Files
Roo-Code/src/api/providers/unbound.ts
2025-01-29 22:53:43 +05:30

167 lines
4.8 KiB
TypeScript

import { Anthropic } from "@anthropic-ai/sdk"
import OpenAI from "openai"
import { ApiHandler, SingleCompletionHandler } from "../"
import { ApiHandlerOptions, ModelInfo, UnboundModelId, unboundDefaultModelId, unboundModels } from "../../shared/api"
import { convertToOpenAiMessages } from "../transform/openai-format"
import { ApiStream, ApiStreamUsageChunk } from "../transform/stream"
interface UnboundUsage extends OpenAI.CompletionUsage {
cache_creation_input_tokens?: number
cache_read_input_tokens?: number
}
export class UnboundHandler implements ApiHandler, SingleCompletionHandler {
private options: ApiHandlerOptions
private client: OpenAI
constructor(options: ApiHandlerOptions) {
this.options = options
this.client = new OpenAI({
baseURL: "https://api.getunbound.ai/v1",
apiKey: this.options.unboundApiKey,
})
}
async *createMessage(systemPrompt: string, messages: Anthropic.Messages.MessageParam[]): ApiStream {
// Convert Anthropic messages to OpenAI format
const openAiMessages: OpenAI.Chat.ChatCompletionMessageParam[] = [
{ role: "system", content: systemPrompt },
...convertToOpenAiMessages(messages),
]
// this is specifically for claude models (some models may 'support prompt caching' automatically without this)
if (this.getModel().id.startsWith("anthropic/claude-3")) {
openAiMessages[0] = {
role: "system",
content: [
{
type: "text",
text: systemPrompt,
// @ts-ignore-next-line
cache_control: { type: "ephemeral" },
},
],
}
// Add cache_control to the last two user messages
// (note: this works because we only ever add one user message at a time,
// but if we added multiple we'd need to mark the user message before the last assistant message)
const lastTwoUserMessages = openAiMessages.filter((msg) => msg.role === "user").slice(-2)
lastTwoUserMessages.forEach((msg) => {
if (typeof msg.content === "string") {
msg.content = [{ type: "text", text: msg.content }]
}
if (Array.isArray(msg.content)) {
// NOTE: this is fine since env details will always be added at the end.
// but if it weren't there, and the user added a image_url type message,
// it would pop a text part before it and then move it after to the end.
let lastTextPart = msg.content.filter((part) => part.type === "text").pop()
if (!lastTextPart) {
lastTextPart = { type: "text", text: "..." }
msg.content.push(lastTextPart)
}
// @ts-ignore-next-line
lastTextPart["cache_control"] = { type: "ephemeral" }
}
})
}
// Required by Anthropic
// Other providers default to max tokens allowed.
let maxTokens: number | undefined
if (this.getModel().id.startsWith("anthropic/")) {
maxTokens = 8_192
}
const { data: completion, response } = await this.client.chat.completions
.create(
{
model: this.getModel().id.split("/")[1],
max_tokens: maxTokens,
temperature: 0,
messages: openAiMessages,
stream: true,
},
{
headers: {
"X-Unbound-Metadata": JSON.stringify({
labels: [
{
key: "app",
value: "roo-code",
},
],
}),
},
},
)
.withResponse()
for await (const chunk of completion) {
const delta = chunk.choices[0]?.delta
const usage = chunk.usage as UnboundUsage
if (delta?.content) {
yield {
type: "text",
text: delta.content,
}
}
if (usage) {
const usageData: ApiStreamUsageChunk = {
type: "usage",
inputTokens: usage.prompt_tokens || 0,
outputTokens: usage.completion_tokens || 0,
}
// Only add cache tokens if they exist
if (usage.cache_creation_input_tokens) {
usageData.cacheWriteTokens = usage.cache_creation_input_tokens
}
if (usage.cache_read_input_tokens) {
usageData.cacheReadTokens = usage.cache_read_input_tokens
}
yield usageData
}
}
}
getModel(): { id: UnboundModelId; info: ModelInfo } {
const modelId = this.options.apiModelId
if (modelId && modelId in unboundModels) {
const id = modelId as UnboundModelId
return { id, info: unboundModels[id] }
}
return {
id: unboundDefaultModelId,
info: unboundModels[unboundDefaultModelId],
}
}
async completePrompt(prompt: string): Promise<string> {
try {
const requestOptions: OpenAI.Chat.Completions.ChatCompletionCreateParamsNonStreaming = {
model: this.getModel().id.split("/")[1],
messages: [{ role: "user", content: prompt }],
temperature: 0,
}
if (this.getModel().id.startsWith("anthropic/")) {
requestOptions.max_tokens = 8192
}
const response = await this.client.chat.completions.create(requestOptions)
return response.choices[0]?.message.content || ""
} catch (error) {
if (error instanceof Error) {
throw new Error(`Unbound completion error: ${error.message}`)
}
throw error
}
}
}