# Active Context Last Updated: 2024-12-27 ## Current Focus Integrating LLM capabilities into the existing Discord bot while maintaining the unique "personality" of each server's Markov-based responses. ### Active Issues 1. Response Generation - Need to implement hybrid Markov-LLM response system - Must maintain response speed within acceptable limits - Need to handle API rate limiting gracefully 2. Data Management - Implement efficient storage for embeddings - Design context window management - Handle conversation threading 3. Integration Points - Modify generateResponse function to support LLM - Add embedding generation pipeline - Implement context tracking ## Recent Changes - Analyzed current codebase structure - Identified integration points for LLM - Documented system architecture - Created implementation plan ## Active Files ### Core Implementation - src/index.ts - Main bot logic - Message handling - Command processing - src/entity/ - Database schema - Need to add embedding and context tables - src/train.ts - Training pipeline - Need to add embedding generation ### New Files Needed - src/llm/ - provider.ts (LLM service integration) - embedding.ts (Embedding generation) - context.ts (Context management) - src/entity/ - MessageEmbedding.ts - ConversationContext.ts ## Next Steps ### Immediate Tasks 1. Create database migrations - Add embedding table - Add context table - Update existing message schema 2. Implement LLM integration - Set up OpenAI client - Create response generation service - Add fallback mechanisms 3. Add embedding pipeline - Implement background processing - Set up batch operations - Add storage management ### Short-term Goals 1. Test hybrid response system - Benchmark response times - Measure coherence - Validate context usage 2. Optimize performance - Implement caching - Add rate limiting - Tune batch sizes 3. Update documentation - Add LLM configuration guide - Update deployment instructions - Document new commands ### Dependencies - OpenAI API access - Additional storage capacity - Updated environment configuration ## Implementation Strategy ### Phase 1: Foundation 1. Database schema updates 2. Basic LLM integration 3. Simple context tracking ### Phase 2: Enhancement 1. Hybrid response system 2. Advanced context management 3. Performance optimization ### Phase 3: Refinement 1. User feedback integration 2. Response quality metrics 3. Fine-tuning capabilities ## Notes - Keep existing Markov system as fallback - Monitor API usage and costs - Consider implementing local LLM option - Need to update help documentation - Consider adding configuration commands