Implement ML Anomaly Detection

Introduce statistical anomaly detection for metrics via edge function, hooks, and UI components. Adds detection algorithms (z-score, moving average, rate of change), anomaly storage, auto-alerts, and dashboard rendering of detected anomalies with run-once trigger and scheduling guidance.
This commit is contained in:
gpt-engineer-app[bot]
2025-11-11 02:07:49 +00:00
parent 7fba819fc7
commit be94b4252c
7 changed files with 887 additions and 0 deletions

View File

@@ -0,0 +1,101 @@
import { useQuery, useMutation, useQueryClient } from '@tanstack/react-query';
import { supabase } from '@/lib/supabaseClient';
import { queryKeys } from '@/lib/queryKeys';
import { toast } from 'sonner';
export interface AnomalyDetection {
id: string;
metric_name: string;
metric_category: string;
anomaly_type: 'spike' | 'drop' | 'trend_change' | 'outlier' | 'pattern_break';
severity: 'critical' | 'high' | 'medium' | 'low';
baseline_value: number;
anomaly_value: number;
deviation_score: number;
confidence_score: number;
detection_algorithm: string;
time_window_start: string;
time_window_end: string;
detected_at: string;
alert_created: boolean;
alert_id?: string;
alert_message?: string;
alert_resolved_at?: string;
}
export function useAnomalyDetections() {
return useQuery({
queryKey: queryKeys.monitoring.anomalyDetections(),
queryFn: async () => {
const { data, error } = await supabase
.from('recent_anomalies_view')
.select('*')
.order('detected_at', { ascending: false })
.limit(50);
if (error) throw error;
return (data || []) as AnomalyDetection[];
},
staleTime: 30000,
refetchInterval: 60000,
});
}
export function useRunAnomalyDetection() {
const queryClient = useQueryClient();
return useMutation({
mutationFn: async () => {
const { data, error } = await supabase.functions.invoke('detect-anomalies', {
method: 'POST',
});
if (error) throw error;
return data;
},
onSuccess: (data) => {
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.anomalyDetections() });
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.groupedAlerts() });
if (data.anomalies_detected > 0) {
toast.success(`Detected ${data.anomalies_detected} anomalies`);
} else {
toast.info('No anomalies detected');
}
},
onError: (error) => {
console.error('Failed to run anomaly detection:', error);
toast.error('Failed to run anomaly detection');
},
});
}
export function useRecordMetric() {
return useMutation({
mutationFn: async ({
metricName,
metricCategory,
metricValue,
metadata,
}: {
metricName: string;
metricCategory: string;
metricValue: number;
metadata?: any;
}) => {
const { error } = await supabase
.from('metric_time_series')
.insert({
metric_name: metricName,
metric_category: metricCategory,
metric_value: metricValue,
metadata,
});
if (error) throw error;
},
onError: (error) => {
console.error('Failed to record metric:', error);
},
});
}