import { createClient } from 'https://esm.sh/@supabase/supabase-js@2.57.4'; const corsHeaders = { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Headers': 'authorization, x-client-info, apikey, content-type', }; interface MetricData { timestamp: string; metric_value: number; } interface AnomalyDetectionConfig { metric_name: string; metric_category: string; enabled: boolean; sensitivity: number; lookback_window_minutes: number; detection_algorithms: string[]; min_data_points: number; alert_threshold_score: number; auto_create_alert: boolean; } interface AnomalyResult { isAnomaly: boolean; anomalyType: string; deviationScore: number; confidenceScore: number; algorithm: string; baselineValue: number; anomalyValue: number; } // Statistical anomaly detection algorithms class AnomalyDetector { // Z-Score algorithm: Detects outliers based on standard deviation static zScore(data: number[], currentValue: number, sensitivity: number = 3.0): AnomalyResult { if (data.length < 2) { return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'z_score', baselineValue: currentValue, anomalyValue: currentValue }; } const mean = data.reduce((sum, val) => sum + val, 0) / data.length; const variance = data.reduce((sum, val) => sum + Math.pow(val - mean, 2), 0) / data.length; const stdDev = Math.sqrt(variance); if (stdDev === 0) { return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'z_score', baselineValue: mean, anomalyValue: currentValue }; } const zScore = Math.abs((currentValue - mean) / stdDev); const isAnomaly = zScore > sensitivity; return { isAnomaly, anomalyType: currentValue > mean ? 'spike' : 'drop', deviationScore: zScore, confidenceScore: Math.min(zScore / (sensitivity * 2), 1), algorithm: 'z_score', baselineValue: mean, anomalyValue: currentValue, }; } // Moving Average algorithm: Detects deviation from trend static movingAverage(data: number[], currentValue: number, sensitivity: number = 2.5, window: number = 10): AnomalyResult { if (data.length < window) { return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'moving_average', baselineValue: currentValue, anomalyValue: currentValue }; } const recentData = data.slice(-window); const ma = recentData.reduce((sum, val) => sum + val, 0) / recentData.length; const mad = recentData.reduce((sum, val) => sum + Math.abs(val - ma), 0) / recentData.length; if (mad === 0) { return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'moving_average', baselineValue: ma, anomalyValue: currentValue }; } const deviation = Math.abs(currentValue - ma) / mad; const isAnomaly = deviation > sensitivity; return { isAnomaly, anomalyType: currentValue > ma ? 'spike' : 'drop', deviationScore: deviation, confidenceScore: Math.min(deviation / (sensitivity * 2), 1), algorithm: 'moving_average', baselineValue: ma, anomalyValue: currentValue, }; } // Rate of Change algorithm: Detects sudden changes static rateOfChange(data: number[], currentValue: number, sensitivity: number = 3.0): AnomalyResult { if (data.length < 2) { return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'rate_of_change', baselineValue: currentValue, anomalyValue: currentValue }; } const previousValue = data[data.length - 1]; if (previousValue === 0) { return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'rate_of_change', baselineValue: previousValue, anomalyValue: currentValue }; } const percentChange = Math.abs((currentValue - previousValue) / previousValue) * 100; const isAnomaly = percentChange > (sensitivity * 10); // sensitivity * 10 = % threshold return { isAnomaly, anomalyType: currentValue > previousValue ? 'trend_change' : 'drop', deviationScore: percentChange / 10, confidenceScore: Math.min(percentChange / (sensitivity * 20), 1), algorithm: 'rate_of_change', baselineValue: previousValue, anomalyValue: currentValue, }; } } Deno.serve(async (req) => { if (req.method === 'OPTIONS') { return new Response(null, { headers: corsHeaders }); } try { const supabaseUrl = Deno.env.get('SUPABASE_URL')!; const supabaseKey = Deno.env.get('SUPABASE_SERVICE_ROLE_KEY')!; const supabase = createClient(supabaseUrl, supabaseKey); console.log('Starting anomaly detection run...'); // Get all enabled anomaly detection configurations const { data: configs, error: configError } = await supabase .from('anomaly_detection_config') .select('*') .eq('enabled', true); if (configError) { console.error('Error fetching configs:', configError); throw configError; } console.log(`Processing ${configs?.length || 0} metric configurations`); const anomaliesDetected: any[] = []; for (const config of (configs as AnomalyDetectionConfig[])) { try { // Fetch historical data for this metric const windowStart = new Date(Date.now() - config.lookback_window_minutes * 60 * 1000); const { data: metricData, error: metricError } = await supabase .from('metric_time_series') .select('timestamp, metric_value') .eq('metric_name', config.metric_name) .gte('timestamp', windowStart.toISOString()) .order('timestamp', { ascending: true }); if (metricError) { console.error(`Error fetching metric data for ${config.metric_name}:`, metricError); continue; } const data = metricData as MetricData[]; if (!data || data.length < config.min_data_points) { console.log(`Insufficient data for ${config.metric_name}: ${data?.length || 0} points`); continue; } // Get current value (most recent) const currentValue = data[data.length - 1].metric_value; const historicalValues = data.slice(0, -1).map(d => d.metric_value); // Run detection algorithms const results: AnomalyResult[] = []; for (const algorithm of config.detection_algorithms) { let result: AnomalyResult; switch (algorithm) { case 'z_score': result = AnomalyDetector.zScore(historicalValues, currentValue, config.sensitivity); break; case 'moving_average': result = AnomalyDetector.movingAverage(historicalValues, currentValue, config.sensitivity); break; case 'rate_of_change': result = AnomalyDetector.rateOfChange(historicalValues, currentValue, config.sensitivity); break; default: continue; } if (result.isAnomaly && result.deviationScore >= config.alert_threshold_score) { results.push(result); } } // If any algorithm detected an anomaly if (results.length > 0) { // Use the result with highest confidence const bestResult = results.reduce((best, current) => current.confidenceScore > best.confidenceScore ? current : best ); // Determine severity based on deviation score const severity = bestResult.deviationScore >= 5 ? 'critical' : bestResult.deviationScore >= 4 ? 'high' : bestResult.deviationScore >= 3 ? 'medium' : 'low'; // Insert anomaly detection record const { data: anomaly, error: anomalyError } = await supabase .from('anomaly_detections') .insert({ metric_name: config.metric_name, metric_category: config.metric_category, anomaly_type: bestResult.anomalyType, severity, baseline_value: bestResult.baselineValue, anomaly_value: bestResult.anomalyValue, deviation_score: bestResult.deviationScore, confidence_score: bestResult.confidenceScore, detection_algorithm: bestResult.algorithm, time_window_start: windowStart.toISOString(), time_window_end: new Date().toISOString(), metadata: { algorithms_run: config.detection_algorithms, total_data_points: data.length, sensitivity: config.sensitivity, }, }) .select() .single(); if (anomalyError) { console.error(`Error inserting anomaly for ${config.metric_name}:`, anomalyError); continue; } anomaliesDetected.push(anomaly); // Auto-create alert if configured if (config.auto_create_alert && severity in ['critical', 'high']) { const { data: alert, error: alertError } = await supabase .from('system_alerts') .insert({ alert_type: 'anomaly_detected', severity, message: `Anomaly detected in ${config.metric_name}: ${bestResult.anomalyType} (${bestResult.deviationScore.toFixed(2)}σ deviation)`, metadata: { anomaly_id: anomaly.id, metric_name: config.metric_name, baseline_value: bestResult.baselineValue, anomaly_value: bestResult.anomalyValue, algorithm: bestResult.algorithm, }, }) .select() .single(); if (!alertError && alert) { // Update anomaly with alert_id await supabase .from('anomaly_detections') .update({ alert_created: true, alert_id: alert.id }) .eq('id', anomaly.id); console.log(`Created alert for anomaly in ${config.metric_name}`); } } console.log(`Anomaly detected: ${config.metric_name} - ${bestResult.anomalyType} (${bestResult.deviationScore.toFixed(2)}σ)`); } } catch (error) { console.error(`Error processing metric ${config.metric_name}:`, error); } } console.log(`Anomaly detection complete. Detected ${anomaliesDetected.length} anomalies`); return new Response( JSON.stringify({ success: true, anomalies_detected: anomaliesDetected.length, anomalies: anomaliesDetected, }), { headers: { ...corsHeaders, 'Content-Type': 'application/json' } } ); } catch (error) { console.error('Error in detect-anomalies function:', error); return new Response( JSON.stringify({ error: error.message }), { status: 500, headers: { ...corsHeaders, 'Content-Type': 'application/json' }, } ); } });