mirror of
https://github.com/pacnpal/markov-discord.git
synced 2025-12-20 03:01:04 -05:00
2.7 KiB
Executable File
2.7 KiB
Executable File
Active Context
Last Updated: 2024-12-27
Current Focus
Integrating LLM capabilities into the existing Discord bot while maintaining the unique "personality" of each server's Markov-based responses.
Active Issues
-
Response Generation
- Need to implement hybrid Markov-LLM response system
- Must maintain response speed within acceptable limits
- Need to handle API rate limiting gracefully
-
Data Management
- Implement efficient storage for embeddings
- Design context window management
- Handle conversation threading
-
Integration Points
- Modify generateResponse function to support LLM
- Add embedding generation pipeline
- Implement context tracking
Recent Changes
- Analyzed current codebase structure
- Identified integration points for LLM
- Documented system architecture
- Created implementation plan
Active Files
Core Implementation
-
src/index.ts
- Main bot logic
- Message handling
- Command processing
-
src/entity/
- Database schema
- Need to add embedding and context tables
-
src/train.ts
- Training pipeline
- Need to add embedding generation
New Files Needed
-
src/llm/
- provider.ts (LLM service integration)
- embedding.ts (Embedding generation)
- context.ts (Context management)
-
src/entity/
- MessageEmbedding.ts
- ConversationContext.ts
Next Steps
Immediate Tasks
-
Create database migrations
- Add embedding table
- Add context table
- Update existing message schema
-
Implement LLM integration
- Set up OpenAI client
- Create response generation service
- Add fallback mechanisms
-
Add embedding pipeline
- Implement background processing
- Set up batch operations
- Add storage management
Short-term Goals
-
Test hybrid response system
- Benchmark response times
- Measure coherence
- Validate context usage
-
Optimize performance
- Implement caching
- Add rate limiting
- Tune batch sizes
-
Update documentation
- Add LLM configuration guide
- Update deployment instructions
- Document new commands
Dependencies
- OpenAI API access
- Additional storage capacity
- Updated environment configuration
Implementation Strategy
Phase 1: Foundation
- Database schema updates
- Basic LLM integration
- Simple context tracking
Phase 2: Enhancement
- Hybrid response system
- Advanced context management
- Performance optimization
Phase 3: Refinement
- User feedback integration
- Response quality metrics
- Fine-tuning capabilities
Notes
- Keep existing Markov system as fallback
- Monitor API usage and costs
- Consider implementing local LLM option
- Need to update help documentation
- Consider adding configuration commands