Implement ML Anomaly Detection

Introduce statistical anomaly detection for metrics via edge function, hooks, and UI components. Adds detection algorithms (z-score, moving average, rate of change), anomaly storage, auto-alerts, and dashboard rendering of detected anomalies with run-once trigger and scheduling guidance.
This commit is contained in:
gpt-engineer-app[bot]
2025-11-11 02:07:49 +00:00
parent 7fba819fc7
commit be94b4252c
7 changed files with 887 additions and 0 deletions

View File

@@ -0,0 +1,169 @@
import { Card, CardContent, CardDescription, CardHeader, CardTitle } from '@/components/ui/card';
import { Button } from '@/components/ui/button';
import { Badge } from '@/components/ui/badge';
import { Brain, TrendingUp, TrendingDown, Activity, AlertTriangle, Play, Sparkles } from 'lucide-react';
import { formatDistanceToNow } from 'date-fns';
import type { AnomalyDetection } from '@/hooks/admin/useAnomalyDetection';
import { useRunAnomalyDetection } from '@/hooks/admin/useAnomalyDetection';
interface AnomalyDetectionPanelProps {
anomalies?: AnomalyDetection[];
isLoading: boolean;
}
const ANOMALY_TYPE_CONFIG = {
spike: { icon: TrendingUp, label: 'Spike', color: 'text-orange-500' },
drop: { icon: TrendingDown, label: 'Drop', color: 'text-blue-500' },
trend_change: { icon: Activity, label: 'Trend Change', color: 'text-purple-500' },
outlier: { icon: AlertTriangle, label: 'Outlier', color: 'text-yellow-500' },
pattern_break: { icon: Activity, label: 'Pattern Break', color: 'text-red-500' },
};
const SEVERITY_CONFIG = {
critical: { badge: 'destructive', label: 'Critical' },
high: { badge: 'default', label: 'High' },
medium: { badge: 'secondary', label: 'Medium' },
low: { badge: 'outline', label: 'Low' },
};
export function AnomalyDetectionPanel({ anomalies, isLoading }: AnomalyDetectionPanelProps) {
const runDetection = useRunAnomalyDetection();
const handleRunDetection = () => {
runDetection.mutate();
};
if (isLoading) {
return (
<Card>
<CardHeader>
<CardTitle className="flex items-center gap-2">
<Brain className="h-5 w-5" />
ML Anomaly Detection
</CardTitle>
<CardDescription>Loading anomaly data...</CardDescription>
</CardHeader>
<CardContent>
<div className="flex items-center justify-center py-8">
<div className="animate-spin rounded-full h-8 w-8 border-b-2 border-primary"></div>
</div>
</CardContent>
</Card>
);
}
const recentAnomalies = anomalies?.slice(0, 5) || [];
return (
<Card>
<CardHeader>
<CardTitle className="flex items-center justify-between">
<span className="flex items-center gap-2">
<Brain className="h-5 w-5" />
ML Anomaly Detection
</span>
<div className="flex items-center gap-2">
{anomalies && anomalies.length > 0 && (
<span className="text-sm font-normal text-muted-foreground">
{anomalies.length} detected (24h)
</span>
)}
<Button
variant="outline"
size="sm"
onClick={handleRunDetection}
disabled={runDetection.isPending}
>
<Play className="h-4 w-4 mr-1" />
Run Detection
</Button>
</div>
</CardTitle>
<CardDescription>
Statistical ML algorithms detecting unusual patterns in metrics
</CardDescription>
</CardHeader>
<CardContent className="space-y-3">
{recentAnomalies.length === 0 ? (
<div className="flex flex-col items-center justify-center py-8 text-muted-foreground">
<Sparkles className="h-12 w-12 mb-2 opacity-50" />
<p>No anomalies detected in last 24 hours</p>
<p className="text-sm">ML models are monitoring metrics continuously</p>
</div>
) : (
<>
{recentAnomalies.map((anomaly) => {
const typeConfig = ANOMALY_TYPE_CONFIG[anomaly.anomaly_type];
const severityConfig = SEVERITY_CONFIG[anomaly.severity];
const TypeIcon = typeConfig.icon;
return (
<div
key={anomaly.id}
className="border rounded-lg p-4 space-y-2 bg-card hover:bg-accent/5 transition-colors"
>
<div className="flex items-start justify-between gap-4">
<div className="flex items-start gap-3 flex-1">
<TypeIcon className={`h-5 w-5 mt-0.5 ${typeConfig.color}`} />
<div className="flex-1 min-w-0">
<div className="flex items-center gap-2 flex-wrap mb-1">
<Badge variant={severityConfig.badge as any} className="text-xs">
{severityConfig.label}
</Badge>
<span className="text-xs px-2 py-0.5 rounded bg-purple-500/10 text-purple-600">
{typeConfig.label}
</span>
<span className="text-xs px-2 py-0.5 rounded bg-muted text-muted-foreground">
{anomaly.metric_name.replace(/_/g, ' ')}
</span>
{anomaly.alert_created && (
<span className="text-xs px-2 py-0.5 rounded bg-green-500/10 text-green-600">
Alert Created
</span>
)}
</div>
<div className="text-sm space-y-1">
<div className="flex items-center gap-4 text-muted-foreground">
<span>
Baseline: <span className="font-medium text-foreground">{anomaly.baseline_value.toFixed(2)}</span>
</span>
<span></span>
<span>
Detected: <span className="font-medium text-foreground">{anomaly.anomaly_value.toFixed(2)}</span>
</span>
<span className="ml-2 px-2 py-0.5 rounded bg-orange-500/10 text-orange-600 text-xs font-medium">
{anomaly.deviation_score.toFixed(2)}σ
</span>
</div>
<div className="flex items-center gap-4 text-xs text-muted-foreground">
<span className="flex items-center gap-1">
<Brain className="h-3 w-3" />
Algorithm: {anomaly.detection_algorithm.replace(/_/g, ' ')}
</span>
<span>
Confidence: {(anomaly.confidence_score * 100).toFixed(0)}%
</span>
<span>
Detected {formatDistanceToNow(new Date(anomaly.detected_at), { addSuffix: true })}
</span>
</div>
</div>
</div>
</div>
</div>
</div>
);
})}
{anomalies && anomalies.length > 5 && (
<div className="text-center pt-2">
<span className="text-sm text-muted-foreground">
+ {anomalies.length - 5} more anomalies
</span>
</div>
)}
</>
)}
</CardContent>
</Card>
);
}

View File

@@ -0,0 +1,101 @@
import { useQuery, useMutation, useQueryClient } from '@tanstack/react-query';
import { supabase } from '@/lib/supabaseClient';
import { queryKeys } from '@/lib/queryKeys';
import { toast } from 'sonner';
export interface AnomalyDetection {
id: string;
metric_name: string;
metric_category: string;
anomaly_type: 'spike' | 'drop' | 'trend_change' | 'outlier' | 'pattern_break';
severity: 'critical' | 'high' | 'medium' | 'low';
baseline_value: number;
anomaly_value: number;
deviation_score: number;
confidence_score: number;
detection_algorithm: string;
time_window_start: string;
time_window_end: string;
detected_at: string;
alert_created: boolean;
alert_id?: string;
alert_message?: string;
alert_resolved_at?: string;
}
export function useAnomalyDetections() {
return useQuery({
queryKey: queryKeys.monitoring.anomalyDetections(),
queryFn: async () => {
const { data, error } = await supabase
.from('recent_anomalies_view')
.select('*')
.order('detected_at', { ascending: false })
.limit(50);
if (error) throw error;
return (data || []) as AnomalyDetection[];
},
staleTime: 30000,
refetchInterval: 60000,
});
}
export function useRunAnomalyDetection() {
const queryClient = useQueryClient();
return useMutation({
mutationFn: async () => {
const { data, error } = await supabase.functions.invoke('detect-anomalies', {
method: 'POST',
});
if (error) throw error;
return data;
},
onSuccess: (data) => {
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.anomalyDetections() });
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.groupedAlerts() });
if (data.anomalies_detected > 0) {
toast.success(`Detected ${data.anomalies_detected} anomalies`);
} else {
toast.info('No anomalies detected');
}
},
onError: (error) => {
console.error('Failed to run anomaly detection:', error);
toast.error('Failed to run anomaly detection');
},
});
}
export function useRecordMetric() {
return useMutation({
mutationFn: async ({
metricName,
metricCategory,
metricValue,
metadata,
}: {
metricName: string;
metricCategory: string;
metricValue: number;
metadata?: any;
}) => {
const { error } = await supabase
.from('metric_time_series')
.insert({
metric_name: metricName,
metric_category: metricCategory,
metric_value: metricValue,
metadata,
});
if (error) throw error;
},
onError: (error) => {
console.error('Failed to record metric:', error);
},
});
}

View File

@@ -202,6 +202,111 @@ export type Database = {
}
Relationships: []
}
anomaly_detection_config: {
Row: {
alert_threshold_score: number
auto_create_alert: boolean
created_at: string
detection_algorithms: string[]
enabled: boolean
id: string
lookback_window_minutes: number
metric_category: string
metric_name: string
min_data_points: number
sensitivity: number
updated_at: string
}
Insert: {
alert_threshold_score?: number
auto_create_alert?: boolean
created_at?: string
detection_algorithms?: string[]
enabled?: boolean
id?: string
lookback_window_minutes?: number
metric_category: string
metric_name: string
min_data_points?: number
sensitivity?: number
updated_at?: string
}
Update: {
alert_threshold_score?: number
auto_create_alert?: boolean
created_at?: string
detection_algorithms?: string[]
enabled?: boolean
id?: string
lookback_window_minutes?: number
metric_category?: string
metric_name?: string
min_data_points?: number
sensitivity?: number
updated_at?: string
}
Relationships: []
}
anomaly_detections: {
Row: {
alert_created: boolean
alert_id: string | null
anomaly_type: string
anomaly_value: number
baseline_value: number
confidence_score: number
created_at: string
detected_at: string
detection_algorithm: string
deviation_score: number
id: string
metadata: Json | null
metric_category: string
metric_name: string
severity: string
time_window_end: string
time_window_start: string
}
Insert: {
alert_created?: boolean
alert_id?: string | null
anomaly_type: string
anomaly_value: number
baseline_value: number
confidence_score: number
created_at?: string
detected_at?: string
detection_algorithm: string
deviation_score: number
id?: string
metadata?: Json | null
metric_category: string
metric_name: string
severity: string
time_window_end: string
time_window_start: string
}
Update: {
alert_created?: boolean
alert_id?: string | null
anomaly_type?: string
anomaly_value?: number
baseline_value?: number
confidence_score?: number
created_at?: string
detected_at?: string
detection_algorithm?: string
deviation_score?: number
id?: string
metadata?: Json | null
metric_category?: string
metric_name?: string
severity?: string
time_window_end?: string
time_window_start?: string
}
Relationships: []
}
approval_transaction_metrics: {
Row: {
created_at: string | null
@@ -1894,6 +1999,36 @@ export type Database = {
}
Relationships: []
}
metric_time_series: {
Row: {
created_at: string
id: string
metadata: Json | null
metric_category: string
metric_name: string
metric_value: number
timestamp: string
}
Insert: {
created_at?: string
id?: string
metadata?: Json | null
metric_category: string
metric_name: string
metric_value: number
timestamp?: string
}
Update: {
created_at?: string
id?: string
metadata?: Json | null
metric_category?: string
metric_name?: string
metric_value?: number
timestamp?: string
}
Relationships: []
}
moderation_audit_log: {
Row: {
action: string
@@ -6270,6 +6405,28 @@ export type Database = {
}
Relationships: []
}
recent_anomalies_view: {
Row: {
alert_created: boolean | null
alert_id: string | null
alert_message: string | null
alert_resolved_at: string | null
anomaly_type: string | null
anomaly_value: number | null
baseline_value: number | null
confidence_score: number | null
detected_at: string | null
detection_algorithm: string | null
deviation_score: number | null
id: string | null
metric_category: string | null
metric_name: string | null
severity: string | null
time_window_end: string | null
time_window_start: string | null
}
Relationships: []
}
}
Functions: {
anonymize_user_submissions: {

View File

@@ -95,5 +95,6 @@ export const queryKeys = {
correlatedAlerts: () => ['monitoring', 'correlated-alerts'] as const,
incidents: (status?: string) => ['monitoring', 'incidents', status] as const,
incidentDetails: (incidentId: string) => ['monitoring', 'incident-details', incidentId] as const,
anomalyDetections: () => ['monitoring', 'anomaly-detections'] as const,
},
} as const;

View File

@@ -6,6 +6,7 @@ import { SystemHealthStatus } from '@/components/admin/SystemHealthStatus';
import { GroupedAlertsPanel } from '@/components/admin/GroupedAlertsPanel';
import { CorrelatedAlertsPanel } from '@/components/admin/CorrelatedAlertsPanel';
import { IncidentsPanel } from '@/components/admin/IncidentsPanel';
import { AnomalyDetectionPanel } from '@/components/admin/AnomalyDetectionPanel';
import { MonitoringQuickStats } from '@/components/admin/MonitoringQuickStats';
import { RecentActivityTimeline } from '@/components/admin/RecentActivityTimeline';
import { MonitoringNavCards } from '@/components/admin/MonitoringNavCards';
@@ -13,6 +14,7 @@ import { useSystemHealth } from '@/hooks/useSystemHealth';
import { useGroupedAlerts } from '@/hooks/admin/useGroupedAlerts';
import { useCorrelatedAlerts } from '@/hooks/admin/useCorrelatedAlerts';
import { useIncidents } from '@/hooks/admin/useIncidents';
import { useAnomalyDetections } from '@/hooks/admin/useAnomalyDetection';
import { useRecentActivity } from '@/hooks/admin/useRecentActivity';
import { useDatabaseHealth } from '@/hooks/admin/useDatabaseHealth';
import { useModerationHealth } from '@/hooks/admin/useModerationHealth';
@@ -30,6 +32,7 @@ export default function MonitoringOverview() {
const groupedAlerts = useGroupedAlerts({ includeResolved: false });
const correlatedAlerts = useCorrelatedAlerts();
const incidents = useIncidents('open');
const anomalies = useAnomalyDetections();
const recentActivity = useRecentActivity(3600000); // 1 hour
const dbHealth = useDatabaseHealth();
const moderationHealth = useModerationHealth();
@@ -40,6 +43,7 @@ export default function MonitoringOverview() {
groupedAlerts.isLoading ||
correlatedAlerts.isLoading ||
incidents.isLoading ||
anomalies.isLoading ||
recentActivity.isLoading ||
dbHealth.isLoading ||
moderationHealth.isLoading ||
@@ -74,6 +78,10 @@ export default function MonitoringOverview() {
queryKey: queryKeys.monitoring.incidents(),
refetchType: 'active'
});
await queryClient.invalidateQueries({
queryKey: queryKeys.monitoring.anomalyDetections(),
refetchType: 'active'
});
};
// Calculate error count for nav card (from recent activity)
@@ -136,6 +144,12 @@ export default function MonitoringOverview() {
isLoading={incidents.isLoading}
/>
{/* ML Anomaly Detection */}
<AnomalyDetectionPanel
anomalies={anomalies.data}
isLoading={anomalies.isLoading}
/>
{/* Quick Stats Grid */}
<MonitoringQuickStats
systemHealth={systemHealth.data ?? undefined}