Implement ML Anomaly Detection

Introduce statistical anomaly detection for metrics via edge function, hooks, and UI components. Adds detection algorithms (z-score, moving average, rate of change), anomaly storage, auto-alerts, and dashboard rendering of detected anomalies with run-once trigger and scheduling guidance.
This commit is contained in:
gpt-engineer-app[bot]
2025-11-11 02:07:49 +00:00
parent 7fba819fc7
commit be94b4252c
7 changed files with 887 additions and 0 deletions

View File

@@ -0,0 +1,169 @@
import { Card, CardContent, CardDescription, CardHeader, CardTitle } from '@/components/ui/card';
import { Button } from '@/components/ui/button';
import { Badge } from '@/components/ui/badge';
import { Brain, TrendingUp, TrendingDown, Activity, AlertTriangle, Play, Sparkles } from 'lucide-react';
import { formatDistanceToNow } from 'date-fns';
import type { AnomalyDetection } from '@/hooks/admin/useAnomalyDetection';
import { useRunAnomalyDetection } from '@/hooks/admin/useAnomalyDetection';
interface AnomalyDetectionPanelProps {
anomalies?: AnomalyDetection[];
isLoading: boolean;
}
const ANOMALY_TYPE_CONFIG = {
spike: { icon: TrendingUp, label: 'Spike', color: 'text-orange-500' },
drop: { icon: TrendingDown, label: 'Drop', color: 'text-blue-500' },
trend_change: { icon: Activity, label: 'Trend Change', color: 'text-purple-500' },
outlier: { icon: AlertTriangle, label: 'Outlier', color: 'text-yellow-500' },
pattern_break: { icon: Activity, label: 'Pattern Break', color: 'text-red-500' },
};
const SEVERITY_CONFIG = {
critical: { badge: 'destructive', label: 'Critical' },
high: { badge: 'default', label: 'High' },
medium: { badge: 'secondary', label: 'Medium' },
low: { badge: 'outline', label: 'Low' },
};
export function AnomalyDetectionPanel({ anomalies, isLoading }: AnomalyDetectionPanelProps) {
const runDetection = useRunAnomalyDetection();
const handleRunDetection = () => {
runDetection.mutate();
};
if (isLoading) {
return (
<Card>
<CardHeader>
<CardTitle className="flex items-center gap-2">
<Brain className="h-5 w-5" />
ML Anomaly Detection
</CardTitle>
<CardDescription>Loading anomaly data...</CardDescription>
</CardHeader>
<CardContent>
<div className="flex items-center justify-center py-8">
<div className="animate-spin rounded-full h-8 w-8 border-b-2 border-primary"></div>
</div>
</CardContent>
</Card>
);
}
const recentAnomalies = anomalies?.slice(0, 5) || [];
return (
<Card>
<CardHeader>
<CardTitle className="flex items-center justify-between">
<span className="flex items-center gap-2">
<Brain className="h-5 w-5" />
ML Anomaly Detection
</span>
<div className="flex items-center gap-2">
{anomalies && anomalies.length > 0 && (
<span className="text-sm font-normal text-muted-foreground">
{anomalies.length} detected (24h)
</span>
)}
<Button
variant="outline"
size="sm"
onClick={handleRunDetection}
disabled={runDetection.isPending}
>
<Play className="h-4 w-4 mr-1" />
Run Detection
</Button>
</div>
</CardTitle>
<CardDescription>
Statistical ML algorithms detecting unusual patterns in metrics
</CardDescription>
</CardHeader>
<CardContent className="space-y-3">
{recentAnomalies.length === 0 ? (
<div className="flex flex-col items-center justify-center py-8 text-muted-foreground">
<Sparkles className="h-12 w-12 mb-2 opacity-50" />
<p>No anomalies detected in last 24 hours</p>
<p className="text-sm">ML models are monitoring metrics continuously</p>
</div>
) : (
<>
{recentAnomalies.map((anomaly) => {
const typeConfig = ANOMALY_TYPE_CONFIG[anomaly.anomaly_type];
const severityConfig = SEVERITY_CONFIG[anomaly.severity];
const TypeIcon = typeConfig.icon;
return (
<div
key={anomaly.id}
className="border rounded-lg p-4 space-y-2 bg-card hover:bg-accent/5 transition-colors"
>
<div className="flex items-start justify-between gap-4">
<div className="flex items-start gap-3 flex-1">
<TypeIcon className={`h-5 w-5 mt-0.5 ${typeConfig.color}`} />
<div className="flex-1 min-w-0">
<div className="flex items-center gap-2 flex-wrap mb-1">
<Badge variant={severityConfig.badge as any} className="text-xs">
{severityConfig.label}
</Badge>
<span className="text-xs px-2 py-0.5 rounded bg-purple-500/10 text-purple-600">
{typeConfig.label}
</span>
<span className="text-xs px-2 py-0.5 rounded bg-muted text-muted-foreground">
{anomaly.metric_name.replace(/_/g, ' ')}
</span>
{anomaly.alert_created && (
<span className="text-xs px-2 py-0.5 rounded bg-green-500/10 text-green-600">
Alert Created
</span>
)}
</div>
<div className="text-sm space-y-1">
<div className="flex items-center gap-4 text-muted-foreground">
<span>
Baseline: <span className="font-medium text-foreground">{anomaly.baseline_value.toFixed(2)}</span>
</span>
<span></span>
<span>
Detected: <span className="font-medium text-foreground">{anomaly.anomaly_value.toFixed(2)}</span>
</span>
<span className="ml-2 px-2 py-0.5 rounded bg-orange-500/10 text-orange-600 text-xs font-medium">
{anomaly.deviation_score.toFixed(2)}σ
</span>
</div>
<div className="flex items-center gap-4 text-xs text-muted-foreground">
<span className="flex items-center gap-1">
<Brain className="h-3 w-3" />
Algorithm: {anomaly.detection_algorithm.replace(/_/g, ' ')}
</span>
<span>
Confidence: {(anomaly.confidence_score * 100).toFixed(0)}%
</span>
<span>
Detected {formatDistanceToNow(new Date(anomaly.detected_at), { addSuffix: true })}
</span>
</div>
</div>
</div>
</div>
</div>
</div>
);
})}
{anomalies && anomalies.length > 5 && (
<div className="text-center pt-2">
<span className="text-sm text-muted-foreground">
+ {anomalies.length - 5} more anomalies
</span>
</div>
)}
</>
)}
</CardContent>
</Card>
);
}