mirror of
https://github.com/pacnpal/thrilltrack-explorer.git
synced 2025-12-28 08:06:58 -05:00
Compare commits
4 Commits
5a8caa51b6
...
07fdfe34f3
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
07fdfe34f3 | ||
|
|
e2b0368a62 | ||
|
|
be94b4252c | ||
|
|
7fba819fc7 |
203
django/README_MONITORING.md
Normal file
203
django/README_MONITORING.md
Normal file
@@ -0,0 +1,203 @@
|
||||
# ThrillWiki Monitoring Setup
|
||||
|
||||
## Overview
|
||||
|
||||
This document describes the automatic metric collection system for anomaly detection and system monitoring.
|
||||
|
||||
## Architecture
|
||||
|
||||
The system collects metrics from two sources:
|
||||
|
||||
1. **Django Backend (Celery Tasks)**: Collects Django-specific metrics like error rates, response times, queue sizes
|
||||
2. **Supabase Edge Function**: Collects Supabase-specific metrics like API errors, rate limits, submission queues
|
||||
|
||||
## Components
|
||||
|
||||
### Django Components
|
||||
|
||||
#### 1. Metrics Collector (`apps/monitoring/metrics_collector.py`)
|
||||
- Collects system metrics from various sources
|
||||
- Records metrics to Supabase `metric_time_series` table
|
||||
- Provides utilities for tracking:
|
||||
- Error rates
|
||||
- API response times
|
||||
- Celery queue sizes
|
||||
- Database connection counts
|
||||
- Cache hit rates
|
||||
|
||||
#### 2. Celery Tasks (`apps/monitoring/tasks.py`)
|
||||
Periodic background tasks:
|
||||
- `collect_system_metrics`: Collects all metrics every minute
|
||||
- `collect_error_metrics`: Tracks error rates
|
||||
- `collect_performance_metrics`: Tracks response times and cache performance
|
||||
- `collect_queue_metrics`: Monitors Celery queue health
|
||||
|
||||
#### 3. Metrics Middleware (`apps/monitoring/middleware.py`)
|
||||
- Tracks API response times for every request
|
||||
- Records errors and exceptions
|
||||
- Updates cache with performance data
|
||||
|
||||
### Supabase Components
|
||||
|
||||
#### Edge Function (`supabase/functions/collect-metrics`)
|
||||
Collects Supabase-specific metrics:
|
||||
- API error counts
|
||||
- Rate limit violations
|
||||
- Pending submissions
|
||||
- Active incidents
|
||||
- Unresolved alerts
|
||||
- Submission approval rates
|
||||
- Average moderation times
|
||||
|
||||
## Setup Instructions
|
||||
|
||||
### 1. Django Setup
|
||||
|
||||
Add the monitoring app to your Django `INSTALLED_APPS`:
|
||||
|
||||
```python
|
||||
INSTALLED_APPS = [
|
||||
# ... other apps
|
||||
'apps.monitoring',
|
||||
]
|
||||
```
|
||||
|
||||
Add the metrics middleware to `MIDDLEWARE`:
|
||||
|
||||
```python
|
||||
MIDDLEWARE = [
|
||||
# ... other middleware
|
||||
'apps.monitoring.middleware.MetricsMiddleware',
|
||||
]
|
||||
```
|
||||
|
||||
Import and use the Celery Beat schedule in your Django settings:
|
||||
|
||||
```python
|
||||
from config.celery_beat_schedule import CELERY_BEAT_SCHEDULE
|
||||
|
||||
CELERY_BEAT_SCHEDULE = CELERY_BEAT_SCHEDULE
|
||||
```
|
||||
|
||||
Configure environment variables:
|
||||
|
||||
```bash
|
||||
SUPABASE_URL=https://api.thrillwiki.com
|
||||
SUPABASE_SERVICE_ROLE_KEY=your_service_role_key
|
||||
```
|
||||
|
||||
### 2. Start Celery Workers
|
||||
|
||||
Start Celery worker for processing tasks:
|
||||
|
||||
```bash
|
||||
celery -A config worker -l info -Q monitoring,maintenance,analytics
|
||||
```
|
||||
|
||||
Start Celery Beat for periodic task scheduling:
|
||||
|
||||
```bash
|
||||
celery -A config beat -l info
|
||||
```
|
||||
|
||||
### 3. Supabase Edge Function Setup
|
||||
|
||||
The `collect-metrics` edge function should be called periodically. Set up a cron job in Supabase:
|
||||
|
||||
```sql
|
||||
SELECT cron.schedule(
|
||||
'collect-metrics-every-minute',
|
||||
'* * * * *', -- Every minute
|
||||
$$
|
||||
SELECT net.http_post(
|
||||
url:='https://api.thrillwiki.com/functions/v1/collect-metrics',
|
||||
headers:='{"Content-Type": "application/json", "Authorization": "Bearer YOUR_ANON_KEY"}'::jsonb,
|
||||
body:=concat('{"time": "', now(), '"}')::jsonb
|
||||
) as request_id;
|
||||
$$
|
||||
);
|
||||
```
|
||||
|
||||
### 4. Anomaly Detection Setup
|
||||
|
||||
The `detect-anomalies` edge function should also run periodically:
|
||||
|
||||
```sql
|
||||
SELECT cron.schedule(
|
||||
'detect-anomalies-every-5-minutes',
|
||||
'*/5 * * * *', -- Every 5 minutes
|
||||
$$
|
||||
SELECT net.http_post(
|
||||
url:='https://api.thrillwiki.com/functions/v1/detect-anomalies',
|
||||
headers:='{"Content-Type": "application/json", "Authorization": "Bearer YOUR_ANON_KEY"}'::jsonb,
|
||||
body:=concat('{"time": "', now(), '"}')::jsonb
|
||||
) as request_id;
|
||||
$$
|
||||
);
|
||||
```
|
||||
|
||||
## Metrics Collected
|
||||
|
||||
### Django Metrics
|
||||
- `error_rate`: Percentage of error logs (performance)
|
||||
- `api_response_time`: Average API response time in ms (performance)
|
||||
- `celery_queue_size`: Number of queued Celery tasks (system)
|
||||
- `database_connections`: Active database connections (system)
|
||||
- `cache_hit_rate`: Cache hit percentage (performance)
|
||||
|
||||
### Supabase Metrics
|
||||
- `api_error_count`: Recent API errors (performance)
|
||||
- `rate_limit_violations`: Rate limit blocks (security)
|
||||
- `pending_submissions`: Submissions awaiting moderation (workflow)
|
||||
- `active_incidents`: Open/investigating incidents (monitoring)
|
||||
- `unresolved_alerts`: Unresolved system alerts (monitoring)
|
||||
- `submission_approval_rate`: Percentage of approved submissions (workflow)
|
||||
- `avg_moderation_time`: Average time to moderate in minutes (workflow)
|
||||
|
||||
## Monitoring
|
||||
|
||||
View collected metrics in the Admin Monitoring Dashboard:
|
||||
- Navigate to `/admin/monitoring`
|
||||
- View anomaly detections, alerts, and incidents
|
||||
- Manually trigger metric collection or anomaly detection
|
||||
- View real-time system health
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### No metrics being collected
|
||||
|
||||
1. Check Celery workers are running:
|
||||
```bash
|
||||
celery -A config inspect active
|
||||
```
|
||||
|
||||
2. Check Celery Beat is running:
|
||||
```bash
|
||||
celery -A config inspect scheduled
|
||||
```
|
||||
|
||||
3. Verify environment variables are set
|
||||
|
||||
4. Check logs for errors:
|
||||
```bash
|
||||
tail -f logs/celery.log
|
||||
```
|
||||
|
||||
### Edge function not collecting metrics
|
||||
|
||||
1. Verify cron job is scheduled in Supabase
|
||||
2. Check edge function logs in Supabase dashboard
|
||||
3. Verify service role key is correct
|
||||
4. Test edge function manually
|
||||
|
||||
## Production Considerations
|
||||
|
||||
1. **Resource Usage**: Collecting metrics every minute generates significant database writes. Consider adjusting frequency for production.
|
||||
|
||||
2. **Data Retention**: Set up periodic cleanup of old metrics (older than 30 days) to manage database size.
|
||||
|
||||
3. **Alert Fatigue**: Fine-tune anomaly detection sensitivity to reduce false positives.
|
||||
|
||||
4. **Scaling**: As traffic grows, consider moving to a time-series database like TimescaleDB or InfluxDB.
|
||||
|
||||
5. **Monitoring the Monitors**: Set up external health checks to ensure metric collection is working.
|
||||
4
django/apps/monitoring/__init__.py
Normal file
4
django/apps/monitoring/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
"""
|
||||
Monitoring app for collecting and recording system metrics.
|
||||
"""
|
||||
default_app_config = 'apps.monitoring.apps.MonitoringConfig'
|
||||
10
django/apps/monitoring/apps.py
Normal file
10
django/apps/monitoring/apps.py
Normal file
@@ -0,0 +1,10 @@
|
||||
"""
|
||||
Monitoring app configuration.
|
||||
"""
|
||||
from django.apps import AppConfig
|
||||
|
||||
|
||||
class MonitoringConfig(AppConfig):
|
||||
default_auto_field = 'django.db.models.BigAutoField'
|
||||
name = 'apps.monitoring'
|
||||
verbose_name = 'System Monitoring'
|
||||
188
django/apps/monitoring/metrics_collector.py
Normal file
188
django/apps/monitoring/metrics_collector.py
Normal file
@@ -0,0 +1,188 @@
|
||||
"""
|
||||
Metrics collection utilities for system monitoring.
|
||||
"""
|
||||
import time
|
||||
import logging
|
||||
from typing import Dict, Any, List
|
||||
from datetime import datetime, timedelta
|
||||
from django.db import connection
|
||||
from django.core.cache import cache
|
||||
from celery import current_app as celery_app
|
||||
import os
|
||||
import requests
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
SUPABASE_URL = os.environ.get('SUPABASE_URL', 'https://api.thrillwiki.com')
|
||||
SUPABASE_SERVICE_KEY = os.environ.get('SUPABASE_SERVICE_ROLE_KEY')
|
||||
|
||||
|
||||
class MetricsCollector:
|
||||
"""Collects various system metrics for anomaly detection."""
|
||||
|
||||
@staticmethod
|
||||
def get_error_rate() -> float:
|
||||
"""
|
||||
Calculate error rate from recent logs.
|
||||
Returns percentage of error logs in the last minute.
|
||||
"""
|
||||
cache_key = 'metrics:error_rate'
|
||||
cached_value = cache.get(cache_key)
|
||||
|
||||
if cached_value is not None:
|
||||
return cached_value
|
||||
|
||||
# In production, query actual error logs
|
||||
# For now, return a mock value
|
||||
error_rate = 0.0
|
||||
cache.set(cache_key, error_rate, 60)
|
||||
return error_rate
|
||||
|
||||
@staticmethod
|
||||
def get_api_response_time() -> float:
|
||||
"""
|
||||
Get average API response time in milliseconds.
|
||||
Returns average response time from recent requests.
|
||||
"""
|
||||
cache_key = 'metrics:avg_response_time'
|
||||
cached_value = cache.get(cache_key)
|
||||
|
||||
if cached_value is not None:
|
||||
return cached_value
|
||||
|
||||
# In production, calculate from middleware metrics
|
||||
# For now, return a mock value
|
||||
response_time = 150.0 # milliseconds
|
||||
cache.set(cache_key, response_time, 60)
|
||||
return response_time
|
||||
|
||||
@staticmethod
|
||||
def get_celery_queue_size() -> int:
|
||||
"""
|
||||
Get current Celery queue size across all queues.
|
||||
"""
|
||||
try:
|
||||
inspect = celery_app.control.inspect()
|
||||
active_tasks = inspect.active() or {}
|
||||
scheduled_tasks = inspect.scheduled() or {}
|
||||
|
||||
total_active = sum(len(tasks) for tasks in active_tasks.values())
|
||||
total_scheduled = sum(len(tasks) for tasks in scheduled_tasks.values())
|
||||
|
||||
return total_active + total_scheduled
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting Celery queue size: {e}")
|
||||
return 0
|
||||
|
||||
@staticmethod
|
||||
def get_database_connection_count() -> int:
|
||||
"""
|
||||
Get current number of active database connections.
|
||||
"""
|
||||
try:
|
||||
with connection.cursor() as cursor:
|
||||
cursor.execute("SELECT count(*) FROM pg_stat_activity WHERE state = 'active';")
|
||||
count = cursor.fetchone()[0]
|
||||
return count
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting database connection count: {e}")
|
||||
return 0
|
||||
|
||||
@staticmethod
|
||||
def get_cache_hit_rate() -> float:
|
||||
"""
|
||||
Calculate cache hit rate percentage.
|
||||
"""
|
||||
cache_key_hits = 'metrics:cache_hits'
|
||||
cache_key_misses = 'metrics:cache_misses'
|
||||
|
||||
hits = cache.get(cache_key_hits, 0)
|
||||
misses = cache.get(cache_key_misses, 0)
|
||||
|
||||
total = hits + misses
|
||||
if total == 0:
|
||||
return 100.0
|
||||
|
||||
return (hits / total) * 100
|
||||
|
||||
@staticmethod
|
||||
def record_metric(metric_name: str, metric_value: float, metric_category: str = 'system') -> bool:
|
||||
"""
|
||||
Record a metric to Supabase metric_time_series table.
|
||||
"""
|
||||
if not SUPABASE_SERVICE_KEY:
|
||||
logger.warning("SUPABASE_SERVICE_ROLE_KEY not configured, skipping metric recording")
|
||||
return False
|
||||
|
||||
try:
|
||||
headers = {
|
||||
'apikey': SUPABASE_SERVICE_KEY,
|
||||
'Authorization': f'Bearer {SUPABASE_SERVICE_KEY}',
|
||||
'Content-Type': 'application/json',
|
||||
}
|
||||
|
||||
data = {
|
||||
'metric_name': metric_name,
|
||||
'metric_value': metric_value,
|
||||
'metric_category': metric_category,
|
||||
'timestamp': datetime.utcnow().isoformat(),
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
f'{SUPABASE_URL}/rest/v1/metric_time_series',
|
||||
headers=headers,
|
||||
json=data,
|
||||
timeout=5
|
||||
)
|
||||
|
||||
if response.status_code in [200, 201]:
|
||||
logger.info(f"Recorded metric: {metric_name} = {metric_value}")
|
||||
return True
|
||||
else:
|
||||
logger.error(f"Failed to record metric: {response.status_code} - {response.text}")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error recording metric {metric_name}: {e}")
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def collect_all_metrics() -> Dict[str, Any]:
|
||||
"""
|
||||
Collect all system metrics and record them.
|
||||
Returns a summary of collected metrics.
|
||||
"""
|
||||
metrics = {}
|
||||
|
||||
try:
|
||||
# Collect error rate
|
||||
error_rate = MetricsCollector.get_error_rate()
|
||||
metrics['error_rate'] = error_rate
|
||||
MetricsCollector.record_metric('error_rate', error_rate, 'performance')
|
||||
|
||||
# Collect API response time
|
||||
response_time = MetricsCollector.get_api_response_time()
|
||||
metrics['api_response_time'] = response_time
|
||||
MetricsCollector.record_metric('api_response_time', response_time, 'performance')
|
||||
|
||||
# Collect queue size
|
||||
queue_size = MetricsCollector.get_celery_queue_size()
|
||||
metrics['celery_queue_size'] = queue_size
|
||||
MetricsCollector.record_metric('celery_queue_size', queue_size, 'system')
|
||||
|
||||
# Collect database connections
|
||||
db_connections = MetricsCollector.get_database_connection_count()
|
||||
metrics['database_connections'] = db_connections
|
||||
MetricsCollector.record_metric('database_connections', db_connections, 'system')
|
||||
|
||||
# Collect cache hit rate
|
||||
cache_hit_rate = MetricsCollector.get_cache_hit_rate()
|
||||
metrics['cache_hit_rate'] = cache_hit_rate
|
||||
MetricsCollector.record_metric('cache_hit_rate', cache_hit_rate, 'performance')
|
||||
|
||||
logger.info(f"Successfully collected {len(metrics)} metrics")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error collecting metrics: {e}", exc_info=True)
|
||||
|
||||
return metrics
|
||||
52
django/apps/monitoring/middleware.py
Normal file
52
django/apps/monitoring/middleware.py
Normal file
@@ -0,0 +1,52 @@
|
||||
"""
|
||||
Middleware for tracking API response times and error rates.
|
||||
"""
|
||||
import time
|
||||
import logging
|
||||
from django.core.cache import cache
|
||||
from django.utils.deprecation import MiddlewareMixin
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MetricsMiddleware(MiddlewareMixin):
|
||||
"""
|
||||
Middleware to track API response times and error rates.
|
||||
Stores metrics in cache for periodic collection.
|
||||
"""
|
||||
|
||||
def process_request(self, request):
|
||||
"""Record request start time."""
|
||||
request._metrics_start_time = time.time()
|
||||
return None
|
||||
|
||||
def process_response(self, request, response):
|
||||
"""Record response time and update metrics."""
|
||||
if hasattr(request, '_metrics_start_time'):
|
||||
response_time = (time.time() - request._metrics_start_time) * 1000 # Convert to ms
|
||||
|
||||
# Store response time in cache for aggregation
|
||||
cache_key = 'metrics:response_times'
|
||||
response_times = cache.get(cache_key, [])
|
||||
response_times.append(response_time)
|
||||
|
||||
# Keep only last 100 response times
|
||||
if len(response_times) > 100:
|
||||
response_times = response_times[-100:]
|
||||
|
||||
cache.set(cache_key, response_times, 300) # 5 minute TTL
|
||||
|
||||
# Track cache hits/misses
|
||||
if response.status_code == 200:
|
||||
cache.incr('metrics:cache_hits', 1)
|
||||
|
||||
return response
|
||||
|
||||
def process_exception(self, request, exception):
|
||||
"""Track exceptions and error rates."""
|
||||
logger.error(f"Exception in request: {exception}", exc_info=True)
|
||||
|
||||
# Increment error counter
|
||||
cache.incr('metrics:cache_misses', 1)
|
||||
|
||||
return None
|
||||
82
django/apps/monitoring/tasks.py
Normal file
82
django/apps/monitoring/tasks.py
Normal file
@@ -0,0 +1,82 @@
|
||||
"""
|
||||
Celery tasks for periodic metric collection.
|
||||
"""
|
||||
import logging
|
||||
from celery import shared_task
|
||||
from .metrics_collector import MetricsCollector
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@shared_task(bind=True, name='monitoring.collect_system_metrics')
|
||||
def collect_system_metrics(self):
|
||||
"""
|
||||
Periodic task to collect all system metrics.
|
||||
Runs every minute to gather current system state.
|
||||
"""
|
||||
logger.info("Starting system metrics collection")
|
||||
|
||||
try:
|
||||
metrics = MetricsCollector.collect_all_metrics()
|
||||
logger.info(f"Collected metrics: {metrics}")
|
||||
return {
|
||||
'success': True,
|
||||
'metrics_collected': len(metrics),
|
||||
'metrics': metrics
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"Error in collect_system_metrics task: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
|
||||
@shared_task(bind=True, name='monitoring.collect_error_metrics')
|
||||
def collect_error_metrics(self):
|
||||
"""
|
||||
Collect error-specific metrics.
|
||||
Runs every minute to track error rates.
|
||||
"""
|
||||
try:
|
||||
error_rate = MetricsCollector.get_error_rate()
|
||||
MetricsCollector.record_metric('error_rate', error_rate, 'performance')
|
||||
return {'success': True, 'error_rate': error_rate}
|
||||
except Exception as e:
|
||||
logger.error(f"Error in collect_error_metrics task: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
|
||||
@shared_task(bind=True, name='monitoring.collect_performance_metrics')
|
||||
def collect_performance_metrics(self):
|
||||
"""
|
||||
Collect performance metrics (response times, cache hit rates).
|
||||
Runs every minute.
|
||||
"""
|
||||
try:
|
||||
metrics = {}
|
||||
|
||||
response_time = MetricsCollector.get_api_response_time()
|
||||
MetricsCollector.record_metric('api_response_time', response_time, 'performance')
|
||||
metrics['api_response_time'] = response_time
|
||||
|
||||
cache_hit_rate = MetricsCollector.get_cache_hit_rate()
|
||||
MetricsCollector.record_metric('cache_hit_rate', cache_hit_rate, 'performance')
|
||||
metrics['cache_hit_rate'] = cache_hit_rate
|
||||
|
||||
return {'success': True, 'metrics': metrics}
|
||||
except Exception as e:
|
||||
logger.error(f"Error in collect_performance_metrics task: {e}", exc_info=True)
|
||||
raise
|
||||
|
||||
|
||||
@shared_task(bind=True, name='monitoring.collect_queue_metrics')
|
||||
def collect_queue_metrics(self):
|
||||
"""
|
||||
Collect Celery queue metrics.
|
||||
Runs every minute to monitor queue health.
|
||||
"""
|
||||
try:
|
||||
queue_size = MetricsCollector.get_celery_queue_size()
|
||||
MetricsCollector.record_metric('celery_queue_size', queue_size, 'system')
|
||||
return {'success': True, 'queue_size': queue_size}
|
||||
except Exception as e:
|
||||
logger.error(f"Error in collect_queue_metrics task: {e}", exc_info=True)
|
||||
raise
|
||||
54
django/config/celery_beat_schedule.py
Normal file
54
django/config/celery_beat_schedule.py
Normal file
@@ -0,0 +1,54 @@
|
||||
"""
|
||||
Celery Beat schedule configuration for periodic tasks.
|
||||
Import this in your Django settings.
|
||||
"""
|
||||
from celery.schedules import crontab
|
||||
|
||||
CELERY_BEAT_SCHEDULE = {
|
||||
# Collect all system metrics every minute
|
||||
'collect-system-metrics': {
|
||||
'task': 'monitoring.collect_system_metrics',
|
||||
'schedule': 60.0, # Every 60 seconds
|
||||
'options': {'queue': 'monitoring'}
|
||||
},
|
||||
|
||||
# Collect error metrics every minute
|
||||
'collect-error-metrics': {
|
||||
'task': 'monitoring.collect_error_metrics',
|
||||
'schedule': 60.0,
|
||||
'options': {'queue': 'monitoring'}
|
||||
},
|
||||
|
||||
# Collect performance metrics every minute
|
||||
'collect-performance-metrics': {
|
||||
'task': 'monitoring.collect_performance_metrics',
|
||||
'schedule': 60.0,
|
||||
'options': {'queue': 'monitoring'}
|
||||
},
|
||||
|
||||
# Collect queue metrics every 30 seconds
|
||||
'collect-queue-metrics': {
|
||||
'task': 'monitoring.collect_queue_metrics',
|
||||
'schedule': 30.0,
|
||||
'options': {'queue': 'monitoring'}
|
||||
},
|
||||
|
||||
# Existing user tasks
|
||||
'cleanup-expired-tokens': {
|
||||
'task': 'users.cleanup_expired_tokens',
|
||||
'schedule': crontab(hour='*/6', minute=0), # Every 6 hours
|
||||
'options': {'queue': 'maintenance'}
|
||||
},
|
||||
|
||||
'cleanup-inactive-users': {
|
||||
'task': 'users.cleanup_inactive_users',
|
||||
'schedule': crontab(hour=2, minute=0, day_of_week=1), # Weekly on Monday at 2 AM
|
||||
'options': {'queue': 'maintenance'}
|
||||
},
|
||||
|
||||
'update-user-statistics': {
|
||||
'task': 'users.update_user_statistics',
|
||||
'schedule': crontab(hour='*', minute=0), # Every hour
|
||||
'options': {'queue': 'analytics'}
|
||||
},
|
||||
}
|
||||
169
src/components/admin/AnomalyDetectionPanel.tsx
Normal file
169
src/components/admin/AnomalyDetectionPanel.tsx
Normal file
@@ -0,0 +1,169 @@
|
||||
import { Card, CardContent, CardDescription, CardHeader, CardTitle } from '@/components/ui/card';
|
||||
import { Button } from '@/components/ui/button';
|
||||
import { Badge } from '@/components/ui/badge';
|
||||
import { Brain, TrendingUp, TrendingDown, Activity, AlertTriangle, Play, Sparkles } from 'lucide-react';
|
||||
import { formatDistanceToNow } from 'date-fns';
|
||||
import type { AnomalyDetection } from '@/hooks/admin/useAnomalyDetection';
|
||||
import { useRunAnomalyDetection } from '@/hooks/admin/useAnomalyDetection';
|
||||
|
||||
interface AnomalyDetectionPanelProps {
|
||||
anomalies?: AnomalyDetection[];
|
||||
isLoading: boolean;
|
||||
}
|
||||
|
||||
const ANOMALY_TYPE_CONFIG = {
|
||||
spike: { icon: TrendingUp, label: 'Spike', color: 'text-orange-500' },
|
||||
drop: { icon: TrendingDown, label: 'Drop', color: 'text-blue-500' },
|
||||
trend_change: { icon: Activity, label: 'Trend Change', color: 'text-purple-500' },
|
||||
outlier: { icon: AlertTriangle, label: 'Outlier', color: 'text-yellow-500' },
|
||||
pattern_break: { icon: Activity, label: 'Pattern Break', color: 'text-red-500' },
|
||||
};
|
||||
|
||||
const SEVERITY_CONFIG = {
|
||||
critical: { badge: 'destructive', label: 'Critical' },
|
||||
high: { badge: 'default', label: 'High' },
|
||||
medium: { badge: 'secondary', label: 'Medium' },
|
||||
low: { badge: 'outline', label: 'Low' },
|
||||
};
|
||||
|
||||
export function AnomalyDetectionPanel({ anomalies, isLoading }: AnomalyDetectionPanelProps) {
|
||||
const runDetection = useRunAnomalyDetection();
|
||||
|
||||
const handleRunDetection = () => {
|
||||
runDetection.mutate();
|
||||
};
|
||||
|
||||
if (isLoading) {
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle className="flex items-center gap-2">
|
||||
<Brain className="h-5 w-5" />
|
||||
ML Anomaly Detection
|
||||
</CardTitle>
|
||||
<CardDescription>Loading anomaly data...</CardDescription>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
<div className="flex items-center justify-center py-8">
|
||||
<div className="animate-spin rounded-full h-8 w-8 border-b-2 border-primary"></div>
|
||||
</div>
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
|
||||
const recentAnomalies = anomalies?.slice(0, 5) || [];
|
||||
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle className="flex items-center justify-between">
|
||||
<span className="flex items-center gap-2">
|
||||
<Brain className="h-5 w-5" />
|
||||
ML Anomaly Detection
|
||||
</span>
|
||||
<div className="flex items-center gap-2">
|
||||
{anomalies && anomalies.length > 0 && (
|
||||
<span className="text-sm font-normal text-muted-foreground">
|
||||
{anomalies.length} detected (24h)
|
||||
</span>
|
||||
)}
|
||||
<Button
|
||||
variant="outline"
|
||||
size="sm"
|
||||
onClick={handleRunDetection}
|
||||
disabled={runDetection.isPending}
|
||||
>
|
||||
<Play className="h-4 w-4 mr-1" />
|
||||
Run Detection
|
||||
</Button>
|
||||
</div>
|
||||
</CardTitle>
|
||||
<CardDescription>
|
||||
Statistical ML algorithms detecting unusual patterns in metrics
|
||||
</CardDescription>
|
||||
</CardHeader>
|
||||
<CardContent className="space-y-3">
|
||||
{recentAnomalies.length === 0 ? (
|
||||
<div className="flex flex-col items-center justify-center py-8 text-muted-foreground">
|
||||
<Sparkles className="h-12 w-12 mb-2 opacity-50" />
|
||||
<p>No anomalies detected in last 24 hours</p>
|
||||
<p className="text-sm">ML models are monitoring metrics continuously</p>
|
||||
</div>
|
||||
) : (
|
||||
<>
|
||||
{recentAnomalies.map((anomaly) => {
|
||||
const typeConfig = ANOMALY_TYPE_CONFIG[anomaly.anomaly_type];
|
||||
const severityConfig = SEVERITY_CONFIG[anomaly.severity];
|
||||
const TypeIcon = typeConfig.icon;
|
||||
|
||||
return (
|
||||
<div
|
||||
key={anomaly.id}
|
||||
className="border rounded-lg p-4 space-y-2 bg-card hover:bg-accent/5 transition-colors"
|
||||
>
|
||||
<div className="flex items-start justify-between gap-4">
|
||||
<div className="flex items-start gap-3 flex-1">
|
||||
<TypeIcon className={`h-5 w-5 mt-0.5 ${typeConfig.color}`} />
|
||||
<div className="flex-1 min-w-0">
|
||||
<div className="flex items-center gap-2 flex-wrap mb-1">
|
||||
<Badge variant={severityConfig.badge as any} className="text-xs">
|
||||
{severityConfig.label}
|
||||
</Badge>
|
||||
<span className="text-xs px-2 py-0.5 rounded bg-purple-500/10 text-purple-600">
|
||||
{typeConfig.label}
|
||||
</span>
|
||||
<span className="text-xs px-2 py-0.5 rounded bg-muted text-muted-foreground">
|
||||
{anomaly.metric_name.replace(/_/g, ' ')}
|
||||
</span>
|
||||
{anomaly.alert_created && (
|
||||
<span className="text-xs px-2 py-0.5 rounded bg-green-500/10 text-green-600">
|
||||
Alert Created
|
||||
</span>
|
||||
)}
|
||||
</div>
|
||||
<div className="text-sm space-y-1">
|
||||
<div className="flex items-center gap-4 text-muted-foreground">
|
||||
<span>
|
||||
Baseline: <span className="font-medium text-foreground">{anomaly.baseline_value.toFixed(2)}</span>
|
||||
</span>
|
||||
<span>→</span>
|
||||
<span>
|
||||
Detected: <span className="font-medium text-foreground">{anomaly.anomaly_value.toFixed(2)}</span>
|
||||
</span>
|
||||
<span className="ml-2 px-2 py-0.5 rounded bg-orange-500/10 text-orange-600 text-xs font-medium">
|
||||
{anomaly.deviation_score.toFixed(2)}σ
|
||||
</span>
|
||||
</div>
|
||||
<div className="flex items-center gap-4 text-xs text-muted-foreground">
|
||||
<span className="flex items-center gap-1">
|
||||
<Brain className="h-3 w-3" />
|
||||
Algorithm: {anomaly.detection_algorithm.replace(/_/g, ' ')}
|
||||
</span>
|
||||
<span>
|
||||
Confidence: {(anomaly.confidence_score * 100).toFixed(0)}%
|
||||
</span>
|
||||
<span>
|
||||
Detected {formatDistanceToNow(new Date(anomaly.detected_at), { addSuffix: true })}
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
})}
|
||||
{anomalies && anomalies.length > 5 && (
|
||||
<div className="text-center pt-2">
|
||||
<span className="text-sm text-muted-foreground">
|
||||
+ {anomalies.length - 5} more anomalies
|
||||
</span>
|
||||
</div>
|
||||
)}
|
||||
</>
|
||||
)}
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
175
src/components/admin/CorrelatedAlertsPanel.tsx
Normal file
175
src/components/admin/CorrelatedAlertsPanel.tsx
Normal file
@@ -0,0 +1,175 @@
|
||||
import { Card, CardContent, CardDescription, CardHeader, CardTitle } from '@/components/ui/card';
|
||||
import { Button } from '@/components/ui/button';
|
||||
import { AlertTriangle, AlertCircle, Link2, Clock, Sparkles } from 'lucide-react';
|
||||
import { formatDistanceToNow } from 'date-fns';
|
||||
import type { CorrelatedAlert } from '@/hooks/admin/useCorrelatedAlerts';
|
||||
import { useCreateIncident } from '@/hooks/admin/useIncidents';
|
||||
|
||||
interface CorrelatedAlertsPanelProps {
|
||||
correlations?: CorrelatedAlert[];
|
||||
isLoading: boolean;
|
||||
}
|
||||
|
||||
const SEVERITY_CONFIG = {
|
||||
critical: { color: 'text-destructive', icon: AlertCircle, badge: 'bg-destructive/10 text-destructive' },
|
||||
high: { color: 'text-orange-500', icon: AlertTriangle, badge: 'bg-orange-500/10 text-orange-500' },
|
||||
medium: { color: 'text-yellow-500', icon: AlertTriangle, badge: 'bg-yellow-500/10 text-yellow-500' },
|
||||
low: { color: 'text-blue-500', icon: AlertTriangle, badge: 'bg-blue-500/10 text-blue-500' },
|
||||
};
|
||||
|
||||
export function CorrelatedAlertsPanel({ correlations, isLoading }: CorrelatedAlertsPanelProps) {
|
||||
const createIncident = useCreateIncident();
|
||||
|
||||
const handleCreateIncident = (correlation: CorrelatedAlert) => {
|
||||
createIncident.mutate({
|
||||
ruleId: correlation.rule_id,
|
||||
title: correlation.incident_title_template,
|
||||
description: correlation.rule_description,
|
||||
severity: correlation.incident_severity,
|
||||
alertIds: correlation.alert_ids,
|
||||
alertSources: correlation.alert_sources as ('system' | 'rate_limit')[],
|
||||
});
|
||||
};
|
||||
|
||||
if (isLoading) {
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle className="flex items-center gap-2">
|
||||
<Link2 className="h-5 w-5" />
|
||||
Correlated Alerts
|
||||
</CardTitle>
|
||||
<CardDescription>Loading correlation patterns...</CardDescription>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
<div className="flex items-center justify-center py-8">
|
||||
<div className="animate-spin rounded-full h-8 w-8 border-b-2 border-primary"></div>
|
||||
</div>
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
|
||||
if (!correlations || correlations.length === 0) {
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle className="flex items-center gap-2">
|
||||
<Link2 className="h-5 w-5" />
|
||||
Correlated Alerts
|
||||
</CardTitle>
|
||||
<CardDescription>No correlated alert patterns detected</CardDescription>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
<div className="flex flex-col items-center justify-center py-8 text-muted-foreground">
|
||||
<Sparkles className="h-12 w-12 mb-2 opacity-50" />
|
||||
<p>Alert correlation engine is active</p>
|
||||
<p className="text-sm">Incidents will be auto-detected when patterns match</p>
|
||||
</div>
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle className="flex items-center justify-between">
|
||||
<span className="flex items-center gap-2">
|
||||
<Link2 className="h-5 w-5" />
|
||||
Correlated Alerts
|
||||
</span>
|
||||
<span className="text-sm font-normal text-muted-foreground">
|
||||
{correlations.length} {correlations.length === 1 ? 'pattern' : 'patterns'} detected
|
||||
</span>
|
||||
</CardTitle>
|
||||
<CardDescription>
|
||||
Multiple related alerts indicating potential incidents
|
||||
</CardDescription>
|
||||
</CardHeader>
|
||||
<CardContent className="space-y-3">
|
||||
{correlations.map((correlation) => {
|
||||
const config = SEVERITY_CONFIG[correlation.incident_severity];
|
||||
const Icon = config.icon;
|
||||
|
||||
return (
|
||||
<div
|
||||
key={correlation.rule_id}
|
||||
className="border rounded-lg p-4 space-y-3 bg-card hover:bg-accent/5 transition-colors"
|
||||
>
|
||||
<div className="flex items-start justify-between gap-4">
|
||||
<div className="flex items-start gap-3 flex-1">
|
||||
<Icon className={`h-5 w-5 mt-0.5 ${config.color}`} />
|
||||
<div className="flex-1 min-w-0">
|
||||
<div className="flex items-center gap-2 flex-wrap mb-1">
|
||||
<span className={`text-xs font-medium px-2 py-0.5 rounded ${config.badge}`}>
|
||||
{config.badge.split(' ')[1].split('-')[0].toUpperCase()}
|
||||
</span>
|
||||
<span className="flex items-center gap-1 text-xs px-2 py-0.5 rounded bg-purple-500/10 text-purple-600">
|
||||
<Link2 className="h-3 w-3" />
|
||||
Correlated
|
||||
</span>
|
||||
<span className="text-xs font-semibold px-2 py-0.5 rounded bg-primary/10 text-primary">
|
||||
{correlation.matching_alerts_count} alerts
|
||||
</span>
|
||||
</div>
|
||||
<p className="text-sm font-medium mb-1">
|
||||
{correlation.rule_name}
|
||||
</p>
|
||||
<p className="text-sm text-muted-foreground">
|
||||
{correlation.rule_description}
|
||||
</p>
|
||||
<div className="flex items-center gap-4 mt-2 text-xs text-muted-foreground">
|
||||
<span className="flex items-center gap-1">
|
||||
<Clock className="h-3 w-3" />
|
||||
Window: {correlation.time_window_minutes}m
|
||||
</span>
|
||||
<span className="flex items-center gap-1">
|
||||
<Clock className="h-3 w-3" />
|
||||
First: {formatDistanceToNow(new Date(correlation.first_alert_at), { addSuffix: true })}
|
||||
</span>
|
||||
<span className="flex items-center gap-1">
|
||||
<Clock className="h-3 w-3" />
|
||||
Last: {formatDistanceToNow(new Date(correlation.last_alert_at), { addSuffix: true })}
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div className="flex items-center gap-2">
|
||||
{correlation.can_create_incident ? (
|
||||
<Button
|
||||
variant="default"
|
||||
size="sm"
|
||||
onClick={() => handleCreateIncident(correlation)}
|
||||
disabled={createIncident.isPending}
|
||||
>
|
||||
<Sparkles className="h-4 w-4 mr-1" />
|
||||
Create Incident
|
||||
</Button>
|
||||
) : (
|
||||
<span className="text-xs text-muted-foreground px-3 py-1.5 bg-muted rounded">
|
||||
Incident exists
|
||||
</span>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{correlation.alert_messages.length > 0 && (
|
||||
<div className="pt-3 border-t">
|
||||
<p className="text-xs font-medium text-muted-foreground mb-2">Sample alerts:</p>
|
||||
<div className="space-y-1">
|
||||
{correlation.alert_messages.slice(0, 3).map((message, idx) => (
|
||||
<div key={idx} className="text-xs p-2 rounded bg-muted/50 truncate">
|
||||
{message}
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
})}
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
218
src/components/admin/IncidentsPanel.tsx
Normal file
218
src/components/admin/IncidentsPanel.tsx
Normal file
@@ -0,0 +1,218 @@
|
||||
import { Card, CardContent, CardDescription, CardHeader, CardTitle } from '@/components/ui/card';
|
||||
import { Button } from '@/components/ui/button';
|
||||
import { Badge } from '@/components/ui/badge';
|
||||
import { AlertCircle, AlertTriangle, CheckCircle2, Clock, Eye } from 'lucide-react';
|
||||
import { formatDistanceToNow } from 'date-fns';
|
||||
import type { Incident } from '@/hooks/admin/useIncidents';
|
||||
import { useAcknowledgeIncident, useResolveIncident } from '@/hooks/admin/useIncidents';
|
||||
import {
|
||||
Dialog,
|
||||
DialogContent,
|
||||
DialogDescription,
|
||||
DialogFooter,
|
||||
DialogHeader,
|
||||
DialogTitle,
|
||||
DialogTrigger,
|
||||
} from '@/components/ui/dialog';
|
||||
import { Textarea } from '@/components/ui/textarea';
|
||||
import { Label } from '@/components/ui/label';
|
||||
import { useState } from 'react';
|
||||
|
||||
interface IncidentsPanelProps {
|
||||
incidents?: Incident[];
|
||||
isLoading: boolean;
|
||||
}
|
||||
|
||||
const SEVERITY_CONFIG = {
|
||||
critical: { color: 'text-destructive', icon: AlertCircle, badge: 'destructive' },
|
||||
high: { color: 'text-orange-500', icon: AlertTriangle, badge: 'default' },
|
||||
medium: { color: 'text-yellow-500', icon: AlertTriangle, badge: 'secondary' },
|
||||
low: { color: 'text-blue-500', icon: AlertTriangle, badge: 'outline' },
|
||||
};
|
||||
|
||||
const STATUS_CONFIG = {
|
||||
open: { label: 'Open', color: 'bg-red-500/10 text-red-600' },
|
||||
investigating: { label: 'Investigating', color: 'bg-yellow-500/10 text-yellow-600' },
|
||||
resolved: { label: 'Resolved', color: 'bg-green-500/10 text-green-600' },
|
||||
closed: { label: 'Closed', color: 'bg-gray-500/10 text-gray-600' },
|
||||
};
|
||||
|
||||
export function IncidentsPanel({ incidents, isLoading }: IncidentsPanelProps) {
|
||||
const acknowledgeIncident = useAcknowledgeIncident();
|
||||
const resolveIncident = useResolveIncident();
|
||||
const [resolutionNotes, setResolutionNotes] = useState('');
|
||||
const [selectedIncident, setSelectedIncident] = useState<string | null>(null);
|
||||
|
||||
const handleAcknowledge = (incidentId: string) => {
|
||||
acknowledgeIncident.mutate(incidentId);
|
||||
};
|
||||
|
||||
const handleResolve = () => {
|
||||
if (selectedIncident) {
|
||||
resolveIncident.mutate({
|
||||
incidentId: selectedIncident,
|
||||
resolutionNotes,
|
||||
resolveAlerts: true,
|
||||
});
|
||||
setResolutionNotes('');
|
||||
setSelectedIncident(null);
|
||||
}
|
||||
};
|
||||
|
||||
if (isLoading) {
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Active Incidents</CardTitle>
|
||||
<CardDescription>Loading incidents...</CardDescription>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
<div className="flex items-center justify-center py-8">
|
||||
<div className="animate-spin rounded-full h-8 w-8 border-b-2 border-primary"></div>
|
||||
</div>
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
|
||||
if (!incidents || incidents.length === 0) {
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle>Active Incidents</CardTitle>
|
||||
<CardDescription>No active incidents</CardDescription>
|
||||
</CardHeader>
|
||||
<CardContent>
|
||||
<div className="flex flex-col items-center justify-center py-8 text-muted-foreground">
|
||||
<CheckCircle2 className="h-12 w-12 mb-2 opacity-50" />
|
||||
<p>All clear - no incidents detected</p>
|
||||
</div>
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
|
||||
const openIncidents = incidents.filter(i => i.status === 'open' || i.status === 'investigating');
|
||||
|
||||
return (
|
||||
<Card>
|
||||
<CardHeader>
|
||||
<CardTitle className="flex items-center justify-between">
|
||||
<span>Active Incidents</span>
|
||||
<span className="text-sm font-normal text-muted-foreground">
|
||||
{openIncidents.length} active • {incidents.length} total
|
||||
</span>
|
||||
</CardTitle>
|
||||
<CardDescription>
|
||||
Automatically detected incidents from correlated alerts
|
||||
</CardDescription>
|
||||
</CardHeader>
|
||||
<CardContent className="space-y-3">
|
||||
{incidents.map((incident) => {
|
||||
const severityConfig = SEVERITY_CONFIG[incident.severity];
|
||||
const statusConfig = STATUS_CONFIG[incident.status];
|
||||
const Icon = severityConfig.icon;
|
||||
|
||||
return (
|
||||
<div
|
||||
key={incident.id}
|
||||
className="border rounded-lg p-4 space-y-3 bg-card"
|
||||
>
|
||||
<div className="flex items-start justify-between gap-4">
|
||||
<div className="flex items-start gap-3 flex-1">
|
||||
<Icon className={`h-5 w-5 mt-0.5 ${severityConfig.color}`} />
|
||||
<div className="flex-1 min-w-0">
|
||||
<div className="flex items-center gap-2 flex-wrap mb-1">
|
||||
<span className="text-xs font-mono font-medium px-2 py-0.5 rounded bg-muted">
|
||||
{incident.incident_number}
|
||||
</span>
|
||||
<Badge variant={severityConfig.badge as any} className="text-xs">
|
||||
{incident.severity.toUpperCase()}
|
||||
</Badge>
|
||||
<span className={`text-xs font-medium px-2 py-0.5 rounded ${statusConfig.color}`}>
|
||||
{statusConfig.label}
|
||||
</span>
|
||||
<span className="text-xs px-2 py-0.5 rounded bg-primary/10 text-primary">
|
||||
{incident.alert_count} alerts
|
||||
</span>
|
||||
</div>
|
||||
<p className="text-sm font-medium mb-1">{incident.title}</p>
|
||||
{incident.description && (
|
||||
<p className="text-sm text-muted-foreground">{incident.description}</p>
|
||||
)}
|
||||
<div className="flex items-center gap-4 mt-2 text-xs text-muted-foreground">
|
||||
<span className="flex items-center gap-1">
|
||||
<Clock className="h-3 w-3" />
|
||||
Detected: {formatDistanceToNow(new Date(incident.detected_at), { addSuffix: true })}
|
||||
</span>
|
||||
{incident.acknowledged_at && (
|
||||
<span className="flex items-center gap-1">
|
||||
<Eye className="h-3 w-3" />
|
||||
Acknowledged: {formatDistanceToNow(new Date(incident.acknowledged_at), { addSuffix: true })}
|
||||
</span>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div className="flex items-center gap-2">
|
||||
{incident.status === 'open' && (
|
||||
<Button
|
||||
variant="outline"
|
||||
size="sm"
|
||||
onClick={() => handleAcknowledge(incident.id)}
|
||||
disabled={acknowledgeIncident.isPending}
|
||||
>
|
||||
Acknowledge
|
||||
</Button>
|
||||
)}
|
||||
{(incident.status === 'open' || incident.status === 'investigating') && (
|
||||
<Dialog>
|
||||
<DialogTrigger asChild>
|
||||
<Button
|
||||
variant="default"
|
||||
size="sm"
|
||||
onClick={() => setSelectedIncident(incident.id)}
|
||||
>
|
||||
Resolve
|
||||
</Button>
|
||||
</DialogTrigger>
|
||||
<DialogContent>
|
||||
<DialogHeader>
|
||||
<DialogTitle>Resolve Incident {incident.incident_number}</DialogTitle>
|
||||
<DialogDescription>
|
||||
Add resolution notes and close this incident. All linked alerts will be automatically resolved.
|
||||
</DialogDescription>
|
||||
</DialogHeader>
|
||||
<div className="space-y-4 py-4">
|
||||
<div className="space-y-2">
|
||||
<Label htmlFor="resolution-notes">Resolution Notes</Label>
|
||||
<Textarea
|
||||
id="resolution-notes"
|
||||
placeholder="Describe how this incident was resolved..."
|
||||
value={resolutionNotes}
|
||||
onChange={(e) => setResolutionNotes(e.target.value)}
|
||||
rows={4}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
<DialogFooter>
|
||||
<Button
|
||||
variant="default"
|
||||
onClick={handleResolve}
|
||||
disabled={resolveIncident.isPending}
|
||||
>
|
||||
Resolve Incident
|
||||
</Button>
|
||||
</DialogFooter>
|
||||
</DialogContent>
|
||||
</Dialog>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
})}
|
||||
</CardContent>
|
||||
</Card>
|
||||
);
|
||||
}
|
||||
101
src/hooks/admin/useAnomalyDetection.ts
Normal file
101
src/hooks/admin/useAnomalyDetection.ts
Normal file
@@ -0,0 +1,101 @@
|
||||
import { useQuery, useMutation, useQueryClient } from '@tanstack/react-query';
|
||||
import { supabase } from '@/lib/supabaseClient';
|
||||
import { queryKeys } from '@/lib/queryKeys';
|
||||
import { toast } from 'sonner';
|
||||
|
||||
export interface AnomalyDetection {
|
||||
id: string;
|
||||
metric_name: string;
|
||||
metric_category: string;
|
||||
anomaly_type: 'spike' | 'drop' | 'trend_change' | 'outlier' | 'pattern_break';
|
||||
severity: 'critical' | 'high' | 'medium' | 'low';
|
||||
baseline_value: number;
|
||||
anomaly_value: number;
|
||||
deviation_score: number;
|
||||
confidence_score: number;
|
||||
detection_algorithm: string;
|
||||
time_window_start: string;
|
||||
time_window_end: string;
|
||||
detected_at: string;
|
||||
alert_created: boolean;
|
||||
alert_id?: string;
|
||||
alert_message?: string;
|
||||
alert_resolved_at?: string;
|
||||
}
|
||||
|
||||
export function useAnomalyDetections() {
|
||||
return useQuery({
|
||||
queryKey: queryKeys.monitoring.anomalyDetections(),
|
||||
queryFn: async () => {
|
||||
const { data, error } = await supabase
|
||||
.from('recent_anomalies_view')
|
||||
.select('*')
|
||||
.order('detected_at', { ascending: false })
|
||||
.limit(50);
|
||||
|
||||
if (error) throw error;
|
||||
return (data || []) as AnomalyDetection[];
|
||||
},
|
||||
staleTime: 30000,
|
||||
refetchInterval: 60000,
|
||||
});
|
||||
}
|
||||
|
||||
export function useRunAnomalyDetection() {
|
||||
const queryClient = useQueryClient();
|
||||
|
||||
return useMutation({
|
||||
mutationFn: async () => {
|
||||
const { data, error } = await supabase.functions.invoke('detect-anomalies', {
|
||||
method: 'POST',
|
||||
});
|
||||
|
||||
if (error) throw error;
|
||||
return data;
|
||||
},
|
||||
onSuccess: (data) => {
|
||||
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.anomalyDetections() });
|
||||
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.groupedAlerts() });
|
||||
|
||||
if (data.anomalies_detected > 0) {
|
||||
toast.success(`Detected ${data.anomalies_detected} anomalies`);
|
||||
} else {
|
||||
toast.info('No anomalies detected');
|
||||
}
|
||||
},
|
||||
onError: (error) => {
|
||||
console.error('Failed to run anomaly detection:', error);
|
||||
toast.error('Failed to run anomaly detection');
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
export function useRecordMetric() {
|
||||
return useMutation({
|
||||
mutationFn: async ({
|
||||
metricName,
|
||||
metricCategory,
|
||||
metricValue,
|
||||
metadata,
|
||||
}: {
|
||||
metricName: string;
|
||||
metricCategory: string;
|
||||
metricValue: number;
|
||||
metadata?: any;
|
||||
}) => {
|
||||
const { error } = await supabase
|
||||
.from('metric_time_series')
|
||||
.insert({
|
||||
metric_name: metricName,
|
||||
metric_category: metricCategory,
|
||||
metric_value: metricValue,
|
||||
metadata,
|
||||
});
|
||||
|
||||
if (error) throw error;
|
||||
},
|
||||
onError: (error) => {
|
||||
console.error('Failed to record metric:', error);
|
||||
},
|
||||
});
|
||||
}
|
||||
38
src/hooks/admin/useCorrelatedAlerts.ts
Normal file
38
src/hooks/admin/useCorrelatedAlerts.ts
Normal file
@@ -0,0 +1,38 @@
|
||||
import { useQuery } from '@tanstack/react-query';
|
||||
import { supabase } from '@/lib/supabaseClient';
|
||||
import { queryKeys } from '@/lib/queryKeys';
|
||||
|
||||
export interface CorrelatedAlert {
|
||||
rule_id: string;
|
||||
rule_name: string;
|
||||
rule_description: string;
|
||||
incident_severity: 'critical' | 'high' | 'medium' | 'low';
|
||||
incident_title_template: string;
|
||||
time_window_minutes: number;
|
||||
min_alerts_required: number;
|
||||
matching_alerts_count: number;
|
||||
alert_ids: string[];
|
||||
alert_sources: string[];
|
||||
alert_messages: string[];
|
||||
first_alert_at: string;
|
||||
last_alert_at: string;
|
||||
can_create_incident: boolean;
|
||||
}
|
||||
|
||||
export function useCorrelatedAlerts() {
|
||||
return useQuery({
|
||||
queryKey: queryKeys.monitoring.correlatedAlerts(),
|
||||
queryFn: async () => {
|
||||
const { data, error } = await supabase
|
||||
.from('alert_correlations_view')
|
||||
.select('*')
|
||||
.order('incident_severity', { ascending: true })
|
||||
.order('matching_alerts_count', { ascending: false });
|
||||
|
||||
if (error) throw error;
|
||||
return (data || []) as CorrelatedAlert[];
|
||||
},
|
||||
staleTime: 15000,
|
||||
refetchInterval: 30000,
|
||||
});
|
||||
}
|
||||
197
src/hooks/admin/useIncidents.ts
Normal file
197
src/hooks/admin/useIncidents.ts
Normal file
@@ -0,0 +1,197 @@
|
||||
import { useQuery, useMutation, useQueryClient } from '@tanstack/react-query';
|
||||
import { supabase } from '@/lib/supabaseClient';
|
||||
import { queryKeys } from '@/lib/queryKeys';
|
||||
import { toast } from 'sonner';
|
||||
|
||||
export interface Incident {
|
||||
id: string;
|
||||
incident_number: string;
|
||||
title: string;
|
||||
description: string;
|
||||
severity: 'critical' | 'high' | 'medium' | 'low';
|
||||
status: 'open' | 'investigating' | 'resolved' | 'closed';
|
||||
correlation_rule_id?: string;
|
||||
detected_at: string;
|
||||
acknowledged_at?: string;
|
||||
acknowledged_by?: string;
|
||||
resolved_at?: string;
|
||||
resolved_by?: string;
|
||||
resolution_notes?: string;
|
||||
alert_count: number;
|
||||
created_at: string;
|
||||
updated_at: string;
|
||||
}
|
||||
|
||||
export function useIncidents(status?: 'open' | 'investigating' | 'resolved' | 'closed') {
|
||||
return useQuery({
|
||||
queryKey: queryKeys.monitoring.incidents(status),
|
||||
queryFn: async () => {
|
||||
let query = supabase
|
||||
.from('incidents')
|
||||
.select('*')
|
||||
.order('detected_at', { ascending: false });
|
||||
|
||||
if (status) {
|
||||
query = query.eq('status', status);
|
||||
}
|
||||
|
||||
const { data, error } = await query;
|
||||
if (error) throw error;
|
||||
return (data || []) as Incident[];
|
||||
},
|
||||
staleTime: 15000,
|
||||
refetchInterval: 30000,
|
||||
});
|
||||
}
|
||||
|
||||
export function useCreateIncident() {
|
||||
const queryClient = useQueryClient();
|
||||
|
||||
return useMutation({
|
||||
mutationFn: async ({
|
||||
ruleId,
|
||||
title,
|
||||
description,
|
||||
severity,
|
||||
alertIds,
|
||||
alertSources,
|
||||
}: {
|
||||
ruleId?: string;
|
||||
title: string;
|
||||
description?: string;
|
||||
severity: 'critical' | 'high' | 'medium' | 'low';
|
||||
alertIds: string[];
|
||||
alertSources: ('system' | 'rate_limit')[];
|
||||
}) => {
|
||||
// Create the incident (incident_number is auto-generated by trigger)
|
||||
const { data: incident, error: incidentError } = await supabase
|
||||
.from('incidents')
|
||||
.insert([{
|
||||
title,
|
||||
description,
|
||||
severity,
|
||||
correlation_rule_id: ruleId,
|
||||
status: 'open' as const,
|
||||
} as any])
|
||||
.select()
|
||||
.single();
|
||||
|
||||
if (incidentError) throw incidentError;
|
||||
|
||||
// Link alerts to the incident
|
||||
const incidentAlerts = alertIds.map((alertId, index) => ({
|
||||
incident_id: incident.id,
|
||||
alert_source: alertSources[index] || 'system',
|
||||
alert_id: alertId,
|
||||
}));
|
||||
|
||||
const { error: linkError } = await supabase
|
||||
.from('incident_alerts')
|
||||
.insert(incidentAlerts);
|
||||
|
||||
if (linkError) throw linkError;
|
||||
|
||||
return incident as Incident;
|
||||
},
|
||||
onSuccess: (incident) => {
|
||||
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.incidents() });
|
||||
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.correlatedAlerts() });
|
||||
toast.success(`Incident ${incident.incident_number} created`);
|
||||
},
|
||||
onError: (error) => {
|
||||
console.error('Failed to create incident:', error);
|
||||
toast.error('Failed to create incident');
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
export function useAcknowledgeIncident() {
|
||||
const queryClient = useQueryClient();
|
||||
|
||||
return useMutation({
|
||||
mutationFn: async (incidentId: string) => {
|
||||
const { data, error } = await supabase
|
||||
.from('incidents')
|
||||
.update({
|
||||
status: 'investigating',
|
||||
acknowledged_at: new Date().toISOString(),
|
||||
acknowledged_by: (await supabase.auth.getUser()).data.user?.id,
|
||||
})
|
||||
.eq('id', incidentId)
|
||||
.select()
|
||||
.single();
|
||||
|
||||
if (error) throw error;
|
||||
return data as Incident;
|
||||
},
|
||||
onSuccess: () => {
|
||||
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.incidents() });
|
||||
toast.success('Incident acknowledged');
|
||||
},
|
||||
onError: (error) => {
|
||||
console.error('Failed to acknowledge incident:', error);
|
||||
toast.error('Failed to acknowledge incident');
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
export function useResolveIncident() {
|
||||
const queryClient = useQueryClient();
|
||||
|
||||
return useMutation({
|
||||
mutationFn: async ({
|
||||
incidentId,
|
||||
resolutionNotes,
|
||||
resolveAlerts = true,
|
||||
}: {
|
||||
incidentId: string;
|
||||
resolutionNotes?: string;
|
||||
resolveAlerts?: boolean;
|
||||
}) => {
|
||||
const userId = (await supabase.auth.getUser()).data.user?.id;
|
||||
|
||||
// Update incident
|
||||
const { error: incidentError } = await supabase
|
||||
.from('incidents')
|
||||
.update({
|
||||
status: 'resolved',
|
||||
resolved_at: new Date().toISOString(),
|
||||
resolved_by: userId,
|
||||
resolution_notes: resolutionNotes,
|
||||
})
|
||||
.eq('id', incidentId);
|
||||
|
||||
if (incidentError) throw incidentError;
|
||||
|
||||
// Optionally resolve all linked alerts
|
||||
if (resolveAlerts) {
|
||||
const { data: linkedAlerts } = await supabase
|
||||
.from('incident_alerts')
|
||||
.select('alert_source, alert_id')
|
||||
.eq('incident_id', incidentId);
|
||||
|
||||
if (linkedAlerts) {
|
||||
for (const alert of linkedAlerts) {
|
||||
const table = alert.alert_source === 'system' ? 'system_alerts' : 'rate_limit_alerts';
|
||||
await supabase
|
||||
.from(table)
|
||||
.update({ resolved_at: new Date().toISOString() })
|
||||
.eq('id', alert.alert_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return { incidentId };
|
||||
},
|
||||
onSuccess: () => {
|
||||
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.incidents() });
|
||||
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.groupedAlerts() });
|
||||
queryClient.invalidateQueries({ queryKey: queryKeys.monitoring.combinedAlerts() });
|
||||
toast.success('Incident resolved');
|
||||
},
|
||||
onError: (error) => {
|
||||
console.error('Failed to resolve incident:', error);
|
||||
toast.error('Failed to resolve incident');
|
||||
},
|
||||
});
|
||||
}
|
||||
@@ -202,6 +202,111 @@ export type Database = {
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
anomaly_detection_config: {
|
||||
Row: {
|
||||
alert_threshold_score: number
|
||||
auto_create_alert: boolean
|
||||
created_at: string
|
||||
detection_algorithms: string[]
|
||||
enabled: boolean
|
||||
id: string
|
||||
lookback_window_minutes: number
|
||||
metric_category: string
|
||||
metric_name: string
|
||||
min_data_points: number
|
||||
sensitivity: number
|
||||
updated_at: string
|
||||
}
|
||||
Insert: {
|
||||
alert_threshold_score?: number
|
||||
auto_create_alert?: boolean
|
||||
created_at?: string
|
||||
detection_algorithms?: string[]
|
||||
enabled?: boolean
|
||||
id?: string
|
||||
lookback_window_minutes?: number
|
||||
metric_category: string
|
||||
metric_name: string
|
||||
min_data_points?: number
|
||||
sensitivity?: number
|
||||
updated_at?: string
|
||||
}
|
||||
Update: {
|
||||
alert_threshold_score?: number
|
||||
auto_create_alert?: boolean
|
||||
created_at?: string
|
||||
detection_algorithms?: string[]
|
||||
enabled?: boolean
|
||||
id?: string
|
||||
lookback_window_minutes?: number
|
||||
metric_category?: string
|
||||
metric_name?: string
|
||||
min_data_points?: number
|
||||
sensitivity?: number
|
||||
updated_at?: string
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
anomaly_detections: {
|
||||
Row: {
|
||||
alert_created: boolean
|
||||
alert_id: string | null
|
||||
anomaly_type: string
|
||||
anomaly_value: number
|
||||
baseline_value: number
|
||||
confidence_score: number
|
||||
created_at: string
|
||||
detected_at: string
|
||||
detection_algorithm: string
|
||||
deviation_score: number
|
||||
id: string
|
||||
metadata: Json | null
|
||||
metric_category: string
|
||||
metric_name: string
|
||||
severity: string
|
||||
time_window_end: string
|
||||
time_window_start: string
|
||||
}
|
||||
Insert: {
|
||||
alert_created?: boolean
|
||||
alert_id?: string | null
|
||||
anomaly_type: string
|
||||
anomaly_value: number
|
||||
baseline_value: number
|
||||
confidence_score: number
|
||||
created_at?: string
|
||||
detected_at?: string
|
||||
detection_algorithm: string
|
||||
deviation_score: number
|
||||
id?: string
|
||||
metadata?: Json | null
|
||||
metric_category: string
|
||||
metric_name: string
|
||||
severity: string
|
||||
time_window_end: string
|
||||
time_window_start: string
|
||||
}
|
||||
Update: {
|
||||
alert_created?: boolean
|
||||
alert_id?: string | null
|
||||
anomaly_type?: string
|
||||
anomaly_value?: number
|
||||
baseline_value?: number
|
||||
confidence_score?: number
|
||||
created_at?: string
|
||||
detected_at?: string
|
||||
detection_algorithm?: string
|
||||
deviation_score?: number
|
||||
id?: string
|
||||
metadata?: Json | null
|
||||
metric_category?: string
|
||||
metric_name?: string
|
||||
severity?: string
|
||||
time_window_end?: string
|
||||
time_window_start?: string
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
approval_transaction_metrics: {
|
||||
Row: {
|
||||
created_at: string | null
|
||||
@@ -1894,6 +1999,36 @@ export type Database = {
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
metric_time_series: {
|
||||
Row: {
|
||||
created_at: string
|
||||
id: string
|
||||
metadata: Json | null
|
||||
metric_category: string
|
||||
metric_name: string
|
||||
metric_value: number
|
||||
timestamp: string
|
||||
}
|
||||
Insert: {
|
||||
created_at?: string
|
||||
id?: string
|
||||
metadata?: Json | null
|
||||
metric_category: string
|
||||
metric_name: string
|
||||
metric_value: number
|
||||
timestamp?: string
|
||||
}
|
||||
Update: {
|
||||
created_at?: string
|
||||
id?: string
|
||||
metadata?: Json | null
|
||||
metric_category?: string
|
||||
metric_name?: string
|
||||
metric_value?: number
|
||||
timestamp?: string
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
moderation_audit_log: {
|
||||
Row: {
|
||||
action: string
|
||||
@@ -6012,6 +6147,18 @@ export type Database = {
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
data_retention_stats: {
|
||||
Row: {
|
||||
last_30_days: number | null
|
||||
last_7_days: number | null
|
||||
newest_record: string | null
|
||||
oldest_record: string | null
|
||||
table_name: string | null
|
||||
table_size: string | null
|
||||
total_records: number | null
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
error_summary: {
|
||||
Row: {
|
||||
affected_users: number | null
|
||||
@@ -6270,6 +6417,28 @@ export type Database = {
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
recent_anomalies_view: {
|
||||
Row: {
|
||||
alert_created: boolean | null
|
||||
alert_id: string | null
|
||||
alert_message: string | null
|
||||
alert_resolved_at: string | null
|
||||
anomaly_type: string | null
|
||||
anomaly_value: number | null
|
||||
baseline_value: number | null
|
||||
confidence_score: number | null
|
||||
detected_at: string | null
|
||||
detection_algorithm: string | null
|
||||
deviation_score: number | null
|
||||
id: string | null
|
||||
metric_category: string | null
|
||||
metric_name: string | null
|
||||
severity: string | null
|
||||
time_window_end: string | null
|
||||
time_window_start: string | null
|
||||
}
|
||||
Relationships: []
|
||||
}
|
||||
}
|
||||
Functions: {
|
||||
anonymize_user_submissions: {
|
||||
@@ -6344,6 +6513,31 @@ export type Database = {
|
||||
cleanup_expired_locks: { Args: never; Returns: number }
|
||||
cleanup_expired_locks_with_logging: { Args: never; Returns: undefined }
|
||||
cleanup_expired_sessions: { Args: never; Returns: undefined }
|
||||
cleanup_old_alerts: {
|
||||
Args: { retention_days?: number }
|
||||
Returns: {
|
||||
deleted_count: number
|
||||
}[]
|
||||
}
|
||||
cleanup_old_anomalies: {
|
||||
Args: { retention_days?: number }
|
||||
Returns: {
|
||||
archived_count: number
|
||||
deleted_count: number
|
||||
}[]
|
||||
}
|
||||
cleanup_old_incidents: {
|
||||
Args: { retention_days?: number }
|
||||
Returns: {
|
||||
deleted_count: number
|
||||
}[]
|
||||
}
|
||||
cleanup_old_metrics: {
|
||||
Args: { retention_days?: number }
|
||||
Returns: {
|
||||
deleted_count: number
|
||||
}[]
|
||||
}
|
||||
cleanup_old_page_views: { Args: never; Returns: undefined }
|
||||
cleanup_old_request_metadata: { Args: never; Returns: undefined }
|
||||
cleanup_old_submissions: {
|
||||
@@ -6696,6 +6890,7 @@ export type Database = {
|
||||
Returns: string
|
||||
}
|
||||
run_all_cleanup_jobs: { Args: never; Returns: Json }
|
||||
run_data_retention_cleanup: { Args: never; Returns: Json }
|
||||
run_pipeline_monitoring: {
|
||||
Args: never
|
||||
Returns: {
|
||||
|
||||
@@ -92,5 +92,9 @@ export const queryKeys = {
|
||||
groupedAlerts: (options?: { includeResolved?: boolean; minCount?: number; severity?: string }) =>
|
||||
['monitoring', 'grouped-alerts', options] as const,
|
||||
alertGroupDetails: (groupKey: string) => ['monitoring', 'alert-group-details', groupKey] as const,
|
||||
correlatedAlerts: () => ['monitoring', 'correlated-alerts'] as const,
|
||||
incidents: (status?: string) => ['monitoring', 'incidents', status] as const,
|
||||
incidentDetails: (incidentId: string) => ['monitoring', 'incident-details', incidentId] as const,
|
||||
anomalyDetections: () => ['monitoring', 'anomaly-detections'] as const,
|
||||
},
|
||||
} as const;
|
||||
|
||||
@@ -4,11 +4,17 @@ import { AdminLayout } from '@/components/layout/AdminLayout';
|
||||
import { RefreshButton } from '@/components/ui/refresh-button';
|
||||
import { SystemHealthStatus } from '@/components/admin/SystemHealthStatus';
|
||||
import { GroupedAlertsPanel } from '@/components/admin/GroupedAlertsPanel';
|
||||
import { CorrelatedAlertsPanel } from '@/components/admin/CorrelatedAlertsPanel';
|
||||
import { IncidentsPanel } from '@/components/admin/IncidentsPanel';
|
||||
import { AnomalyDetectionPanel } from '@/components/admin/AnomalyDetectionPanel';
|
||||
import { MonitoringQuickStats } from '@/components/admin/MonitoringQuickStats';
|
||||
import { RecentActivityTimeline } from '@/components/admin/RecentActivityTimeline';
|
||||
import { MonitoringNavCards } from '@/components/admin/MonitoringNavCards';
|
||||
import { useSystemHealth } from '@/hooks/useSystemHealth';
|
||||
import { useGroupedAlerts } from '@/hooks/admin/useGroupedAlerts';
|
||||
import { useCorrelatedAlerts } from '@/hooks/admin/useCorrelatedAlerts';
|
||||
import { useIncidents } from '@/hooks/admin/useIncidents';
|
||||
import { useAnomalyDetections } from '@/hooks/admin/useAnomalyDetection';
|
||||
import { useRecentActivity } from '@/hooks/admin/useRecentActivity';
|
||||
import { useDatabaseHealth } from '@/hooks/admin/useDatabaseHealth';
|
||||
import { useModerationHealth } from '@/hooks/admin/useModerationHealth';
|
||||
@@ -24,6 +30,9 @@ export default function MonitoringOverview() {
|
||||
// Fetch all monitoring data
|
||||
const systemHealth = useSystemHealth();
|
||||
const groupedAlerts = useGroupedAlerts({ includeResolved: false });
|
||||
const correlatedAlerts = useCorrelatedAlerts();
|
||||
const incidents = useIncidents('open');
|
||||
const anomalies = useAnomalyDetections();
|
||||
const recentActivity = useRecentActivity(3600000); // 1 hour
|
||||
const dbHealth = useDatabaseHealth();
|
||||
const moderationHealth = useModerationHealth();
|
||||
@@ -32,6 +41,9 @@ export default function MonitoringOverview() {
|
||||
const isLoading =
|
||||
systemHealth.isLoading ||
|
||||
groupedAlerts.isLoading ||
|
||||
correlatedAlerts.isLoading ||
|
||||
incidents.isLoading ||
|
||||
anomalies.isLoading ||
|
||||
recentActivity.isLoading ||
|
||||
dbHealth.isLoading ||
|
||||
moderationHealth.isLoading ||
|
||||
@@ -58,14 +70,28 @@ export default function MonitoringOverview() {
|
||||
queryKey: queryKeys.monitoring.groupedAlerts(),
|
||||
refetchType: 'active'
|
||||
});
|
||||
await queryClient.invalidateQueries({
|
||||
queryKey: queryKeys.monitoring.correlatedAlerts(),
|
||||
refetchType: 'active'
|
||||
});
|
||||
await queryClient.invalidateQueries({
|
||||
queryKey: queryKeys.monitoring.incidents(),
|
||||
refetchType: 'active'
|
||||
});
|
||||
await queryClient.invalidateQueries({
|
||||
queryKey: queryKeys.monitoring.anomalyDetections(),
|
||||
refetchType: 'active'
|
||||
});
|
||||
};
|
||||
|
||||
// Calculate error count for nav card (from recent activity)
|
||||
const errorCount = recentActivity.data?.filter(e => e.type === 'error').length || 0;
|
||||
|
||||
// Calculate stats from grouped alerts
|
||||
// Calculate stats from grouped alerts and incidents
|
||||
const totalGroupedAlerts = groupedAlerts.data?.reduce((sum, g) => sum + g.unresolved_count, 0) || 0;
|
||||
const recurringIssues = groupedAlerts.data?.filter(g => g.is_recurring).length || 0;
|
||||
const activeIncidents = incidents.data?.length || 0;
|
||||
const criticalIncidents = incidents.data?.filter(i => i.severity === 'critical').length || 0;
|
||||
|
||||
return (
|
||||
<AdminLayout>
|
||||
@@ -106,6 +132,24 @@ export default function MonitoringOverview() {
|
||||
isLoading={groupedAlerts.isLoading}
|
||||
/>
|
||||
|
||||
{/* Correlated Alerts - Potential Incidents */}
|
||||
<CorrelatedAlertsPanel
|
||||
correlations={correlatedAlerts.data}
|
||||
isLoading={correlatedAlerts.isLoading}
|
||||
/>
|
||||
|
||||
{/* Active Incidents */}
|
||||
<IncidentsPanel
|
||||
incidents={incidents.data}
|
||||
isLoading={incidents.isLoading}
|
||||
/>
|
||||
|
||||
{/* ML Anomaly Detection */}
|
||||
<AnomalyDetectionPanel
|
||||
anomalies={anomalies.data}
|
||||
isLoading={anomalies.isLoading}
|
||||
/>
|
||||
|
||||
{/* Quick Stats Grid */}
|
||||
<MonitoringQuickStats
|
||||
systemHealth={systemHealth.data ?? undefined}
|
||||
|
||||
187
supabase/functions/collect-metrics/index.ts
Normal file
187
supabase/functions/collect-metrics/index.ts
Normal file
@@ -0,0 +1,187 @@
|
||||
import { createClient } from 'https://esm.sh/@supabase/supabase-js@2.57.4';
|
||||
|
||||
const corsHeaders = {
|
||||
'Access-Control-Allow-Origin': '*',
|
||||
'Access-Control-Allow-Headers': 'authorization, x-client-info, apikey, content-type',
|
||||
};
|
||||
|
||||
interface MetricRecord {
|
||||
metric_name: string;
|
||||
metric_value: number;
|
||||
metric_category: string;
|
||||
timestamp: string;
|
||||
}
|
||||
|
||||
Deno.serve(async (req) => {
|
||||
if (req.method === 'OPTIONS') {
|
||||
return new Response(null, { headers: corsHeaders });
|
||||
}
|
||||
|
||||
try {
|
||||
const supabaseUrl = Deno.env.get('SUPABASE_URL')!;
|
||||
const supabaseKey = Deno.env.get('SUPABASE_SERVICE_ROLE_KEY')!;
|
||||
const supabase = createClient(supabaseUrl, supabaseKey);
|
||||
|
||||
console.log('Starting metrics collection...');
|
||||
|
||||
const metrics: MetricRecord[] = [];
|
||||
const timestamp = new Date().toISOString();
|
||||
|
||||
// 1. Collect API error rate from recent logs
|
||||
const { data: recentErrors, error: errorQueryError } = await supabase
|
||||
.from('system_alerts')
|
||||
.select('id', { count: 'exact', head: true })
|
||||
.gte('created_at', new Date(Date.now() - 60000).toISOString())
|
||||
.in('severity', ['high', 'critical']);
|
||||
|
||||
if (!errorQueryError) {
|
||||
const errorCount = recentErrors || 0;
|
||||
metrics.push({
|
||||
metric_name: 'api_error_count',
|
||||
metric_value: errorCount as number,
|
||||
metric_category: 'performance',
|
||||
timestamp,
|
||||
});
|
||||
}
|
||||
|
||||
// 2. Collect rate limit violations
|
||||
const { data: rateLimitViolations, error: rateLimitError } = await supabase
|
||||
.from('rate_limit_logs')
|
||||
.select('id', { count: 'exact', head: true })
|
||||
.gte('timestamp', new Date(Date.now() - 60000).toISOString())
|
||||
.eq('action_taken', 'blocked');
|
||||
|
||||
if (!rateLimitError) {
|
||||
const violationCount = rateLimitViolations || 0;
|
||||
metrics.push({
|
||||
metric_name: 'rate_limit_violations',
|
||||
metric_value: violationCount as number,
|
||||
metric_category: 'security',
|
||||
timestamp,
|
||||
});
|
||||
}
|
||||
|
||||
// 3. Collect pending submissions count
|
||||
const { data: pendingSubmissions, error: submissionsError } = await supabase
|
||||
.from('submissions')
|
||||
.select('id', { count: 'exact', head: true })
|
||||
.eq('moderation_status', 'pending');
|
||||
|
||||
if (!submissionsError) {
|
||||
const pendingCount = pendingSubmissions || 0;
|
||||
metrics.push({
|
||||
metric_name: 'pending_submissions',
|
||||
metric_value: pendingCount as number,
|
||||
metric_category: 'workflow',
|
||||
timestamp,
|
||||
});
|
||||
}
|
||||
|
||||
// 4. Collect active incidents count
|
||||
const { data: activeIncidents, error: incidentsError } = await supabase
|
||||
.from('incidents')
|
||||
.select('id', { count: 'exact', head: true })
|
||||
.in('status', ['open', 'investigating']);
|
||||
|
||||
if (!incidentsError) {
|
||||
const incidentCount = activeIncidents || 0;
|
||||
metrics.push({
|
||||
metric_name: 'active_incidents',
|
||||
metric_value: incidentCount as number,
|
||||
metric_category: 'monitoring',
|
||||
timestamp,
|
||||
});
|
||||
}
|
||||
|
||||
// 5. Collect unresolved alerts count
|
||||
const { data: unresolvedAlerts, error: alertsError } = await supabase
|
||||
.from('system_alerts')
|
||||
.select('id', { count: 'exact', head: true })
|
||||
.eq('resolved', false);
|
||||
|
||||
if (!alertsError) {
|
||||
const alertCount = unresolvedAlerts || 0;
|
||||
metrics.push({
|
||||
metric_name: 'unresolved_alerts',
|
||||
metric_value: alertCount as number,
|
||||
metric_category: 'monitoring',
|
||||
timestamp,
|
||||
});
|
||||
}
|
||||
|
||||
// 6. Calculate submission approval rate (last hour)
|
||||
const { data: recentSubmissions, error: recentSubmissionsError } = await supabase
|
||||
.from('submissions')
|
||||
.select('moderation_status', { count: 'exact' })
|
||||
.gte('created_at', new Date(Date.now() - 3600000).toISOString());
|
||||
|
||||
if (!recentSubmissionsError && recentSubmissions) {
|
||||
const total = recentSubmissions.length;
|
||||
const approved = recentSubmissions.filter(s => s.moderation_status === 'approved').length;
|
||||
const approvalRate = total > 0 ? (approved / total) * 100 : 100;
|
||||
|
||||
metrics.push({
|
||||
metric_name: 'submission_approval_rate',
|
||||
metric_value: approvalRate,
|
||||
metric_category: 'workflow',
|
||||
timestamp,
|
||||
});
|
||||
}
|
||||
|
||||
// 7. Calculate average moderation time (last hour)
|
||||
const { data: moderatedSubmissions, error: moderatedError } = await supabase
|
||||
.from('submissions')
|
||||
.select('created_at, moderated_at')
|
||||
.not('moderated_at', 'is', null)
|
||||
.gte('moderated_at', new Date(Date.now() - 3600000).toISOString());
|
||||
|
||||
if (!moderatedError && moderatedSubmissions && moderatedSubmissions.length > 0) {
|
||||
const totalTime = moderatedSubmissions.reduce((sum, sub) => {
|
||||
const created = new Date(sub.created_at).getTime();
|
||||
const moderated = new Date(sub.moderated_at).getTime();
|
||||
return sum + (moderated - created);
|
||||
}, 0);
|
||||
|
||||
const avgTimeMinutes = (totalTime / moderatedSubmissions.length) / 60000;
|
||||
|
||||
metrics.push({
|
||||
metric_name: 'avg_moderation_time',
|
||||
metric_value: avgTimeMinutes,
|
||||
metric_category: 'workflow',
|
||||
timestamp,
|
||||
});
|
||||
}
|
||||
|
||||
// Insert all collected metrics
|
||||
if (metrics.length > 0) {
|
||||
const { error: insertError } = await supabase
|
||||
.from('metric_time_series')
|
||||
.insert(metrics);
|
||||
|
||||
if (insertError) {
|
||||
console.error('Error inserting metrics:', insertError);
|
||||
throw insertError;
|
||||
}
|
||||
|
||||
console.log(`Successfully recorded ${metrics.length} metrics`);
|
||||
}
|
||||
|
||||
return new Response(
|
||||
JSON.stringify({
|
||||
success: true,
|
||||
metrics_collected: metrics.length,
|
||||
metrics: metrics.map(m => ({ name: m.metric_name, value: m.metric_value })),
|
||||
}),
|
||||
{ headers: { ...corsHeaders, 'Content-Type': 'application/json' } }
|
||||
);
|
||||
} catch (error) {
|
||||
console.error('Error in collect-metrics function:', error);
|
||||
return new Response(
|
||||
JSON.stringify({ error: error.message }),
|
||||
{
|
||||
status: 500,
|
||||
headers: { ...corsHeaders, 'Content-Type': 'application/json' },
|
||||
}
|
||||
);
|
||||
}
|
||||
});
|
||||
302
supabase/functions/detect-anomalies/index.ts
Normal file
302
supabase/functions/detect-anomalies/index.ts
Normal file
@@ -0,0 +1,302 @@
|
||||
import { createClient } from 'https://esm.sh/@supabase/supabase-js@2.57.4';
|
||||
|
||||
const corsHeaders = {
|
||||
'Access-Control-Allow-Origin': '*',
|
||||
'Access-Control-Allow-Headers': 'authorization, x-client-info, apikey, content-type',
|
||||
};
|
||||
|
||||
interface MetricData {
|
||||
timestamp: string;
|
||||
metric_value: number;
|
||||
}
|
||||
|
||||
interface AnomalyDetectionConfig {
|
||||
metric_name: string;
|
||||
metric_category: string;
|
||||
enabled: boolean;
|
||||
sensitivity: number;
|
||||
lookback_window_minutes: number;
|
||||
detection_algorithms: string[];
|
||||
min_data_points: number;
|
||||
alert_threshold_score: number;
|
||||
auto_create_alert: boolean;
|
||||
}
|
||||
|
||||
interface AnomalyResult {
|
||||
isAnomaly: boolean;
|
||||
anomalyType: string;
|
||||
deviationScore: number;
|
||||
confidenceScore: number;
|
||||
algorithm: string;
|
||||
baselineValue: number;
|
||||
anomalyValue: number;
|
||||
}
|
||||
|
||||
// Statistical anomaly detection algorithms
|
||||
class AnomalyDetector {
|
||||
// Z-Score algorithm: Detects outliers based on standard deviation
|
||||
static zScore(data: number[], currentValue: number, sensitivity: number = 3.0): AnomalyResult {
|
||||
if (data.length < 2) {
|
||||
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'z_score', baselineValue: currentValue, anomalyValue: currentValue };
|
||||
}
|
||||
|
||||
const mean = data.reduce((sum, val) => sum + val, 0) / data.length;
|
||||
const variance = data.reduce((sum, val) => sum + Math.pow(val - mean, 2), 0) / data.length;
|
||||
const stdDev = Math.sqrt(variance);
|
||||
|
||||
if (stdDev === 0) {
|
||||
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'z_score', baselineValue: mean, anomalyValue: currentValue };
|
||||
}
|
||||
|
||||
const zScore = Math.abs((currentValue - mean) / stdDev);
|
||||
const isAnomaly = zScore > sensitivity;
|
||||
|
||||
return {
|
||||
isAnomaly,
|
||||
anomalyType: currentValue > mean ? 'spike' : 'drop',
|
||||
deviationScore: zScore,
|
||||
confidenceScore: Math.min(zScore / (sensitivity * 2), 1),
|
||||
algorithm: 'z_score',
|
||||
baselineValue: mean,
|
||||
anomalyValue: currentValue,
|
||||
};
|
||||
}
|
||||
|
||||
// Moving Average algorithm: Detects deviation from trend
|
||||
static movingAverage(data: number[], currentValue: number, sensitivity: number = 2.5, window: number = 10): AnomalyResult {
|
||||
if (data.length < window) {
|
||||
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'moving_average', baselineValue: currentValue, anomalyValue: currentValue };
|
||||
}
|
||||
|
||||
const recentData = data.slice(-window);
|
||||
const ma = recentData.reduce((sum, val) => sum + val, 0) / recentData.length;
|
||||
|
||||
const mad = recentData.reduce((sum, val) => sum + Math.abs(val - ma), 0) / recentData.length;
|
||||
|
||||
if (mad === 0) {
|
||||
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'moving_average', baselineValue: ma, anomalyValue: currentValue };
|
||||
}
|
||||
|
||||
const deviation = Math.abs(currentValue - ma) / mad;
|
||||
const isAnomaly = deviation > sensitivity;
|
||||
|
||||
return {
|
||||
isAnomaly,
|
||||
anomalyType: currentValue > ma ? 'spike' : 'drop',
|
||||
deviationScore: deviation,
|
||||
confidenceScore: Math.min(deviation / (sensitivity * 2), 1),
|
||||
algorithm: 'moving_average',
|
||||
baselineValue: ma,
|
||||
anomalyValue: currentValue,
|
||||
};
|
||||
}
|
||||
|
||||
// Rate of Change algorithm: Detects sudden changes
|
||||
static rateOfChange(data: number[], currentValue: number, sensitivity: number = 3.0): AnomalyResult {
|
||||
if (data.length < 2) {
|
||||
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'rate_of_change', baselineValue: currentValue, anomalyValue: currentValue };
|
||||
}
|
||||
|
||||
const previousValue = data[data.length - 1];
|
||||
|
||||
if (previousValue === 0) {
|
||||
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'rate_of_change', baselineValue: previousValue, anomalyValue: currentValue };
|
||||
}
|
||||
|
||||
const percentChange = Math.abs((currentValue - previousValue) / previousValue) * 100;
|
||||
const isAnomaly = percentChange > (sensitivity * 10); // sensitivity * 10 = % threshold
|
||||
|
||||
return {
|
||||
isAnomaly,
|
||||
anomalyType: currentValue > previousValue ? 'trend_change' : 'drop',
|
||||
deviationScore: percentChange / 10,
|
||||
confidenceScore: Math.min(percentChange / (sensitivity * 20), 1),
|
||||
algorithm: 'rate_of_change',
|
||||
baselineValue: previousValue,
|
||||
anomalyValue: currentValue,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
Deno.serve(async (req) => {
|
||||
if (req.method === 'OPTIONS') {
|
||||
return new Response(null, { headers: corsHeaders });
|
||||
}
|
||||
|
||||
try {
|
||||
const supabaseUrl = Deno.env.get('SUPABASE_URL')!;
|
||||
const supabaseKey = Deno.env.get('SUPABASE_SERVICE_ROLE_KEY')!;
|
||||
const supabase = createClient(supabaseUrl, supabaseKey);
|
||||
|
||||
console.log('Starting anomaly detection run...');
|
||||
|
||||
// Get all enabled anomaly detection configurations
|
||||
const { data: configs, error: configError } = await supabase
|
||||
.from('anomaly_detection_config')
|
||||
.select('*')
|
||||
.eq('enabled', true);
|
||||
|
||||
if (configError) {
|
||||
console.error('Error fetching configs:', configError);
|
||||
throw configError;
|
||||
}
|
||||
|
||||
console.log(`Processing ${configs?.length || 0} metric configurations`);
|
||||
|
||||
const anomaliesDetected: any[] = [];
|
||||
|
||||
for (const config of (configs as AnomalyDetectionConfig[])) {
|
||||
try {
|
||||
// Fetch historical data for this metric
|
||||
const windowStart = new Date(Date.now() - config.lookback_window_minutes * 60 * 1000);
|
||||
|
||||
const { data: metricData, error: metricError } = await supabase
|
||||
.from('metric_time_series')
|
||||
.select('timestamp, metric_value')
|
||||
.eq('metric_name', config.metric_name)
|
||||
.gte('timestamp', windowStart.toISOString())
|
||||
.order('timestamp', { ascending: true });
|
||||
|
||||
if (metricError) {
|
||||
console.error(`Error fetching metric data for ${config.metric_name}:`, metricError);
|
||||
continue;
|
||||
}
|
||||
|
||||
const data = metricData as MetricData[];
|
||||
|
||||
if (!data || data.length < config.min_data_points) {
|
||||
console.log(`Insufficient data for ${config.metric_name}: ${data?.length || 0} points`);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Get current value (most recent)
|
||||
const currentValue = data[data.length - 1].metric_value;
|
||||
const historicalValues = data.slice(0, -1).map(d => d.metric_value);
|
||||
|
||||
// Run detection algorithms
|
||||
const results: AnomalyResult[] = [];
|
||||
|
||||
for (const algorithm of config.detection_algorithms) {
|
||||
let result: AnomalyResult;
|
||||
|
||||
switch (algorithm) {
|
||||
case 'z_score':
|
||||
result = AnomalyDetector.zScore(historicalValues, currentValue, config.sensitivity);
|
||||
break;
|
||||
case 'moving_average':
|
||||
result = AnomalyDetector.movingAverage(historicalValues, currentValue, config.sensitivity);
|
||||
break;
|
||||
case 'rate_of_change':
|
||||
result = AnomalyDetector.rateOfChange(historicalValues, currentValue, config.sensitivity);
|
||||
break;
|
||||
default:
|
||||
continue;
|
||||
}
|
||||
|
||||
if (result.isAnomaly && result.deviationScore >= config.alert_threshold_score) {
|
||||
results.push(result);
|
||||
}
|
||||
}
|
||||
|
||||
// If any algorithm detected an anomaly
|
||||
if (results.length > 0) {
|
||||
// Use the result with highest confidence
|
||||
const bestResult = results.reduce((best, current) =>
|
||||
current.confidenceScore > best.confidenceScore ? current : best
|
||||
);
|
||||
|
||||
// Determine severity based on deviation score
|
||||
const severity =
|
||||
bestResult.deviationScore >= 5 ? 'critical' :
|
||||
bestResult.deviationScore >= 4 ? 'high' :
|
||||
bestResult.deviationScore >= 3 ? 'medium' : 'low';
|
||||
|
||||
// Insert anomaly detection record
|
||||
const { data: anomaly, error: anomalyError } = await supabase
|
||||
.from('anomaly_detections')
|
||||
.insert({
|
||||
metric_name: config.metric_name,
|
||||
metric_category: config.metric_category,
|
||||
anomaly_type: bestResult.anomalyType,
|
||||
severity,
|
||||
baseline_value: bestResult.baselineValue,
|
||||
anomaly_value: bestResult.anomalyValue,
|
||||
deviation_score: bestResult.deviationScore,
|
||||
confidence_score: bestResult.confidenceScore,
|
||||
detection_algorithm: bestResult.algorithm,
|
||||
time_window_start: windowStart.toISOString(),
|
||||
time_window_end: new Date().toISOString(),
|
||||
metadata: {
|
||||
algorithms_run: config.detection_algorithms,
|
||||
total_data_points: data.length,
|
||||
sensitivity: config.sensitivity,
|
||||
},
|
||||
})
|
||||
.select()
|
||||
.single();
|
||||
|
||||
if (anomalyError) {
|
||||
console.error(`Error inserting anomaly for ${config.metric_name}:`, anomalyError);
|
||||
continue;
|
||||
}
|
||||
|
||||
anomaliesDetected.push(anomaly);
|
||||
|
||||
// Auto-create alert if configured
|
||||
if (config.auto_create_alert && severity in ['critical', 'high']) {
|
||||
const { data: alert, error: alertError } = await supabase
|
||||
.from('system_alerts')
|
||||
.insert({
|
||||
alert_type: 'anomaly_detected',
|
||||
severity,
|
||||
message: `Anomaly detected in ${config.metric_name}: ${bestResult.anomalyType} (${bestResult.deviationScore.toFixed(2)}σ deviation)`,
|
||||
metadata: {
|
||||
anomaly_id: anomaly.id,
|
||||
metric_name: config.metric_name,
|
||||
baseline_value: bestResult.baselineValue,
|
||||
anomaly_value: bestResult.anomalyValue,
|
||||
algorithm: bestResult.algorithm,
|
||||
},
|
||||
})
|
||||
.select()
|
||||
.single();
|
||||
|
||||
if (!alertError && alert) {
|
||||
// Update anomaly with alert_id
|
||||
await supabase
|
||||
.from('anomaly_detections')
|
||||
.update({ alert_created: true, alert_id: alert.id })
|
||||
.eq('id', anomaly.id);
|
||||
|
||||
console.log(`Created alert for anomaly in ${config.metric_name}`);
|
||||
}
|
||||
}
|
||||
|
||||
console.log(`Anomaly detected: ${config.metric_name} - ${bestResult.anomalyType} (${bestResult.deviationScore.toFixed(2)}σ)`);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error(`Error processing metric ${config.metric_name}:`, error);
|
||||
}
|
||||
}
|
||||
|
||||
console.log(`Anomaly detection complete. Detected ${anomaliesDetected.length} anomalies`);
|
||||
|
||||
return new Response(
|
||||
JSON.stringify({
|
||||
success: true,
|
||||
anomalies_detected: anomaliesDetected.length,
|
||||
anomalies: anomaliesDetected,
|
||||
}),
|
||||
{ headers: { ...corsHeaders, 'Content-Type': 'application/json' } }
|
||||
);
|
||||
} catch (error) {
|
||||
console.error('Error in detect-anomalies function:', error);
|
||||
return new Response(
|
||||
JSON.stringify({ error: error.message }),
|
||||
{
|
||||
status: 500,
|
||||
headers: { ...corsHeaders, 'Content-Type': 'application/json' },
|
||||
}
|
||||
);
|
||||
}
|
||||
});
|
||||
@@ -0,0 +1,69 @@
|
||||
-- Fix search_path security warnings - drop triggers first, then recreate functions
|
||||
|
||||
-- Drop triggers
|
||||
DROP TRIGGER IF EXISTS trigger_set_incident_number ON incidents;
|
||||
DROP TRIGGER IF EXISTS trigger_update_incident_alert_count ON incident_alerts;
|
||||
|
||||
-- Drop functions
|
||||
DROP FUNCTION IF EXISTS generate_incident_number();
|
||||
DROP FUNCTION IF EXISTS set_incident_number();
|
||||
DROP FUNCTION IF EXISTS update_incident_alert_count();
|
||||
|
||||
-- Recreate functions with proper search_path
|
||||
CREATE OR REPLACE FUNCTION generate_incident_number()
|
||||
RETURNS TEXT
|
||||
LANGUAGE plpgsql
|
||||
SECURITY DEFINER
|
||||
SET search_path = public
|
||||
AS $$
|
||||
BEGIN
|
||||
RETURN 'INC-' || LPAD(nextval('incident_number_seq')::TEXT, 6, '0');
|
||||
END;
|
||||
$$;
|
||||
|
||||
CREATE OR REPLACE FUNCTION set_incident_number()
|
||||
RETURNS TRIGGER
|
||||
LANGUAGE plpgsql
|
||||
SECURITY DEFINER
|
||||
SET search_path = public
|
||||
AS $$
|
||||
BEGIN
|
||||
IF NEW.incident_number IS NULL THEN
|
||||
NEW.incident_number := generate_incident_number();
|
||||
END IF;
|
||||
RETURN NEW;
|
||||
END;
|
||||
$$;
|
||||
|
||||
CREATE OR REPLACE FUNCTION update_incident_alert_count()
|
||||
RETURNS TRIGGER
|
||||
LANGUAGE plpgsql
|
||||
SECURITY DEFINER
|
||||
SET search_path = public
|
||||
AS $$
|
||||
BEGIN
|
||||
IF TG_OP = 'INSERT' THEN
|
||||
UPDATE incidents
|
||||
SET alert_count = alert_count + 1,
|
||||
updated_at = NOW()
|
||||
WHERE id = NEW.incident_id;
|
||||
ELSIF TG_OP = 'DELETE' THEN
|
||||
UPDATE incidents
|
||||
SET alert_count = alert_count - 1,
|
||||
updated_at = NOW()
|
||||
WHERE id = OLD.incident_id;
|
||||
END IF;
|
||||
RETURN NEW;
|
||||
END;
|
||||
$$;
|
||||
|
||||
-- Recreate triggers
|
||||
CREATE TRIGGER trigger_set_incident_number
|
||||
BEFORE INSERT ON incidents
|
||||
FOR EACH ROW
|
||||
EXECUTE FUNCTION set_incident_number();
|
||||
|
||||
CREATE TRIGGER trigger_update_incident_alert_count
|
||||
AFTER INSERT OR DELETE ON incident_alerts
|
||||
FOR EACH ROW
|
||||
EXECUTE FUNCTION update_incident_alert_count();
|
||||
@@ -0,0 +1,143 @@
|
||||
-- ML-based Anomaly Detection System
|
||||
|
||||
-- Table: Time-series metrics for anomaly detection
|
||||
CREATE TABLE metric_time_series (
|
||||
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
|
||||
metric_name TEXT NOT NULL,
|
||||
metric_category TEXT NOT NULL CHECK (metric_category IN ('system', 'database', 'rate_limit', 'moderation', 'api')),
|
||||
metric_value NUMERIC NOT NULL,
|
||||
timestamp TIMESTAMPTZ NOT NULL DEFAULT NOW(),
|
||||
metadata JSONB,
|
||||
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW()
|
||||
);
|
||||
|
||||
-- Table: Detected anomalies
|
||||
CREATE TABLE anomaly_detections (
|
||||
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
|
||||
metric_name TEXT NOT NULL,
|
||||
metric_category TEXT NOT NULL,
|
||||
anomaly_type TEXT NOT NULL CHECK (anomaly_type IN ('spike', 'drop', 'trend_change', 'outlier', 'pattern_break')),
|
||||
severity TEXT NOT NULL CHECK (severity IN ('critical', 'high', 'medium', 'low')),
|
||||
baseline_value NUMERIC NOT NULL,
|
||||
anomaly_value NUMERIC NOT NULL,
|
||||
deviation_score NUMERIC NOT NULL,
|
||||
confidence_score NUMERIC NOT NULL CHECK (confidence_score >= 0 AND confidence_score <= 1),
|
||||
detection_algorithm TEXT NOT NULL,
|
||||
time_window_start TIMESTAMPTZ NOT NULL,
|
||||
time_window_end TIMESTAMPTZ NOT NULL,
|
||||
detected_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
|
||||
alert_created BOOLEAN NOT NULL DEFAULT false,
|
||||
alert_id UUID,
|
||||
metadata JSONB,
|
||||
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW()
|
||||
);
|
||||
|
||||
-- Table: Anomaly detection configuration
|
||||
CREATE TABLE anomaly_detection_config (
|
||||
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
|
||||
metric_name TEXT NOT NULL UNIQUE,
|
||||
metric_category TEXT NOT NULL,
|
||||
enabled BOOLEAN NOT NULL DEFAULT true,
|
||||
sensitivity NUMERIC NOT NULL DEFAULT 3.0 CHECK (sensitivity > 0),
|
||||
lookback_window_minutes INTEGER NOT NULL DEFAULT 60,
|
||||
detection_algorithms TEXT[] NOT NULL DEFAULT ARRAY['z_score', 'moving_average', 'rate_of_change'],
|
||||
min_data_points INTEGER NOT NULL DEFAULT 10,
|
||||
alert_threshold_score NUMERIC NOT NULL DEFAULT 2.5,
|
||||
auto_create_alert BOOLEAN NOT NULL DEFAULT true,
|
||||
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
|
||||
updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW()
|
||||
);
|
||||
|
||||
-- View: Recent anomalies with alert status
|
||||
CREATE OR REPLACE VIEW recent_anomalies_view
|
||||
WITH (security_invoker=on)
|
||||
AS
|
||||
SELECT
|
||||
ad.id,
|
||||
ad.metric_name,
|
||||
ad.metric_category,
|
||||
ad.anomaly_type,
|
||||
ad.severity,
|
||||
ad.baseline_value,
|
||||
ad.anomaly_value,
|
||||
ad.deviation_score,
|
||||
ad.confidence_score,
|
||||
ad.detection_algorithm,
|
||||
ad.time_window_start,
|
||||
ad.time_window_end,
|
||||
ad.detected_at,
|
||||
ad.alert_created,
|
||||
ad.alert_id,
|
||||
sa.message as alert_message,
|
||||
sa.resolved_at as alert_resolved_at
|
||||
FROM anomaly_detections ad
|
||||
LEFT JOIN system_alerts sa ON sa.id = ad.alert_id::uuid
|
||||
WHERE ad.detected_at > NOW() - INTERVAL '24 hours'
|
||||
ORDER BY ad.detected_at DESC;
|
||||
|
||||
-- Insert default anomaly detection configurations
|
||||
INSERT INTO anomaly_detection_config (metric_name, metric_category, sensitivity, lookback_window_minutes, detection_algorithms, alert_threshold_score) VALUES
|
||||
('error_rate', 'system', 2.5, 60, ARRAY['z_score', 'moving_average'], 2.0),
|
||||
('response_time', 'api', 3.0, 30, ARRAY['z_score', 'rate_of_change'], 2.5),
|
||||
('database_connections', 'database', 2.0, 120, ARRAY['z_score', 'moving_average'], 3.0),
|
||||
('rate_limit_violations', 'rate_limit', 2.5, 60, ARRAY['z_score', 'spike_detection'], 2.0),
|
||||
('moderation_queue_size', 'moderation', 3.0, 120, ARRAY['z_score', 'trend_change'], 2.5),
|
||||
('cpu_usage', 'system', 2.5, 30, ARRAY['z_score', 'moving_average'], 2.0),
|
||||
('memory_usage', 'system', 2.5, 30, ARRAY['z_score', 'moving_average'], 2.0),
|
||||
('request_rate', 'api', 3.0, 60, ARRAY['z_score', 'rate_of_change'], 2.5);
|
||||
|
||||
-- Create indexes
|
||||
CREATE INDEX idx_metric_time_series_name_timestamp ON metric_time_series(metric_name, timestamp DESC);
|
||||
CREATE INDEX idx_metric_time_series_category_timestamp ON metric_time_series(metric_category, timestamp DESC);
|
||||
CREATE INDEX idx_anomaly_detections_detected_at ON anomaly_detections(detected_at DESC);
|
||||
CREATE INDEX idx_anomaly_detections_alert_created ON anomaly_detections(alert_created) WHERE alert_created = false;
|
||||
CREATE INDEX idx_anomaly_detections_metric ON anomaly_detections(metric_name, detected_at DESC);
|
||||
|
||||
-- Grant permissions
|
||||
GRANT SELECT, INSERT ON metric_time_series TO authenticated;
|
||||
GRANT SELECT ON anomaly_detections TO authenticated;
|
||||
GRANT SELECT ON anomaly_detection_config TO authenticated;
|
||||
GRANT SELECT ON recent_anomalies_view TO authenticated;
|
||||
|
||||
-- RLS Policies
|
||||
ALTER TABLE metric_time_series ENABLE ROW LEVEL SECURITY;
|
||||
ALTER TABLE anomaly_detections ENABLE ROW LEVEL SECURITY;
|
||||
ALTER TABLE anomaly_detection_config ENABLE ROW LEVEL SECURITY;
|
||||
|
||||
-- System can insert metrics
|
||||
CREATE POLICY system_insert_metrics ON metric_time_series
|
||||
FOR INSERT WITH CHECK (true);
|
||||
|
||||
-- Moderators can view all metrics
|
||||
CREATE POLICY moderators_view_metrics ON metric_time_series
|
||||
FOR SELECT USING (
|
||||
EXISTS (
|
||||
SELECT 1 FROM user_roles
|
||||
WHERE user_id = auth.uid()
|
||||
AND role IN ('moderator', 'admin', 'superuser')
|
||||
)
|
||||
);
|
||||
|
||||
-- Moderators can view anomalies
|
||||
CREATE POLICY moderators_view_anomalies ON anomaly_detections
|
||||
FOR SELECT USING (
|
||||
EXISTS (
|
||||
SELECT 1 FROM user_roles
|
||||
WHERE user_id = auth.uid()
|
||||
AND role IN ('moderator', 'admin', 'superuser')
|
||||
)
|
||||
);
|
||||
|
||||
-- System can insert anomalies
|
||||
CREATE POLICY system_insert_anomalies ON anomaly_detections
|
||||
FOR INSERT WITH CHECK (true);
|
||||
|
||||
-- Admins can manage anomaly config
|
||||
CREATE POLICY admins_manage_config ON anomaly_detection_config
|
||||
FOR ALL USING (
|
||||
EXISTS (
|
||||
SELECT 1 FROM user_roles
|
||||
WHERE user_id = auth.uid()
|
||||
AND role IN ('admin', 'superuser')
|
||||
)
|
||||
);
|
||||
@@ -0,0 +1,222 @@
|
||||
-- Data Retention Policy Functions
|
||||
-- Functions to automatically clean up old metrics and anomaly detections
|
||||
|
||||
-- Function to clean up old metric time series data (older than retention_days)
|
||||
CREATE OR REPLACE FUNCTION cleanup_old_metrics(retention_days INTEGER DEFAULT 30)
|
||||
RETURNS TABLE(deleted_count BIGINT) AS $$
|
||||
DECLARE
|
||||
cutoff_date TIMESTAMP WITH TIME ZONE;
|
||||
rows_deleted BIGINT;
|
||||
BEGIN
|
||||
-- Calculate cutoff date
|
||||
cutoff_date := NOW() - (retention_days || ' days')::INTERVAL;
|
||||
|
||||
-- Delete old metrics
|
||||
DELETE FROM metric_time_series
|
||||
WHERE timestamp < cutoff_date;
|
||||
|
||||
GET DIAGNOSTICS rows_deleted = ROW_COUNT;
|
||||
|
||||
-- Log the cleanup
|
||||
INSERT INTO system_alerts (
|
||||
alert_type,
|
||||
severity,
|
||||
message,
|
||||
metadata
|
||||
) VALUES (
|
||||
'data_retention',
|
||||
'info',
|
||||
format('Cleaned up %s old metrics (older than %s days)', rows_deleted, retention_days),
|
||||
jsonb_build_object(
|
||||
'deleted_count', rows_deleted,
|
||||
'retention_days', retention_days,
|
||||
'cutoff_date', cutoff_date
|
||||
)
|
||||
);
|
||||
|
||||
RETURN QUERY SELECT rows_deleted;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql SECURITY DEFINER;
|
||||
|
||||
-- Function to archive and clean up old anomaly detections
|
||||
CREATE OR REPLACE FUNCTION cleanup_old_anomalies(retention_days INTEGER DEFAULT 30)
|
||||
RETURNS TABLE(archived_count BIGINT, deleted_count BIGINT) AS $$
|
||||
DECLARE
|
||||
cutoff_date TIMESTAMP WITH TIME ZONE;
|
||||
rows_archived BIGINT := 0;
|
||||
rows_deleted BIGINT := 0;
|
||||
BEGIN
|
||||
-- Calculate cutoff date
|
||||
cutoff_date := NOW() - (retention_days || ' days')::INTERVAL;
|
||||
|
||||
-- Archive resolved anomalies older than 7 days
|
||||
WITH archived AS (
|
||||
DELETE FROM anomaly_detections
|
||||
WHERE detected_at < NOW() - INTERVAL '7 days'
|
||||
AND alert_created = true
|
||||
RETURNING *
|
||||
)
|
||||
SELECT COUNT(*) INTO rows_archived FROM archived;
|
||||
|
||||
-- Delete very old unresolved anomalies (older than retention period)
|
||||
DELETE FROM anomaly_detections
|
||||
WHERE detected_at < cutoff_date
|
||||
AND alert_created = false;
|
||||
|
||||
GET DIAGNOSTICS rows_deleted = ROW_COUNT;
|
||||
|
||||
-- Log the cleanup
|
||||
INSERT INTO system_alerts (
|
||||
alert_type,
|
||||
severity,
|
||||
message,
|
||||
metadata
|
||||
) VALUES (
|
||||
'data_retention',
|
||||
'info',
|
||||
format('Archived %s and deleted %s old anomaly detections', rows_archived, rows_deleted),
|
||||
jsonb_build_object(
|
||||
'archived_count', rows_archived,
|
||||
'deleted_count', rows_deleted,
|
||||
'retention_days', retention_days
|
||||
)
|
||||
);
|
||||
|
||||
RETURN QUERY SELECT rows_archived, rows_deleted;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql SECURITY DEFINER;
|
||||
|
||||
-- Function to clean up old resolved alerts
|
||||
CREATE OR REPLACE FUNCTION cleanup_old_alerts(retention_days INTEGER DEFAULT 90)
|
||||
RETURNS TABLE(deleted_count BIGINT) AS $$
|
||||
DECLARE
|
||||
cutoff_date TIMESTAMP WITH TIME ZONE;
|
||||
rows_deleted BIGINT;
|
||||
BEGIN
|
||||
-- Calculate cutoff date
|
||||
cutoff_date := NOW() - (retention_days || ' days')::INTERVAL;
|
||||
|
||||
-- Delete old resolved alerts
|
||||
DELETE FROM system_alerts
|
||||
WHERE created_at < cutoff_date
|
||||
AND resolved = true;
|
||||
|
||||
GET DIAGNOSTICS rows_deleted = ROW_COUNT;
|
||||
|
||||
RAISE NOTICE 'Cleaned up % old resolved alerts (older than % days)', rows_deleted, retention_days;
|
||||
|
||||
RETURN QUERY SELECT rows_deleted;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql SECURITY DEFINER;
|
||||
|
||||
-- Function to clean up old resolved incidents
|
||||
CREATE OR REPLACE FUNCTION cleanup_old_incidents(retention_days INTEGER DEFAULT 90)
|
||||
RETURNS TABLE(deleted_count BIGINT) AS $$
|
||||
DECLARE
|
||||
cutoff_date TIMESTAMP WITH TIME ZONE;
|
||||
rows_deleted BIGINT;
|
||||
BEGIN
|
||||
-- Calculate cutoff date
|
||||
cutoff_date := NOW() - (retention_days || ' days')::INTERVAL;
|
||||
|
||||
-- Delete old resolved incidents
|
||||
DELETE FROM incidents
|
||||
WHERE created_at < cutoff_date
|
||||
AND status = 'resolved';
|
||||
|
||||
GET DIAGNOSTICS rows_deleted = ROW_COUNT;
|
||||
|
||||
RAISE NOTICE 'Cleaned up % old resolved incidents (older than % days)', rows_deleted, retention_days;
|
||||
|
||||
RETURN QUERY SELECT rows_deleted;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql SECURITY DEFINER;
|
||||
|
||||
-- Master cleanup function that runs all retention policies
|
||||
CREATE OR REPLACE FUNCTION run_data_retention_cleanup()
|
||||
RETURNS jsonb AS $$
|
||||
DECLARE
|
||||
metrics_deleted BIGINT;
|
||||
anomalies_archived BIGINT;
|
||||
anomalies_deleted BIGINT;
|
||||
alerts_deleted BIGINT;
|
||||
incidents_deleted BIGINT;
|
||||
result jsonb;
|
||||
BEGIN
|
||||
-- Run all cleanup functions
|
||||
SELECT deleted_count INTO metrics_deleted FROM cleanup_old_metrics(30);
|
||||
SELECT archived_count, deleted_count INTO anomalies_archived, anomalies_deleted FROM cleanup_old_anomalies(30);
|
||||
SELECT deleted_count INTO alerts_deleted FROM cleanup_old_alerts(90);
|
||||
SELECT deleted_count INTO incidents_deleted FROM cleanup_old_incidents(90);
|
||||
|
||||
-- Build result
|
||||
result := jsonb_build_object(
|
||||
'success', true,
|
||||
'timestamp', NOW(),
|
||||
'cleanup_results', jsonb_build_object(
|
||||
'metrics_deleted', metrics_deleted,
|
||||
'anomalies_archived', anomalies_archived,
|
||||
'anomalies_deleted', anomalies_deleted,
|
||||
'alerts_deleted', alerts_deleted,
|
||||
'incidents_deleted', incidents_deleted
|
||||
)
|
||||
);
|
||||
|
||||
RETURN result;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql SECURITY DEFINER;
|
||||
|
||||
-- Grant execute permissions to authenticated users
|
||||
GRANT EXECUTE ON FUNCTION cleanup_old_metrics(INTEGER) TO authenticated;
|
||||
GRANT EXECUTE ON FUNCTION cleanup_old_anomalies(INTEGER) TO authenticated;
|
||||
GRANT EXECUTE ON FUNCTION cleanup_old_alerts(INTEGER) TO authenticated;
|
||||
GRANT EXECUTE ON FUNCTION cleanup_old_incidents(INTEGER) TO authenticated;
|
||||
GRANT EXECUTE ON FUNCTION run_data_retention_cleanup() TO authenticated;
|
||||
|
||||
-- Create a view to show current data retention statistics
|
||||
CREATE OR REPLACE VIEW data_retention_stats AS
|
||||
SELECT
|
||||
'metrics' AS table_name,
|
||||
COUNT(*) AS total_records,
|
||||
COUNT(*) FILTER (WHERE timestamp > NOW() - INTERVAL '7 days') AS last_7_days,
|
||||
COUNT(*) FILTER (WHERE timestamp > NOW() - INTERVAL '30 days') AS last_30_days,
|
||||
MIN(timestamp) AS oldest_record,
|
||||
MAX(timestamp) AS newest_record,
|
||||
pg_size_pretty(pg_total_relation_size('metric_time_series')) AS table_size
|
||||
FROM metric_time_series
|
||||
UNION ALL
|
||||
SELECT
|
||||
'anomaly_detections' AS table_name,
|
||||
COUNT(*) AS total_records,
|
||||
COUNT(*) FILTER (WHERE detected_at > NOW() - INTERVAL '7 days') AS last_7_days,
|
||||
COUNT(*) FILTER (WHERE detected_at > NOW() - INTERVAL '30 days') AS last_30_days,
|
||||
MIN(detected_at) AS oldest_record,
|
||||
MAX(detected_at) AS newest_record,
|
||||
pg_size_pretty(pg_total_relation_size('anomaly_detections')) AS table_size
|
||||
FROM anomaly_detections
|
||||
UNION ALL
|
||||
SELECT
|
||||
'system_alerts' AS table_name,
|
||||
COUNT(*) AS total_records,
|
||||
COUNT(*) FILTER (WHERE created_at > NOW() - INTERVAL '7 days') AS last_7_days,
|
||||
COUNT(*) FILTER (WHERE created_at > NOW() - INTERVAL '30 days') AS last_30_days,
|
||||
MIN(created_at) AS oldest_record,
|
||||
MAX(created_at) AS newest_record,
|
||||
pg_size_pretty(pg_total_relation_size('system_alerts')) AS table_size
|
||||
FROM system_alerts
|
||||
UNION ALL
|
||||
SELECT
|
||||
'incidents' AS table_name,
|
||||
COUNT(*) AS total_records,
|
||||
COUNT(*) FILTER (WHERE created_at > NOW() - INTERVAL '7 days') AS last_7_days,
|
||||
COUNT(*) FILTER (WHERE created_at > NOW() - INTERVAL '30 days') AS last_30_days,
|
||||
MIN(created_at) AS oldest_record,
|
||||
MAX(created_at) AS newest_record,
|
||||
pg_size_pretty(pg_total_relation_size('incidents')) AS table_size
|
||||
FROM incidents;
|
||||
|
||||
-- Enable RLS on the view
|
||||
ALTER VIEW data_retention_stats SET (security_invoker = on);
|
||||
|
||||
-- Grant select on view
|
||||
GRANT SELECT ON data_retention_stats TO authenticated;
|
||||
Reference in New Issue
Block a user