Files
Roo-Code/src/api/providers/anthropic.ts
2024-10-09 01:49:55 -04:00

178 lines
5.9 KiB
TypeScript

import { Anthropic } from "@anthropic-ai/sdk"
import { Stream as AnthropicStream } from "@anthropic-ai/sdk/streaming"
import {
anthropicDefaultModelId,
AnthropicModelId,
anthropicModels,
ApiHandlerOptions,
ModelInfo,
} from "../../shared/api"
import { ApiHandler } from "../index"
import { ApiStream } from "../transform/stream"
export class AnthropicHandler implements ApiHandler {
private options: ApiHandlerOptions
private client: Anthropic
constructor(options: ApiHandlerOptions) {
this.options = options
this.client = new Anthropic({
apiKey: this.options.apiKey,
baseURL: this.options.anthropicBaseUrl || undefined,
})
}
async *createMessage(systemPrompt: string, messages: Anthropic.Messages.MessageParam[]): ApiStream {
let stream: AnthropicStream<Anthropic.Beta.PromptCaching.Messages.RawPromptCachingBetaMessageStreamEvent>
const modelId = this.getModel().id
switch (modelId) {
case "claude-3-5-sonnet-20240620":
case "claude-3-opus-20240229":
case "claude-3-haiku-20240307": {
/*
The latest message will be the new user message, one before will be the assistant message from a previous request, and the user message before that will be a previously cached user message. So we need to mark the latest user message as ephemeral to cache it for the next request, and mark the second to last user message as ephemeral to let the server know the last message to retrieve from the cache for the current request..
*/
const userMsgIndices = messages.reduce(
(acc, msg, index) => (msg.role === "user" ? [...acc, index] : acc),
[] as number[]
)
const lastUserMsgIndex = userMsgIndices[userMsgIndices.length - 1] ?? -1
const secondLastMsgUserIndex = userMsgIndices[userMsgIndices.length - 2] ?? -1
stream = await this.client.beta.promptCaching.messages.create(
{
model: modelId,
max_tokens: this.getModel().info.maxTokens,
temperature: 0,
system: [{ text: systemPrompt, type: "text", cache_control: { type: "ephemeral" } }], // setting cache breakpoint for system prompt so new tasks can reuse it
messages: messages.map((message, index) => {
if (index === lastUserMsgIndex || index === secondLastMsgUserIndex) {
return {
...message,
content:
typeof message.content === "string"
? [
{
type: "text",
text: message.content,
cache_control: { type: "ephemeral" },
},
]
: message.content.map((content, contentIndex) =>
contentIndex === message.content.length - 1
? { ...content, cache_control: { type: "ephemeral" } }
: content
),
}
}
return message
}),
// tools, // cache breakpoints go from tools > system > messages, and since tools dont change, we can just set the breakpoint at the end of system (this avoids having to set a breakpoint at the end of tools which by itself does not meet min requirements for haiku caching)
// tool_choice: { type: "auto" },
// tools: tools,
stream: true,
},
(() => {
// prompt caching: https://x.com/alexalbert__/status/1823751995901272068
// https://github.com/anthropics/anthropic-sdk-typescript?tab=readme-ov-file#default-headers
// https://github.com/anthropics/anthropic-sdk-typescript/commit/c920b77fc67bd839bfeb6716ceab9d7c9bbe7393
switch (modelId) {
case "claude-3-5-sonnet-20240620":
return {
headers: {
"anthropic-beta": "prompt-caching-2024-07-31",
},
}
case "claude-3-haiku-20240307":
return {
headers: { "anthropic-beta": "prompt-caching-2024-07-31" },
}
default:
return undefined
}
})()
)
break
}
default: {
stream = (await this.client.messages.create({
model: modelId,
max_tokens: this.getModel().info.maxTokens,
temperature: 0,
system: [{ text: systemPrompt, type: "text" }],
messages,
// tools,
// tool_choice: { type: "auto" },
stream: true,
})) as any
break
}
}
for await (const chunk of stream) {
switch (chunk.type) {
case "message_start":
// tells us cache reads/writes/input/output
const usage = chunk.message.usage
yield {
type: "usage",
inputTokens: usage.input_tokens || 0,
outputTokens: usage.output_tokens || 0,
cacheWriteTokens: usage.cache_creation_input_tokens || undefined,
cacheReadTokens: usage.cache_read_input_tokens || undefined,
}
break
case "message_delta":
// tells us stop_reason, stop_sequence, and output tokens along the way and at the end of the message
yield {
type: "usage",
inputTokens: 0,
outputTokens: chunk.usage.output_tokens || 0,
}
break
case "message_stop":
// no usage data, just an indicator that the message is done
break
case "content_block_start":
switch (chunk.content_block.type) {
case "text":
// we may receive multiple text blocks, in which case just insert a line break between them
if (chunk.index > 0) {
yield {
type: "text",
text: "\n",
}
}
yield {
type: "text",
text: chunk.content_block.text,
}
break
}
break
case "content_block_delta":
switch (chunk.delta.type) {
case "text_delta":
yield {
type: "text",
text: chunk.delta.text,
}
break
}
break
case "content_block_stop":
break
}
}
}
getModel(): { id: AnthropicModelId; info: ModelInfo } {
const modelId = this.options.apiModelId
if (modelId && modelId in anthropicModels) {
const id = modelId as AnthropicModelId
return { id, info: anthropicModels[id] }
}
return { id: anthropicDefaultModelId, info: anthropicModels[anthropicDefaultModelId] }
}
}