mirror of
https://github.com/pacnpal/Roo-Code.git
synced 2025-12-20 04:11:10 -05:00
feat: add Glama gateway
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import { Anthropic } from "@anthropic-ai/sdk"
|
||||
import { GlamaHandler } from "./providers/glama"
|
||||
import { ApiConfiguration, ModelInfo } from "../shared/api"
|
||||
import { AnthropicHandler } from "./providers/anthropic"
|
||||
import { AwsBedrockHandler } from "./providers/bedrock"
|
||||
@@ -26,6 +27,8 @@ export function buildApiHandler(configuration: ApiConfiguration): ApiHandler {
|
||||
switch (apiProvider) {
|
||||
case "anthropic":
|
||||
return new AnthropicHandler(options)
|
||||
case "glama":
|
||||
return new GlamaHandler(options)
|
||||
case "openrouter":
|
||||
return new OpenRouterHandler(options)
|
||||
case "bedrock":
|
||||
|
||||
134
src/api/providers/glama.ts
Normal file
134
src/api/providers/glama.ts
Normal file
@@ -0,0 +1,134 @@
|
||||
import { Anthropic } from "@anthropic-ai/sdk"
|
||||
import axios from "axios"
|
||||
import OpenAI from "openai"
|
||||
import { ApiHandler } from "../"
|
||||
import { ApiHandlerOptions, ModelInfo, glamaDefaultModelId, glamaDefaultModelInfo } from "../../shared/api"
|
||||
import { convertToOpenAiMessages } from "../transform/openai-format"
|
||||
import { ApiStream } from "../transform/stream"
|
||||
import delay from "delay"
|
||||
|
||||
export class GlamaHandler implements ApiHandler {
|
||||
private options: ApiHandlerOptions
|
||||
private client: OpenAI
|
||||
|
||||
constructor(options: ApiHandlerOptions) {
|
||||
this.options = options
|
||||
this.client = new OpenAI({
|
||||
baseURL: "https://glama.ai/api/gateway/openai/v1",
|
||||
apiKey: this.options.glamaApiKey,
|
||||
})
|
||||
}
|
||||
|
||||
async *createMessage(systemPrompt: string, messages: Anthropic.Messages.MessageParam[]): ApiStream {
|
||||
// Convert Anthropic messages to OpenAI format
|
||||
const openAiMessages: OpenAI.Chat.ChatCompletionMessageParam[] = [
|
||||
{ role: "system", content: systemPrompt },
|
||||
...convertToOpenAiMessages(messages),
|
||||
]
|
||||
|
||||
// this is specifically for claude models (some models may 'support prompt caching' automatically without this)
|
||||
if (this.getModel().id.startsWith("anthropic/claude-3")) {
|
||||
openAiMessages[0] = {
|
||||
role: "system",
|
||||
content: [
|
||||
{
|
||||
type: "text",
|
||||
text: systemPrompt,
|
||||
// @ts-ignore-next-line
|
||||
cache_control: { type: "ephemeral" },
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
// Add cache_control to the last two user messages
|
||||
// (note: this works because we only ever add one user message at a time,
|
||||
// but if we added multiple we'd need to mark the user message before the last assistant message)
|
||||
const lastTwoUserMessages = openAiMessages.filter((msg) => msg.role === "user").slice(-2)
|
||||
lastTwoUserMessages.forEach((msg) => {
|
||||
if (typeof msg.content === "string") {
|
||||
msg.content = [{ type: "text", text: msg.content }]
|
||||
}
|
||||
if (Array.isArray(msg.content)) {
|
||||
// NOTE: this is fine since env details will always be added at the end.
|
||||
// but if it weren't there, and the user added a image_url type message,
|
||||
// it would pop a text part before it and then move it after to the end.
|
||||
let lastTextPart = msg.content.filter((part) => part.type === "text").pop()
|
||||
|
||||
if (!lastTextPart) {
|
||||
lastTextPart = { type: "text", text: "..." }
|
||||
msg.content.push(lastTextPart)
|
||||
}
|
||||
// @ts-ignore-next-line
|
||||
lastTextPart["cache_control"] = { type: "ephemeral" }
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Required by Anthropic
|
||||
// Other providers default to max tokens allowed.
|
||||
let maxTokens: number | undefined
|
||||
|
||||
if (this.getModel().id.startsWith("anthropic/")) {
|
||||
maxTokens = 8_192
|
||||
}
|
||||
|
||||
const { data: completion, response } = await this.client.chat.completions.create({
|
||||
model: this.getModel().id,
|
||||
max_tokens: maxTokens,
|
||||
temperature: 0,
|
||||
messages: openAiMessages,
|
||||
stream: true,
|
||||
}).withResponse();
|
||||
|
||||
const completionRequestUuid = response.headers.get(
|
||||
'x-completion-request-uuid',
|
||||
);
|
||||
|
||||
for await (const chunk of completion) {
|
||||
const delta = chunk.choices[0]?.delta
|
||||
|
||||
if (delta?.content) {
|
||||
yield {
|
||||
type: "text",
|
||||
text: delta.content,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The usage information is only available after a few moments after the completion
|
||||
await delay(1000)
|
||||
|
||||
try {
|
||||
const response = await axios.get(`https://glama.ai/api/gateway/v1/completion-requests/${completionRequestUuid}`, {
|
||||
headers: {
|
||||
Authorization: `Bearer ${this.options.glamaApiKey}`,
|
||||
},
|
||||
})
|
||||
|
||||
const completionRequest = response.data;
|
||||
|
||||
if (completionRequest.tokenUsage) {
|
||||
yield {
|
||||
type: "usage",
|
||||
inputTokens: completionRequest.tokenUsage.promptTokens,
|
||||
outputTokens: completionRequest.tokenUsage.completionTokens,
|
||||
totalCost: completionRequest.totalCostUsd,
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
// ignore if fails
|
||||
console.error("Error fetching Glama generation details:", error)
|
||||
}
|
||||
}
|
||||
|
||||
getModel(): { id: string; info: ModelInfo } {
|
||||
const modelId = this.options.glamaModelId
|
||||
const modelInfo = this.options.glamaModelInfo
|
||||
|
||||
if (modelId && modelInfo) {
|
||||
return { id: modelId, info: modelInfo }
|
||||
}
|
||||
|
||||
return { id: glamaDefaultModelId, info: glamaDefaultModelInfo }
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user