Files
thrilltrack-explorer/supabase/functions/detect-anomalies/index.ts
gpt-engineer-app[bot] be94b4252c Implement ML Anomaly Detection
Introduce statistical anomaly detection for metrics via edge function, hooks, and UI components. Adds detection algorithms (z-score, moving average, rate of change), anomaly storage, auto-alerts, and dashboard rendering of detected anomalies with run-once trigger and scheduling guidance.
2025-11-11 02:07:49 +00:00

303 lines
11 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import { createClient } from 'https://esm.sh/@supabase/supabase-js@2.57.4';
const corsHeaders = {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Headers': 'authorization, x-client-info, apikey, content-type',
};
interface MetricData {
timestamp: string;
metric_value: number;
}
interface AnomalyDetectionConfig {
metric_name: string;
metric_category: string;
enabled: boolean;
sensitivity: number;
lookback_window_minutes: number;
detection_algorithms: string[];
min_data_points: number;
alert_threshold_score: number;
auto_create_alert: boolean;
}
interface AnomalyResult {
isAnomaly: boolean;
anomalyType: string;
deviationScore: number;
confidenceScore: number;
algorithm: string;
baselineValue: number;
anomalyValue: number;
}
// Statistical anomaly detection algorithms
class AnomalyDetector {
// Z-Score algorithm: Detects outliers based on standard deviation
static zScore(data: number[], currentValue: number, sensitivity: number = 3.0): AnomalyResult {
if (data.length < 2) {
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'z_score', baselineValue: currentValue, anomalyValue: currentValue };
}
const mean = data.reduce((sum, val) => sum + val, 0) / data.length;
const variance = data.reduce((sum, val) => sum + Math.pow(val - mean, 2), 0) / data.length;
const stdDev = Math.sqrt(variance);
if (stdDev === 0) {
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'z_score', baselineValue: mean, anomalyValue: currentValue };
}
const zScore = Math.abs((currentValue - mean) / stdDev);
const isAnomaly = zScore > sensitivity;
return {
isAnomaly,
anomalyType: currentValue > mean ? 'spike' : 'drop',
deviationScore: zScore,
confidenceScore: Math.min(zScore / (sensitivity * 2), 1),
algorithm: 'z_score',
baselineValue: mean,
anomalyValue: currentValue,
};
}
// Moving Average algorithm: Detects deviation from trend
static movingAverage(data: number[], currentValue: number, sensitivity: number = 2.5, window: number = 10): AnomalyResult {
if (data.length < window) {
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'moving_average', baselineValue: currentValue, anomalyValue: currentValue };
}
const recentData = data.slice(-window);
const ma = recentData.reduce((sum, val) => sum + val, 0) / recentData.length;
const mad = recentData.reduce((sum, val) => sum + Math.abs(val - ma), 0) / recentData.length;
if (mad === 0) {
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'moving_average', baselineValue: ma, anomalyValue: currentValue };
}
const deviation = Math.abs(currentValue - ma) / mad;
const isAnomaly = deviation > sensitivity;
return {
isAnomaly,
anomalyType: currentValue > ma ? 'spike' : 'drop',
deviationScore: deviation,
confidenceScore: Math.min(deviation / (sensitivity * 2), 1),
algorithm: 'moving_average',
baselineValue: ma,
anomalyValue: currentValue,
};
}
// Rate of Change algorithm: Detects sudden changes
static rateOfChange(data: number[], currentValue: number, sensitivity: number = 3.0): AnomalyResult {
if (data.length < 2) {
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'rate_of_change', baselineValue: currentValue, anomalyValue: currentValue };
}
const previousValue = data[data.length - 1];
if (previousValue === 0) {
return { isAnomaly: false, anomalyType: 'none', deviationScore: 0, confidenceScore: 0, algorithm: 'rate_of_change', baselineValue: previousValue, anomalyValue: currentValue };
}
const percentChange = Math.abs((currentValue - previousValue) / previousValue) * 100;
const isAnomaly = percentChange > (sensitivity * 10); // sensitivity * 10 = % threshold
return {
isAnomaly,
anomalyType: currentValue > previousValue ? 'trend_change' : 'drop',
deviationScore: percentChange / 10,
confidenceScore: Math.min(percentChange / (sensitivity * 20), 1),
algorithm: 'rate_of_change',
baselineValue: previousValue,
anomalyValue: currentValue,
};
}
}
Deno.serve(async (req) => {
if (req.method === 'OPTIONS') {
return new Response(null, { headers: corsHeaders });
}
try {
const supabaseUrl = Deno.env.get('SUPABASE_URL')!;
const supabaseKey = Deno.env.get('SUPABASE_SERVICE_ROLE_KEY')!;
const supabase = createClient(supabaseUrl, supabaseKey);
console.log('Starting anomaly detection run...');
// Get all enabled anomaly detection configurations
const { data: configs, error: configError } = await supabase
.from('anomaly_detection_config')
.select('*')
.eq('enabled', true);
if (configError) {
console.error('Error fetching configs:', configError);
throw configError;
}
console.log(`Processing ${configs?.length || 0} metric configurations`);
const anomaliesDetected: any[] = [];
for (const config of (configs as AnomalyDetectionConfig[])) {
try {
// Fetch historical data for this metric
const windowStart = new Date(Date.now() - config.lookback_window_minutes * 60 * 1000);
const { data: metricData, error: metricError } = await supabase
.from('metric_time_series')
.select('timestamp, metric_value')
.eq('metric_name', config.metric_name)
.gte('timestamp', windowStart.toISOString())
.order('timestamp', { ascending: true });
if (metricError) {
console.error(`Error fetching metric data for ${config.metric_name}:`, metricError);
continue;
}
const data = metricData as MetricData[];
if (!data || data.length < config.min_data_points) {
console.log(`Insufficient data for ${config.metric_name}: ${data?.length || 0} points`);
continue;
}
// Get current value (most recent)
const currentValue = data[data.length - 1].metric_value;
const historicalValues = data.slice(0, -1).map(d => d.metric_value);
// Run detection algorithms
const results: AnomalyResult[] = [];
for (const algorithm of config.detection_algorithms) {
let result: AnomalyResult;
switch (algorithm) {
case 'z_score':
result = AnomalyDetector.zScore(historicalValues, currentValue, config.sensitivity);
break;
case 'moving_average':
result = AnomalyDetector.movingAverage(historicalValues, currentValue, config.sensitivity);
break;
case 'rate_of_change':
result = AnomalyDetector.rateOfChange(historicalValues, currentValue, config.sensitivity);
break;
default:
continue;
}
if (result.isAnomaly && result.deviationScore >= config.alert_threshold_score) {
results.push(result);
}
}
// If any algorithm detected an anomaly
if (results.length > 0) {
// Use the result with highest confidence
const bestResult = results.reduce((best, current) =>
current.confidenceScore > best.confidenceScore ? current : best
);
// Determine severity based on deviation score
const severity =
bestResult.deviationScore >= 5 ? 'critical' :
bestResult.deviationScore >= 4 ? 'high' :
bestResult.deviationScore >= 3 ? 'medium' : 'low';
// Insert anomaly detection record
const { data: anomaly, error: anomalyError } = await supabase
.from('anomaly_detections')
.insert({
metric_name: config.metric_name,
metric_category: config.metric_category,
anomaly_type: bestResult.anomalyType,
severity,
baseline_value: bestResult.baselineValue,
anomaly_value: bestResult.anomalyValue,
deviation_score: bestResult.deviationScore,
confidence_score: bestResult.confidenceScore,
detection_algorithm: bestResult.algorithm,
time_window_start: windowStart.toISOString(),
time_window_end: new Date().toISOString(),
metadata: {
algorithms_run: config.detection_algorithms,
total_data_points: data.length,
sensitivity: config.sensitivity,
},
})
.select()
.single();
if (anomalyError) {
console.error(`Error inserting anomaly for ${config.metric_name}:`, anomalyError);
continue;
}
anomaliesDetected.push(anomaly);
// Auto-create alert if configured
if (config.auto_create_alert && severity in ['critical', 'high']) {
const { data: alert, error: alertError } = await supabase
.from('system_alerts')
.insert({
alert_type: 'anomaly_detected',
severity,
message: `Anomaly detected in ${config.metric_name}: ${bestResult.anomalyType} (${bestResult.deviationScore.toFixed(2)}σ deviation)`,
metadata: {
anomaly_id: anomaly.id,
metric_name: config.metric_name,
baseline_value: bestResult.baselineValue,
anomaly_value: bestResult.anomalyValue,
algorithm: bestResult.algorithm,
},
})
.select()
.single();
if (!alertError && alert) {
// Update anomaly with alert_id
await supabase
.from('anomaly_detections')
.update({ alert_created: true, alert_id: alert.id })
.eq('id', anomaly.id);
console.log(`Created alert for anomaly in ${config.metric_name}`);
}
}
console.log(`Anomaly detected: ${config.metric_name} - ${bestResult.anomalyType} (${bestResult.deviationScore.toFixed(2)}σ)`);
}
} catch (error) {
console.error(`Error processing metric ${config.metric_name}:`, error);
}
}
console.log(`Anomaly detection complete. Detected ${anomaliesDetected.length} anomalies`);
return new Response(
JSON.stringify({
success: true,
anomalies_detected: anomaliesDetected.length,
anomalies: anomaliesDetected,
}),
{ headers: { ...corsHeaders, 'Content-Type': 'application/json' } }
);
} catch (error) {
console.error('Error in detect-anomalies function:', error);
return new Response(
JSON.stringify({ error: error.message }),
{
status: 500,
headers: { ...corsHeaders, 'Content-Type': 'application/json' },
}
);
}
});