Files
Roo-Code/src/api/providers/vscode-lm.ts
Matt Rubens b8e0aa0cde Custom modes
2025-01-21 09:39:54 -05:00

548 lines
18 KiB
TypeScript

import { Anthropic } from "@anthropic-ai/sdk"
import * as vscode from "vscode"
import { ApiHandler, SingleCompletionHandler } from "../"
import { calculateApiCost } from "../../utils/cost"
import { ApiStream } from "../transform/stream"
import { convertToVsCodeLmMessages } from "../transform/vscode-lm-format"
import { SELECTOR_SEPARATOR, stringifyVsCodeLmModelSelector } from "../../shared/vsCodeSelectorUtils"
import { ApiHandlerOptions, ModelInfo, openAiModelInfoSaneDefaults } from "../../shared/api"
/**
* Handles interaction with VS Code's Language Model API for chat-based operations.
* This handler implements the ApiHandler interface to provide VS Code LM specific functionality.
*
* @implements {ApiHandler}
*
* @remarks
* The handler manages a VS Code language model chat client and provides methods to:
* - Create and manage chat client instances
* - Stream messages using VS Code's Language Model API
* - Retrieve model information
*
* @example
* ```typescript
* const options = {
* vsCodeLmModelSelector: { vendor: "copilot", family: "gpt-4" }
* };
* const handler = new VsCodeLmHandler(options);
*
* // Stream a conversation
* const systemPrompt = "You are a helpful assistant";
* const messages = [{ role: "user", content: "Hello!" }];
* for await (const chunk of handler.createMessage(systemPrompt, messages)) {
* console.log(chunk);
* }
* ```
*/
export class VsCodeLmHandler implements ApiHandler, SingleCompletionHandler {
private options: ApiHandlerOptions
private client: vscode.LanguageModelChat | null
private disposable: vscode.Disposable | null
private currentRequestCancellation: vscode.CancellationTokenSource | null
constructor(options: ApiHandlerOptions) {
this.options = options
this.client = null
this.disposable = null
this.currentRequestCancellation = null
try {
// Listen for model changes and reset client
this.disposable = vscode.workspace.onDidChangeConfiguration((event) => {
if (event.affectsConfiguration("lm")) {
try {
this.client = null
this.ensureCleanState()
} catch (error) {
console.error("Error during configuration change cleanup:", error)
}
}
})
} catch (error) {
// Ensure cleanup if constructor fails
this.dispose()
throw new Error(
`Roo Code <Language Model API>: Failed to initialize handler: ${error instanceof Error ? error.message : "Unknown error"}`,
)
}
}
/**
* Creates a language model chat client based on the provided selector.
*
* @param selector - Selector criteria to filter language model chat instances
* @returns Promise resolving to the first matching language model chat instance
* @throws Error when no matching models are found with the given selector
*
* @example
* const selector = { vendor: "copilot", family: "gpt-4o" };
* const chatClient = await createClient(selector);
*/
async createClient(selector: vscode.LanguageModelChatSelector): Promise<vscode.LanguageModelChat> {
try {
const models = await vscode.lm.selectChatModels(selector)
// Use first available model or create a minimal model object
if (models && Array.isArray(models) && models.length > 0) {
return models[0]
}
// Create a minimal model if no models are available
return {
id: "default-lm",
name: "Default Language Model",
vendor: "vscode",
family: "lm",
version: "1.0",
maxInputTokens: 8192,
sendRequest: async (messages, options, token) => {
// Provide a minimal implementation
return {
stream: (async function* () {
yield new vscode.LanguageModelTextPart(
"Language model functionality is limited. Please check VS Code configuration.",
)
})(),
text: (async function* () {
yield "Language model functionality is limited. Please check VS Code configuration."
})(),
}
},
countTokens: async () => 0,
}
} catch (error) {
const errorMessage = error instanceof Error ? error.message : "Unknown error"
throw new Error(`Roo Code <Language Model API>: Failed to select model: ${errorMessage}`)
}
}
/**
* Creates and streams a message using the VS Code Language Model API.
*
* @param systemPrompt - The system prompt to initialize the conversation context
* @param messages - An array of message parameters following the Anthropic message format
*
* @yields {ApiStream} An async generator that yields either text chunks or tool calls from the model response
*
* @throws {Error} When vsCodeLmModelSelector option is not provided
* @throws {Error} When the response stream encounters an error
*
* @remarks
* This method handles the initialization of the VS Code LM client if not already created,
* converts the messages to VS Code LM format, and streams the response chunks.
* Tool calls handling is currently a work in progress.
*/
dispose(): void {
if (this.disposable) {
this.disposable.dispose()
}
if (this.currentRequestCancellation) {
this.currentRequestCancellation.cancel()
this.currentRequestCancellation.dispose()
}
}
private async countTokens(text: string | vscode.LanguageModelChatMessage): Promise<number> {
// Check for required dependencies
if (!this.client) {
console.warn("Roo Code <Language Model API>: No client available for token counting")
return 0
}
if (!this.currentRequestCancellation) {
console.warn("Roo Code <Language Model API>: No cancellation token available for token counting")
return 0
}
// Validate input
if (!text) {
console.debug("Roo Code <Language Model API>: Empty text provided for token counting")
return 0
}
try {
// Handle different input types
let tokenCount: number
if (typeof text === "string") {
tokenCount = await this.client.countTokens(text, this.currentRequestCancellation.token)
} else if (text instanceof vscode.LanguageModelChatMessage) {
// For chat messages, ensure we have content
if (!text.content || (Array.isArray(text.content) && text.content.length === 0)) {
console.debug("Roo Code <Language Model API>: Empty chat message content")
return 0
}
tokenCount = await this.client.countTokens(text, this.currentRequestCancellation.token)
} else {
console.warn("Roo Code <Language Model API>: Invalid input type for token counting")
return 0
}
// Validate the result
if (typeof tokenCount !== "number") {
console.warn("Roo Code <Language Model API>: Non-numeric token count received:", tokenCount)
return 0
}
if (tokenCount < 0) {
console.warn("Roo Code <Language Model API>: Negative token count received:", tokenCount)
return 0
}
return tokenCount
} catch (error) {
// Handle specific error types
if (error instanceof vscode.CancellationError) {
console.debug("Roo Code <Language Model API>: Token counting cancelled by user")
return 0
}
const errorMessage = error instanceof Error ? error.message : "Unknown error"
console.warn("Roo Code <Language Model API>: Token counting failed:", errorMessage)
// Log additional error details if available
if (error instanceof Error && error.stack) {
console.debug("Token counting error stack:", error.stack)
}
return 0 // Fallback to prevent stream interruption
}
}
private async calculateTotalInputTokens(
systemPrompt: string,
vsCodeLmMessages: vscode.LanguageModelChatMessage[],
): Promise<number> {
const systemTokens: number = await this.countTokens(systemPrompt)
const messageTokens: number[] = await Promise.all(vsCodeLmMessages.map((msg) => this.countTokens(msg)))
return systemTokens + messageTokens.reduce((sum: number, tokens: number): number => sum + tokens, 0)
}
private ensureCleanState(): void {
if (this.currentRequestCancellation) {
this.currentRequestCancellation.cancel()
this.currentRequestCancellation.dispose()
this.currentRequestCancellation = null
}
}
private async getClient(): Promise<vscode.LanguageModelChat> {
if (!this.client) {
console.debug("Roo Code <Language Model API>: Getting client with options:", {
vsCodeLmModelSelector: this.options.vsCodeLmModelSelector,
hasOptions: !!this.options,
selectorKeys: this.options.vsCodeLmModelSelector ? Object.keys(this.options.vsCodeLmModelSelector) : [],
})
try {
// Use default empty selector if none provided to get all available models
const selector = this.options?.vsCodeLmModelSelector || {}
console.debug("Roo Code <Language Model API>: Creating client with selector:", selector)
this.client = await this.createClient(selector)
} catch (error) {
const message = error instanceof Error ? error.message : "Unknown error"
console.error("Roo Code <Language Model API>: Client creation failed:", message)
throw new Error(`Roo Code <Language Model API>: Failed to create client: ${message}`)
}
}
return this.client
}
private cleanTerminalOutput(text: string): string {
if (!text) {
return ""
}
return (
text
// Нормализуем переносы строк
.replace(/\r\n/g, "\n")
.replace(/\r/g, "\n")
// Удаляем ANSI escape sequences
.replace(/\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])/g, "") // Полный набор ANSI sequences
.replace(/\x9B[0-?]*[ -/]*[@-~]/g, "") // CSI sequences
// Удаляем последовательности установки заголовка терминала и прочие OSC sequences
.replace(/\x1B\][0-9;]*(?:\x07|\x1B\\)/g, "")
// Удаляем управляющие символы
.replace(/[\x00-\x09\x0B-\x0C\x0E-\x1F\x7F]/g, "")
// Удаляем escape-последовательности VS Code
.replace(/\x1B[PD].*?\x1B\\/g, "") // DCS sequences
.replace(/\x1B_.*?\x1B\\/g, "") // APC sequences
.replace(/\x1B\^.*?\x1B\\/g, "") // PM sequences
.replace(/\x1B\[[\d;]*[HfABCDEFGJKST]/g, "") // Cursor movement and clear screen
// Удаляем пути Windows и служебную информацию
.replace(/^(?:PS )?[A-Z]:\\[^\n]*$/gm, "")
.replace(/^;?Cwd=.*$/gm, "")
// Очищаем экранированные последовательности
.replace(/\\x[0-9a-fA-F]{2}/g, "")
.replace(/\\u[0-9a-fA-F]{4}/g, "")
// Финальная очистка
.replace(/\n{3,}/g, "\n\n") // Убираем множественные пустые строки
.trim()
)
}
private cleanMessageContent(content: any): any {
if (!content) {
return content
}
if (typeof content === "string") {
return this.cleanTerminalOutput(content)
}
if (Array.isArray(content)) {
return content.map((item) => this.cleanMessageContent(item))
}
if (typeof content === "object") {
const cleaned: any = {}
for (const [key, value] of Object.entries(content)) {
cleaned[key] = this.cleanMessageContent(value)
}
return cleaned
}
return content
}
async *createMessage(systemPrompt: string, messages: Anthropic.Messages.MessageParam[]): ApiStream {
// Ensure clean state before starting a new request
this.ensureCleanState()
const client: vscode.LanguageModelChat = await this.getClient()
// Clean system prompt and messages
const cleanedSystemPrompt = this.cleanTerminalOutput(systemPrompt)
const cleanedMessages = messages.map((msg) => ({
...msg,
content: this.cleanMessageContent(msg.content),
}))
// Convert Anthropic messages to VS Code LM messages
const vsCodeLmMessages: vscode.LanguageModelChatMessage[] = [
vscode.LanguageModelChatMessage.Assistant(cleanedSystemPrompt),
...convertToVsCodeLmMessages(cleanedMessages),
]
// Initialize cancellation token for the request
this.currentRequestCancellation = new vscode.CancellationTokenSource()
// Calculate input tokens before starting the stream
const totalInputTokens: number = await this.calculateTotalInputTokens(systemPrompt, vsCodeLmMessages)
// Accumulate the text and count at the end of the stream to reduce token counting overhead.
let accumulatedText: string = ""
try {
// Create the response stream with minimal required options
const requestOptions: vscode.LanguageModelChatRequestOptions = {
justification: `Roo Code would like to use '${client.name}' from '${client.vendor}', Click 'Allow' to proceed.`,
}
// Note: Tool support is currently provided by the VSCode Language Model API directly
// Extensions can register tools using vscode.lm.registerTool()
const response: vscode.LanguageModelChatResponse = await client.sendRequest(
vsCodeLmMessages,
requestOptions,
this.currentRequestCancellation.token,
)
// Consume the stream and handle both text and tool call chunks
for await (const chunk of response.stream) {
if (chunk instanceof vscode.LanguageModelTextPart) {
// Validate text part value
if (typeof chunk.value !== "string") {
console.warn("Roo Code <Language Model API>: Invalid text part value received:", chunk.value)
continue
}
accumulatedText += chunk.value
yield {
type: "text",
text: chunk.value,
}
} else if (chunk instanceof vscode.LanguageModelToolCallPart) {
try {
// Validate tool call parameters
if (!chunk.name || typeof chunk.name !== "string") {
console.warn("Roo Code <Language Model API>: Invalid tool name received:", chunk.name)
continue
}
if (!chunk.callId || typeof chunk.callId !== "string") {
console.warn("Roo Code <Language Model API>: Invalid tool callId received:", chunk.callId)
continue
}
// Ensure input is a valid object
if (!chunk.input || typeof chunk.input !== "object") {
console.warn("Roo Code <Language Model API>: Invalid tool input received:", chunk.input)
continue
}
// Convert tool calls to text format with proper error handling
const toolCall = {
type: "tool_call",
name: chunk.name,
arguments: chunk.input,
callId: chunk.callId,
}
const toolCallText = JSON.stringify(toolCall)
accumulatedText += toolCallText
// Log tool call for debugging
console.debug("Roo Code <Language Model API>: Processing tool call:", {
name: chunk.name,
callId: chunk.callId,
inputSize: JSON.stringify(chunk.input).length,
})
yield {
type: "text",
text: toolCallText,
}
} catch (error) {
console.error("Roo Code <Language Model API>: Failed to process tool call:", error)
// Continue processing other chunks even if one fails
continue
}
} else {
console.warn("Roo Code <Language Model API>: Unknown chunk type received:", chunk)
}
}
// Count tokens in the accumulated text after stream completion
const totalOutputTokens: number = await this.countTokens(accumulatedText)
// Report final usage after stream completion
yield {
type: "usage",
inputTokens: totalInputTokens,
outputTokens: totalOutputTokens,
totalCost: calculateApiCost(this.getModel().info, totalInputTokens, totalOutputTokens),
}
} catch (error: unknown) {
this.ensureCleanState()
if (error instanceof vscode.CancellationError) {
throw new Error("Roo Code <Language Model API>: Request cancelled by user")
}
if (error instanceof Error) {
console.error("Roo Code <Language Model API>: Stream error details:", {
message: error.message,
stack: error.stack,
name: error.name,
})
// Return original error if it's already an Error instance
throw error
} else if (typeof error === "object" && error !== null) {
// Handle error-like objects
const errorDetails = JSON.stringify(error, null, 2)
console.error("Roo Code <Language Model API>: Stream error object:", errorDetails)
throw new Error(`Roo Code <Language Model API>: Response stream error: ${errorDetails}`)
} else {
// Fallback for unknown error types
const errorMessage = String(error)
console.error("Roo Code <Language Model API>: Unknown stream error:", errorMessage)
throw new Error(`Roo Code <Language Model API>: Response stream error: ${errorMessage}`)
}
}
}
// Return model information based on the current client state
getModel(): { id: string; info: ModelInfo } {
if (this.client) {
// Validate client properties
const requiredProps = {
id: this.client.id,
vendor: this.client.vendor,
family: this.client.family,
version: this.client.version,
maxInputTokens: this.client.maxInputTokens,
}
// Log any missing properties for debugging
for (const [prop, value] of Object.entries(requiredProps)) {
if (!value && value !== 0) {
console.warn(`Roo Code <Language Model API>: Client missing ${prop} property`)
}
}
// Construct model ID using available information
const modelParts = [this.client.vendor, this.client.family, this.client.version].filter(Boolean)
const modelId = this.client.id || modelParts.join(SELECTOR_SEPARATOR)
// Build model info with conservative defaults for missing values
const modelInfo: ModelInfo = {
maxTokens: -1, // Unlimited tokens by default
contextWindow:
typeof this.client.maxInputTokens === "number"
? Math.max(0, this.client.maxInputTokens)
: openAiModelInfoSaneDefaults.contextWindow,
supportsImages: false, // VSCode Language Model API currently doesn't support image inputs
supportsPromptCache: true,
inputPrice: 0,
outputPrice: 0,
description: `VSCode Language Model: ${modelId}`,
}
return { id: modelId, info: modelInfo }
}
// Fallback when no client is available
const fallbackId = this.options.vsCodeLmModelSelector
? stringifyVsCodeLmModelSelector(this.options.vsCodeLmModelSelector)
: "vscode-lm"
console.debug("Roo Code <Language Model API>: No client available, using fallback model info")
return {
id: fallbackId,
info: {
...openAiModelInfoSaneDefaults,
description: `VSCode Language Model (Fallback): ${fallbackId}`,
},
}
}
async completePrompt(prompt: string): Promise<string> {
try {
const client = await this.getClient()
const response = await client.sendRequest(
[vscode.LanguageModelChatMessage.User(prompt)],
{},
new vscode.CancellationTokenSource().token,
)
let result = ""
for await (const chunk of response.stream) {
if (chunk instanceof vscode.LanguageModelTextPart) {
result += chunk.value
}
}
return result
} catch (error) {
if (error instanceof Error) {
throw new Error(`VSCode LM completion error: ${error.message}`)
}
throw error
}
}
}