Files
Roo-Code/src/utils/openai-format.ts
2024-09-03 17:08:29 -04:00

202 lines
6.7 KiB
TypeScript

import { Anthropic } from "@anthropic-ai/sdk"
import OpenAI from "openai"
export function convertToOpenAiMessages(
anthropicMessages: Anthropic.Messages.MessageParam[]
): OpenAI.Chat.ChatCompletionMessageParam[] {
const openAiMessages: OpenAI.Chat.ChatCompletionMessageParam[] = []
for (const anthropicMessage of anthropicMessages) {
if (typeof anthropicMessage.content === "string") {
openAiMessages.push({ role: anthropicMessage.role, content: anthropicMessage.content })
} else {
// image_url.url is base64 encoded image data
// ensure it contains the content-type of the image: data:image/png;base64,
/*
{ role: "user", content: "" | { type: "text", text: string } | { type: "image_url", image_url: { url: string } } },
// content required unless tool_calls is present
{ role: "assistant", content?: "" | null, tool_calls?: [{ id: "", function: { name: "", arguments: "" }, type: "function" }] },
{ role: "tool", tool_call_id: "", content: ""}
*/
if (anthropicMessage.role === "user") {
const { nonToolMessages, toolMessages } = anthropicMessage.content.reduce<{
nonToolMessages: (Anthropic.TextBlockParam | Anthropic.ImageBlockParam)[]
toolMessages: Anthropic.ToolResultBlockParam[]
}>(
(acc, part) => {
if (part.type === "tool_result") {
acc.toolMessages.push(part)
} else if (part.type === "text" || part.type === "image") {
acc.nonToolMessages.push(part)
} // user cannot send tool_use messages
return acc
},
{ nonToolMessages: [], toolMessages: [] }
)
// Process tool result messages FIRST since they must follow the tool use messages
let toolResultImages: Anthropic.Messages.ImageBlockParam[] = []
toolMessages.forEach((toolMessage) => {
// The Anthropic SDK allows tool results to be a string or an array of text and image blocks, enabling rich and structured content. In contrast, the OpenAI SDK only supports tool results as a single string, so we map the Anthropic tool result parts into one concatenated string to maintain compatibility.
let content: string
if (typeof toolMessage.content === "string") {
content = toolMessage.content
} else {
content =
toolMessage.content
?.map((part) => {
if (part.type === "image") {
toolResultImages.push(part)
return "(see following user message for image)"
}
return part.text
})
.join("\n") ?? ""
}
openAiMessages.push({
role: "tool",
tool_call_id: toolMessage.tool_use_id,
content: content,
})
})
// If tool results contain images, send as a separate user message
// I ran into an issue where if I gave feedback for one of many tool uses, the request would fail.
// "Messages following `tool_use` blocks must begin with a matching number of `tool_result` blocks."
// Therefore we need to send these images after the tool result messages
if (toolResultImages.length > 0) {
openAiMessages.push({
role: "user",
content: toolResultImages.map((part) => ({
type: "image_url",
image_url: { url: `data:${part.source.media_type};base64,${part.source.data}` },
})),
})
}
// Process non-tool messages
if (nonToolMessages.length > 0) {
openAiMessages.push({
role: "user",
content: nonToolMessages.map((part) => {
if (part.type === "image") {
return {
type: "image_url",
image_url: { url: `data:${part.source.media_type};base64,${part.source.data}` },
}
}
return { type: "text", text: part.text }
}),
})
}
} else if (anthropicMessage.role === "assistant") {
const { nonToolMessages, toolMessages } = anthropicMessage.content.reduce<{
nonToolMessages: (Anthropic.TextBlockParam | Anthropic.ImageBlockParam)[]
toolMessages: Anthropic.ToolUseBlockParam[]
}>(
(acc, part) => {
if (part.type === "tool_use") {
acc.toolMessages.push(part)
} else if (part.type === "text" || part.type === "image") {
acc.nonToolMessages.push(part)
} // assistant cannot send tool_result messages
return acc
},
{ nonToolMessages: [], toolMessages: [] }
)
// Process non-tool messages FIRST
let content: string | undefined
if (nonToolMessages.length > 0) {
content = nonToolMessages
.map((part) => {
if (part.type === "image") {
return "" // impossible as the assistant cannot send images
}
return part.text
})
.join("\n")
}
// Process tool use messages
let tool_calls: OpenAI.Chat.ChatCompletionMessageToolCall[] = toolMessages.map((toolMessage) => ({
id: toolMessage.id,
type: "function",
function: {
name: toolMessage.name,
// json string
arguments: JSON.stringify(toolMessage.input),
},
}))
openAiMessages.push({
role: "assistant",
content,
// Cannot be an empty array. API expects an array with minimum length 1, and will respond with an error if it's empty
tool_calls: tool_calls.length > 0 ? tool_calls : undefined,
})
}
}
}
return openAiMessages
}
// Convert OpenAI response to Anthropic format
export function convertToAnthropicMessage(
completion: OpenAI.Chat.Completions.ChatCompletion
): Anthropic.Messages.Message {
const openAiMessage = completion.choices[0].message
const anthropicMessage: Anthropic.Messages.Message = {
id: completion.id,
type: "message",
role: openAiMessage.role, // always "assistant"
content: [
{
type: "text",
text: openAiMessage.content || "",
},
],
model: completion.model,
stop_reason: (() => {
switch (completion.choices[0].finish_reason) {
case "stop":
return "end_turn"
case "length":
return "max_tokens"
case "tool_calls":
return "tool_use"
case "content_filter": // Anthropic doesn't have an exact equivalent
default:
return null
}
})(),
stop_sequence: null, // which custom stop_sequence was generated, if any (not applicable if you don't use stop_sequence)
usage: {
input_tokens: completion.usage?.prompt_tokens || 0,
output_tokens: completion.usage?.completion_tokens || 0,
},
}
if (openAiMessage.tool_calls && openAiMessage.tool_calls.length > 0) {
anthropicMessage.content.push(
...openAiMessage.tool_calls.map((toolCall): Anthropic.ToolUseBlock => {
let parsedInput = {}
try {
parsedInput = JSON.parse(toolCall.function.arguments || "{}")
} catch (error) {
console.error("Failed to parse tool arguments:", error)
}
return {
type: "tool_use",
id: toolCall.id,
name: toolCall.function.name,
input: parsedInput,
}
})
)
}
return anthropicMessage
}