...convertToOpenAiMessages(messages),
|
||||
]
|
||||
const modelInfo = this.getModel().info
|
||||
const requestOptions: OpenAI.Chat.ChatCompletionCreateParams = {
|
||||
model: this.options.openAiModelId ?? "",
|
||||
messages: openAiMessages,
|
||||
temperature: 0,
|
||||
stream: true,
|
||||
}
|
||||
if (this.options.includeMaxTokens) {
|
||||
requestOptions.max_tokens = modelInfo.maxTokens
|
||||
}
|
||||
const modelId = this.options.openAiModelId ?? ""
|
||||
|
||||
if (this.options.includeStreamOptions ?? true) {
|
||||
requestOptions.stream_options = { include_usage: true }
|
||||
}
|
||||
if (this.options.openAiStreamingEnabled ?? true) {
|
||||
const systemMessage: OpenAI.Chat.ChatCompletionSystemMessageParam = {
|
||||
role: "system",
|
||||
content: systemPrompt
|
||||
}
|
||||
const requestOptions: OpenAI.Chat.Completions.ChatCompletionCreateParamsStreaming = {
|
||||
model: modelId,
|
||||
temperature: 0,
|
||||
messages: [systemMessage, ...convertToOpenAiMessages(messages)],
|
||||
stream: true as const,
|
||||
stream_options: { include_usage: true },
|
||||
}
|
||||
if (this.options.includeMaxTokens) {
|
||||
requestOptions.max_tokens = modelInfo.maxTokens
|
||||
}
|
||||
|
||||
const stream = await this.client.chat.completions.create(requestOptions)
|
||||
for await (const chunk of stream) {
|
||||
const delta = chunk.choices[0]?.delta
|
||||
if (delta?.content) {
|
||||
yield {
|
||||
type: "text",
|
||||
text: delta.content,
|
||||
const stream = await this.client.chat.completions.create(requestOptions)
|
||||
|
||||
for await (const chunk of stream) {
|
||||
const delta = chunk.choices[0]?.delta
|
||||
if (delta?.content) {
|
||||
yield {
|
||||
type: "text",
|
||||
text: delta.content,
|
||||
}
|
||||
}
|
||||
if (chunk.usage) {
|
||||
yield {
|
||||
type: "usage",
|
||||
inputTokens: chunk.usage.prompt_tokens || 0,
|
||||
outputTokens: chunk.usage.completion_tokens || 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
if (chunk.usage) {
|
||||
yield {
|
||||
type: "usage",
|
||||
inputTokens: chunk.usage.prompt_tokens || 0,
|
||||
outputTokens: chunk.usage.completion_tokens || 0,
|
||||
}
|
||||
} else {
|
||||
// o1 for instance doesnt support streaming, non-1 temp, or system prompt
|
||||
const systemMessage: OpenAI.Chat.ChatCompletionUserMessageParam = {
|
||||
role: "user",
|
||||
content: systemPrompt
|
||||
}
|
||||
const requestOptions: OpenAI.Chat.Completions.ChatCompletionCreateParamsNonStreaming = {
|
||||
model: modelId,
|
||||
messages: [systemMessage, ...convertToOpenAiMessages(messages)],
|
||||
}
|
||||
const response = await this.client.chat.completions.create(requestOptions)
|
||||
|
||||
yield {
|
||||
type: "text",
|
||||
text: response.choices[0]?.message.content || "",
|
||||
}
|
||||
yield {
|
||||
type: "usage",
|
||||
inputTokens: response.usage?.prompt_tokens || 0,
|
||||
outputTokens: response.usage?.completion_tokens || 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user