mirror of
https://github.com/pacnpal/Roo-Code.git
synced 2025-12-20 12:21:13 -05:00
202 lines
6.7 KiB
TypeScript
202 lines
6.7 KiB
TypeScript
import { Anthropic } from "@anthropic-ai/sdk"
|
|
import OpenAI from "openai"
|
|
|
|
export function convertToOpenAiMessages(
|
|
anthropicMessages: Anthropic.Messages.MessageParam[]
|
|
): OpenAI.Chat.ChatCompletionMessageParam[] {
|
|
const openAiMessages: OpenAI.Chat.ChatCompletionMessageParam[] = []
|
|
|
|
for (const anthropicMessage of anthropicMessages) {
|
|
if (typeof anthropicMessage.content === "string") {
|
|
openAiMessages.push({ role: anthropicMessage.role, content: anthropicMessage.content })
|
|
} else {
|
|
// image_url.url is base64 encoded image data
|
|
// ensure it contains the content-type of the image: data:image/png;base64,
|
|
/*
|
|
{ role: "user", content: "" | { type: "text", text: string } | { type: "image_url", image_url: { url: string } } },
|
|
// content required unless tool_calls is present
|
|
{ role: "assistant", content?: "" | null, tool_calls?: [{ id: "", function: { name: "", arguments: "" }, type: "function" }] },
|
|
{ role: "tool", tool_call_id: "", content: ""}
|
|
*/
|
|
if (anthropicMessage.role === "user") {
|
|
const { nonToolMessages, toolMessages } = anthropicMessage.content.reduce<{
|
|
nonToolMessages: (Anthropic.TextBlockParam | Anthropic.ImageBlockParam)[]
|
|
toolMessages: Anthropic.ToolResultBlockParam[]
|
|
}>(
|
|
(acc, part) => {
|
|
if (part.type === "tool_result") {
|
|
acc.toolMessages.push(part)
|
|
} else if (part.type === "text" || part.type === "image") {
|
|
acc.nonToolMessages.push(part)
|
|
} // user cannot send tool_use messages
|
|
return acc
|
|
},
|
|
{ nonToolMessages: [], toolMessages: [] }
|
|
)
|
|
|
|
// Process tool result messages FIRST since they must follow the tool use messages
|
|
let toolResultImages: Anthropic.Messages.ImageBlockParam[] = []
|
|
toolMessages.forEach((toolMessage) => {
|
|
// The Anthropic SDK allows tool results to be a string or an array of text and image blocks, enabling rich and structured content. In contrast, the OpenAI SDK only supports tool results as a single string, so we map the Anthropic tool result parts into one concatenated string to maintain compatibility.
|
|
let content: string
|
|
|
|
if (typeof toolMessage.content === "string") {
|
|
content = toolMessage.content
|
|
} else {
|
|
content =
|
|
toolMessage.content
|
|
?.map((part) => {
|
|
if (part.type === "image") {
|
|
toolResultImages.push(part)
|
|
return "(see following user message for image)"
|
|
}
|
|
return part.text
|
|
})
|
|
.join("\n") ?? ""
|
|
}
|
|
openAiMessages.push({
|
|
role: "tool",
|
|
tool_call_id: toolMessage.tool_use_id,
|
|
content: content,
|
|
})
|
|
})
|
|
|
|
// If tool results contain images, send as a separate user message
|
|
// I ran into an issue where if I gave feedback for one of many tool uses, the request would fail.
|
|
// "Messages following `tool_use` blocks must begin with a matching number of `tool_result` blocks."
|
|
// Therefore we need to send these images after the tool result messages
|
|
if (toolResultImages.length > 0) {
|
|
openAiMessages.push({
|
|
role: "user",
|
|
content: toolResultImages.map((part) => ({
|
|
type: "image_url",
|
|
image_url: { url: `data:${part.source.media_type};base64,${part.source.data}` },
|
|
})),
|
|
})
|
|
}
|
|
|
|
// Process non-tool messages
|
|
if (nonToolMessages.length > 0) {
|
|
openAiMessages.push({
|
|
role: "user",
|
|
content: nonToolMessages.map((part) => {
|
|
if (part.type === "image") {
|
|
return {
|
|
type: "image_url",
|
|
image_url: { url: `data:${part.source.media_type};base64,${part.source.data}` },
|
|
}
|
|
}
|
|
return { type: "text", text: part.text }
|
|
}),
|
|
})
|
|
}
|
|
} else if (anthropicMessage.role === "assistant") {
|
|
const { nonToolMessages, toolMessages } = anthropicMessage.content.reduce<{
|
|
nonToolMessages: (Anthropic.TextBlockParam | Anthropic.ImageBlockParam)[]
|
|
toolMessages: Anthropic.ToolUseBlockParam[]
|
|
}>(
|
|
(acc, part) => {
|
|
if (part.type === "tool_use") {
|
|
acc.toolMessages.push(part)
|
|
} else if (part.type === "text" || part.type === "image") {
|
|
acc.nonToolMessages.push(part)
|
|
} // assistant cannot send tool_result messages
|
|
return acc
|
|
},
|
|
{ nonToolMessages: [], toolMessages: [] }
|
|
)
|
|
|
|
// Process non-tool messages FIRST
|
|
let content: string | undefined
|
|
if (nonToolMessages.length > 0) {
|
|
content = nonToolMessages
|
|
.map((part) => {
|
|
if (part.type === "image") {
|
|
return "" // impossible as the assistant cannot send images
|
|
}
|
|
return part.text
|
|
})
|
|
.join("\n")
|
|
}
|
|
|
|
// Process tool use messages
|
|
let tool_calls: OpenAI.Chat.ChatCompletionMessageToolCall[] = toolMessages.map((toolMessage) => ({
|
|
id: toolMessage.id,
|
|
type: "function",
|
|
function: {
|
|
name: toolMessage.name,
|
|
// json string
|
|
arguments: JSON.stringify(toolMessage.input),
|
|
},
|
|
}))
|
|
|
|
openAiMessages.push({
|
|
role: "assistant",
|
|
content,
|
|
// Cannot be an empty array. API expects an array with minimum length 1, and will respond with an error if it's empty
|
|
tool_calls: tool_calls.length > 0 ? tool_calls : undefined,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
return openAiMessages
|
|
}
|
|
|
|
// Convert OpenAI response to Anthropic format
|
|
export function convertToAnthropicMessage(
|
|
completion: OpenAI.Chat.Completions.ChatCompletion
|
|
): Anthropic.Messages.Message {
|
|
const openAiMessage = completion.choices[0].message
|
|
const anthropicMessage: Anthropic.Messages.Message = {
|
|
id: completion.id,
|
|
type: "message",
|
|
role: openAiMessage.role, // always "assistant"
|
|
content: [
|
|
{
|
|
type: "text",
|
|
text: openAiMessage.content || "",
|
|
},
|
|
],
|
|
model: completion.model,
|
|
stop_reason: (() => {
|
|
switch (completion.choices[0].finish_reason) {
|
|
case "stop":
|
|
return "end_turn"
|
|
case "length":
|
|
return "max_tokens"
|
|
case "tool_calls":
|
|
return "tool_use"
|
|
case "content_filter": // Anthropic doesn't have an exact equivalent
|
|
default:
|
|
return null
|
|
}
|
|
})(),
|
|
stop_sequence: null, // which custom stop_sequence was generated, if any (not applicable if you don't use stop_sequence)
|
|
usage: {
|
|
input_tokens: completion.usage?.prompt_tokens || 0,
|
|
output_tokens: completion.usage?.completion_tokens || 0,
|
|
},
|
|
}
|
|
|
|
if (openAiMessage.tool_calls && openAiMessage.tool_calls.length > 0) {
|
|
anthropicMessage.content.push(
|
|
...openAiMessage.tool_calls.map((toolCall): Anthropic.ToolUseBlock => {
|
|
let parsedInput = {}
|
|
try {
|
|
parsedInput = JSON.parse(toolCall.function.arguments || "{}")
|
|
} catch (error) {
|
|
console.error("Failed to parse tool arguments:", error)
|
|
}
|
|
return {
|
|
type: "tool_use",
|
|
id: toolCall.id,
|
|
name: toolCall.function.name,
|
|
input: parsedInput,
|
|
}
|
|
})
|
|
)
|
|
}
|
|
return anthropicMessage
|
|
}
|