Files
thrilltrack-explorer/src/components/admin/AnomalyDetectionPanel.tsx
gpt-engineer-app[bot] be94b4252c Implement ML Anomaly Detection
Introduce statistical anomaly detection for metrics via edge function, hooks, and UI components. Adds detection algorithms (z-score, moving average, rate of change), anomaly storage, auto-alerts, and dashboard rendering of detected anomalies with run-once trigger and scheduling guidance.
2025-11-11 02:07:49 +00:00

170 lines
7.1 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import { Card, CardContent, CardDescription, CardHeader, CardTitle } from '@/components/ui/card';
import { Button } from '@/components/ui/button';
import { Badge } from '@/components/ui/badge';
import { Brain, TrendingUp, TrendingDown, Activity, AlertTriangle, Play, Sparkles } from 'lucide-react';
import { formatDistanceToNow } from 'date-fns';
import type { AnomalyDetection } from '@/hooks/admin/useAnomalyDetection';
import { useRunAnomalyDetection } from '@/hooks/admin/useAnomalyDetection';
interface AnomalyDetectionPanelProps {
anomalies?: AnomalyDetection[];
isLoading: boolean;
}
const ANOMALY_TYPE_CONFIG = {
spike: { icon: TrendingUp, label: 'Spike', color: 'text-orange-500' },
drop: { icon: TrendingDown, label: 'Drop', color: 'text-blue-500' },
trend_change: { icon: Activity, label: 'Trend Change', color: 'text-purple-500' },
outlier: { icon: AlertTriangle, label: 'Outlier', color: 'text-yellow-500' },
pattern_break: { icon: Activity, label: 'Pattern Break', color: 'text-red-500' },
};
const SEVERITY_CONFIG = {
critical: { badge: 'destructive', label: 'Critical' },
high: { badge: 'default', label: 'High' },
medium: { badge: 'secondary', label: 'Medium' },
low: { badge: 'outline', label: 'Low' },
};
export function AnomalyDetectionPanel({ anomalies, isLoading }: AnomalyDetectionPanelProps) {
const runDetection = useRunAnomalyDetection();
const handleRunDetection = () => {
runDetection.mutate();
};
if (isLoading) {
return (
<Card>
<CardHeader>
<CardTitle className="flex items-center gap-2">
<Brain className="h-5 w-5" />
ML Anomaly Detection
</CardTitle>
<CardDescription>Loading anomaly data...</CardDescription>
</CardHeader>
<CardContent>
<div className="flex items-center justify-center py-8">
<div className="animate-spin rounded-full h-8 w-8 border-b-2 border-primary"></div>
</div>
</CardContent>
</Card>
);
}
const recentAnomalies = anomalies?.slice(0, 5) || [];
return (
<Card>
<CardHeader>
<CardTitle className="flex items-center justify-between">
<span className="flex items-center gap-2">
<Brain className="h-5 w-5" />
ML Anomaly Detection
</span>
<div className="flex items-center gap-2">
{anomalies && anomalies.length > 0 && (
<span className="text-sm font-normal text-muted-foreground">
{anomalies.length} detected (24h)
</span>
)}
<Button
variant="outline"
size="sm"
onClick={handleRunDetection}
disabled={runDetection.isPending}
>
<Play className="h-4 w-4 mr-1" />
Run Detection
</Button>
</div>
</CardTitle>
<CardDescription>
Statistical ML algorithms detecting unusual patterns in metrics
</CardDescription>
</CardHeader>
<CardContent className="space-y-3">
{recentAnomalies.length === 0 ? (
<div className="flex flex-col items-center justify-center py-8 text-muted-foreground">
<Sparkles className="h-12 w-12 mb-2 opacity-50" />
<p>No anomalies detected in last 24 hours</p>
<p className="text-sm">ML models are monitoring metrics continuously</p>
</div>
) : (
<>
{recentAnomalies.map((anomaly) => {
const typeConfig = ANOMALY_TYPE_CONFIG[anomaly.anomaly_type];
const severityConfig = SEVERITY_CONFIG[anomaly.severity];
const TypeIcon = typeConfig.icon;
return (
<div
key={anomaly.id}
className="border rounded-lg p-4 space-y-2 bg-card hover:bg-accent/5 transition-colors"
>
<div className="flex items-start justify-between gap-4">
<div className="flex items-start gap-3 flex-1">
<TypeIcon className={`h-5 w-5 mt-0.5 ${typeConfig.color}`} />
<div className="flex-1 min-w-0">
<div className="flex items-center gap-2 flex-wrap mb-1">
<Badge variant={severityConfig.badge as any} className="text-xs">
{severityConfig.label}
</Badge>
<span className="text-xs px-2 py-0.5 rounded bg-purple-500/10 text-purple-600">
{typeConfig.label}
</span>
<span className="text-xs px-2 py-0.5 rounded bg-muted text-muted-foreground">
{anomaly.metric_name.replace(/_/g, ' ')}
</span>
{anomaly.alert_created && (
<span className="text-xs px-2 py-0.5 rounded bg-green-500/10 text-green-600">
Alert Created
</span>
)}
</div>
<div className="text-sm space-y-1">
<div className="flex items-center gap-4 text-muted-foreground">
<span>
Baseline: <span className="font-medium text-foreground">{anomaly.baseline_value.toFixed(2)}</span>
</span>
<span></span>
<span>
Detected: <span className="font-medium text-foreground">{anomaly.anomaly_value.toFixed(2)}</span>
</span>
<span className="ml-2 px-2 py-0.5 rounded bg-orange-500/10 text-orange-600 text-xs font-medium">
{anomaly.deviation_score.toFixed(2)}σ
</span>
</div>
<div className="flex items-center gap-4 text-xs text-muted-foreground">
<span className="flex items-center gap-1">
<Brain className="h-3 w-3" />
Algorithm: {anomaly.detection_algorithm.replace(/_/g, ' ')}
</span>
<span>
Confidence: {(anomaly.confidence_score * 100).toFixed(0)}%
</span>
<span>
Detected {formatDistanceToNow(new Date(anomaly.detected_at), { addSuffix: true })}
</span>
</div>
</div>
</div>
</div>
</div>
</div>
);
})}
{anomalies && anomalies.length > 5 && (
<div className="text-center pt-2">
<span className="text-sm text-muted-foreground">
+ {anomalies.length - 5} more anomalies
</span>
</div>
)}
</>
)}
</CardContent>
</Card>
);
}