feat: Implement email change cancellation, location search, and admin anomaly detection endpoints.

This commit is contained in:
pacnpal
2026-01-05 14:31:04 -05:00
parent a801813dcf
commit 2b7bb4dfaa
13 changed files with 2074 additions and 22 deletions

View File

@@ -708,3 +708,558 @@ class CeleryTaskStatusView(APIView):
{"detail": "Failed to fetch task status"},
status=status.HTTP_500_INTERNAL_SERVER_ERROR,
)
class DetectAnomaliesView(APIView):
"""
POST /admin/anomalies/detect/
Detect data anomalies for admin dashboard.
Full parity with Supabase Edge Function: detect-anomalies
The original Edge Function implements 7 ML detection algorithms:
1. Z-Score (standard deviation outliers)
2. Moving Average (trend deviation)
3. Rate of Change (sudden changes)
4. Isolation Forest (ML-based outlier detection)
5. Seasonal Decomposition (periodic pattern anomalies)
6. Predictive (Holt-Winters exponential smoothing)
7. Ensemble (combines all algorithms)
This implementation provides:
- Config-driven detection framework
- Data quality checks (orphaned records, duplicates, incomplete data)
- Auto-alerting for critical anomalies
TODO: Implement full ML algorithms with numpy/scipy in follow-up task.
"""
permission_classes = [IsAdminUser]
# Severity score thresholds
SEVERITY_THRESHOLDS = {
"critical": 4.0,
"high": 3.0,
"medium": 2.0,
"low": 1.0,
}
def post(self, request):
"""Detect and return data anomalies."""
try:
# ================================================================
# Input validation with safe type handling
# ================================================================
raw_type = request.data.get("type", "all")
anomaly_type = raw_type if isinstance(raw_type, str) else "all"
anomaly_type = anomaly_type.strip().lower()[:50]
# Validate anomaly_type against allowed values
allowed_types = {"all", "orphaned", "duplicates", "incomplete", "data_quality"}
if anomaly_type not in allowed_types:
anomaly_type = "all"
# Safe sensitivity parsing with bounds
try:
sensitivity = float(request.data.get("sensitivity", 2.5))
sensitivity = max(0.1, min(sensitivity, 10.0)) # Clamp to [0.1, 10.0]
except (ValueError, TypeError):
sensitivity = 2.5
# Safe lookback_minutes parsing with bounds
try:
lookback_minutes = int(request.data.get("lookback_minutes", 60))
lookback_minutes = max(1, min(lookback_minutes, 10080)) # 1 min to 1 week
except (ValueError, TypeError):
lookback_minutes = 60
anomalies = []
# ================================================================
# Data Quality Anomalies (immediate checks)
# ================================================================
# Check for orphaned records
if anomaly_type in ["all", "orphaned", "data_quality"]:
try:
Park = apps.get_model("parks", "Park")
Ride = apps.get_model("rides", "Ride")
# Rides without parks
orphaned_rides = Ride.objects.filter(park__isnull=True).count()
if orphaned_rides > 0:
severity = "high" if orphaned_rides > 10 else "medium"
anomalies.append({
"id": f"orphaned_rides_{timezone.now().timestamp()}",
"metric_name": "orphaned_records",
"metric_category": "data_quality",
"anomaly_type": "orphaned_rides",
"severity": severity,
"baseline_value": 0,
"anomaly_value": orphaned_rides,
"deviation_score": orphaned_rides / 5.0, # Score based on count
"confidence_score": 1.0, # 100% confidence for exact counts
"detection_algorithm": "rule_based",
"description": f"{orphaned_rides} rides without associated park",
"detected_at": timezone.now().isoformat(),
})
except LookupError:
pass
# Check for duplicate slugs
if anomaly_type in ["all", "duplicates", "data_quality"]:
try:
Park = apps.get_model("parks", "Park")
duplicate_slugs = (
Park.objects.values("slug")
.annotate(count=Count("id"))
.filter(count__gt=1)
)
dup_count = duplicate_slugs.count()
if dup_count > 0:
anomalies.append({
"id": f"duplicate_slugs_{timezone.now().timestamp()}",
"metric_name": "duplicate_slugs",
"metric_category": "data_quality",
"anomaly_type": "duplicate_values",
"severity": "high" if dup_count > 5 else "medium",
"baseline_value": 0,
"anomaly_value": dup_count,
"deviation_score": dup_count / 2.0,
"confidence_score": 1.0,
"detection_algorithm": "rule_based",
"description": f"{dup_count} duplicate park slugs detected",
"detected_at": timezone.now().isoformat(),
})
except LookupError:
pass
# Check for missing required fields
if anomaly_type in ["all", "incomplete", "data_quality"]:
try:
Park = apps.get_model("parks", "Park")
parks_no_location = Park.objects.filter(
Q(latitude__isnull=True) | Q(longitude__isnull=True)
).count()
if parks_no_location > 0:
anomalies.append({
"id": f"incomplete_parks_{timezone.now().timestamp()}",
"metric_name": "incomplete_data",
"metric_category": "data_quality",
"anomaly_type": "missing_required_fields",
"severity": "low" if parks_no_location < 10 else "medium",
"baseline_value": 0,
"anomaly_value": parks_no_location,
"deviation_score": parks_no_location / 10.0,
"confidence_score": 1.0,
"detection_algorithm": "rule_based",
"description": f"{parks_no_location} parks missing location data",
"detected_at": timezone.now().isoformat(),
})
except LookupError:
pass
# ================================================================
# TODO: Implement ML-based anomaly detection
# ================================================================
# The original Supabase Edge Function reads from:
# - anomaly_detection_config table (enabled metrics, sensitivity, algorithms)
# - metric_time_series table (historical metric data)
#
# Then applies these algorithms:
# 1. z_score: (value - mean) / std_dev
# 2. moving_average: deviation from rolling average
# 3. rate_of_change: delta compared to previous values
# 4. isolation_forest: sklearn-style outlier detection
# 5. seasonal_decomposition: detect periodic pattern breaks
# 6. predictive: Holt-Winters forecasting comparison
# 7. ensemble: weighted combination of all methods
#
# For now, we return data quality anomalies. Full ML implementation
# requires numpy/scipy dependencies and metric_time_series data.
# ================================================================
# Auto-create alerts for critical/high severity
# ================================================================
for anomaly in anomalies:
if anomaly.get("severity") in ["critical", "high"]:
# Log critical anomaly (would create SystemAlert in full impl)
logger.warning(
f"Critical anomaly detected: {anomaly.get('description')}",
extra={
"anomaly_type": anomaly.get("anomaly_type"),
"severity": anomaly.get("severity"),
"deviation_score": anomaly.get("deviation_score"),
}
)
# Calculate summary counts
detected_count = len(anomalies)
critical_count = sum(1 for a in anomalies if a.get("severity") in ["critical", "high"])
return Response({
"success": True,
"detected_count": detected_count,
"critical_count": critical_count,
"anomalies": anomalies,
"scanned_at": timezone.now().isoformat(),
"config": {
"sensitivity": sensitivity,
"lookback_minutes": lookback_minutes,
"algorithms_available": [
"rule_based",
# TODO: Add when implemented
# "z_score", "moving_average", "rate_of_change",
# "isolation_forest", "seasonal", "predictive", "ensemble"
],
},
})
except Exception as e:
capture_and_log(e, "Detect anomalies - error", source="api")
return Response(
{"detail": "Failed to detect anomalies"},
status=status.HTTP_500_INTERNAL_SERVER_ERROR,
)
class CollectMetricsView(APIView):
"""
POST /admin/metrics/collect/
Collect system metrics for admin dashboard.
BULLETPROOFED: Safe input parsing with validation.
"""
permission_classes = [IsAdminUser]
# Allowed values
ALLOWED_METRIC_TYPES = {"all", "database", "users", "moderation", "performance"}
ALLOWED_TIME_RANGES = {"24h", "7d", "30d", "1h", "12h"}
def post(self, request):
"""Collect and return system metrics."""
try:
# ================================================================
# Input validation with safe type handling
# ================================================================
raw_type = request.data.get("type", "all")
metric_type = raw_type if isinstance(raw_type, str) else "all"
metric_type = metric_type.strip().lower()[:50]
if metric_type not in self.ALLOWED_METRIC_TYPES:
metric_type = "all"
raw_time_range = request.data.get("timeRange", "24h")
time_range = raw_time_range if isinstance(raw_time_range, str) else "24h"
time_range = time_range.strip().lower()[:10]
if time_range not in self.ALLOWED_TIME_RANGES:
time_range = "24h"
# Parse time range to cutoff
time_range_map = {
"1h": timedelta(hours=1),
"12h": timedelta(hours=12),
"24h": timedelta(hours=24),
"7d": timedelta(days=7),
"30d": timedelta(days=30),
}
cutoff = timezone.now() - time_range_map.get(time_range, timedelta(hours=24))
metrics = {
"collectedAt": timezone.now().isoformat(),
"timeRange": time_range,
}
# Database metrics
if metric_type in ["all", "database"]:
try:
Park = apps.get_model("parks", "Park")
Ride = apps.get_model("rides", "Ride")
metrics["database"] = {
"totalParks": Park.objects.count(),
"totalRides": Ride.objects.count(),
"recentParks": Park.objects.filter(created_at__gte=cutoff).count(),
"recentRides": Ride.objects.filter(created_at__gte=cutoff).count(),
}
except (LookupError, Exception):
metrics["database"] = {
"error": "Could not fetch database metrics"
}
# User metrics
if metric_type in ["all", "users"]:
try:
metrics["users"] = {
"totalUsers": User.objects.count(),
"activeUsers": User.objects.filter(
last_login__gte=cutoff
).count(),
"newUsers": User.objects.filter(
date_joined__gte=cutoff
).count(),
}
except Exception:
metrics["users"] = {
"error": "Could not fetch user metrics"
}
# Moderation metrics
if metric_type in ["all", "moderation"]:
try:
EditSubmission = apps.get_model("moderation", "EditSubmission")
metrics["moderation"] = {
"pendingSubmissions": EditSubmission.objects.filter(
status="PENDING"
).count(),
"recentSubmissions": EditSubmission.objects.filter(
created_at__gte=cutoff
).count(),
}
except (LookupError, Exception):
metrics["moderation"] = {
"error": "Could not fetch moderation metrics"
}
return Response({
"success": True,
"metrics": metrics,
})
except Exception as e:
capture_and_log(e, "Collect metrics - error", source="api")
return Response(
{"detail": "Failed to collect metrics"},
status=status.HTTP_500_INTERNAL_SERVER_ERROR,
)
class PipelineIntegrityScanView(APIView):
"""
POST /admin/pipeline/integrity-scan/
Scan data pipeline for integrity issues.
BULLETPROOFED: Safe input parsing with validation.
"""
permission_classes = [IsAdminUser]
# Allowed values
ALLOWED_SCAN_TYPES = {"full", "referential", "status", "media", "submissions", "stuck", "versions"}
MAX_HOURS_BACK = 720 # 30 days max
def post(self, request):
"""Run integrity scan on data pipeline."""
try:
# ================================================================
# Input validation with safe type handling
# ================================================================
# Safe hours_back parsing with bounds
try:
hours_back = int(request.data.get("hours_back", 48))
hours_back = max(1, min(hours_back, self.MAX_HOURS_BACK))
except (ValueError, TypeError):
hours_back = 48
# Safe scan_type validation
raw_type = request.data.get("type", "full")
scan_type = raw_type if isinstance(raw_type, str) else "full"
scan_type = scan_type.strip().lower()[:50]
if scan_type not in self.ALLOWED_SCAN_TYPES:
scan_type = "full"
# Safe fix_issues parsing (boolean)
raw_fix = request.data.get("fix", False)
fix_issues = raw_fix is True or str(raw_fix).lower() in ("true", "1", "yes")
# Calculate cutoff time based on hours_back
cutoff_time = timezone.now() - timedelta(hours=hours_back)
issues = []
fixed_count = 0
# Check for referential integrity
if scan_type in ["full", "referential"]:
try:
Ride = apps.get_model("rides", "Ride")
Park = apps.get_model("parks", "Park")
# Rides pointing to non-existent parks
valid_park_ids = Park.objects.values_list("id", flat=True)
invalid_rides = Ride.objects.exclude(
park_id__in=valid_park_ids
).exclude(park_id__isnull=True)
if invalid_rides.exists():
for ride in invalid_rides[:10]: # Limit to 10 examples
issues.append({
"issue_type": "broken_reference",
"entity_type": "ride",
"entity_id": str(ride.id),
"submission_id": "",
"severity": "critical",
"description": f"Ride '{ride.name}' has invalid park reference",
"detected_at": timezone.now().isoformat(),
})
if fix_issues:
# Set invalid park references to null
invalid_rides.update(park_id=None)
fixed_count += invalid_rides.count()
except LookupError:
pass
# Check for status consistency
if scan_type in ["full", "status"]:
try:
Park = apps.get_model("parks", "Park")
# Parks with invalid status values
valid_statuses = ["operating", "closed", "under_construction", "announced", "deleted"]
invalid_status_parks = Park.objects.exclude(status__in=valid_statuses)
for park in invalid_status_parks[:10]: # Limit to 10 examples
issues.append({
"issue_type": "invalid_status",
"entity_type": "park",
"entity_id": str(park.id),
"submission_id": "",
"severity": "warning",
"description": f"Park '{park.name}' has invalid status: {park.status}",
"detected_at": timezone.now().isoformat(),
})
except LookupError:
pass
# Check for orphaned media
if scan_type in ["full", "media"]:
try:
Photo = apps.get_model("media", "Photo")
orphaned_photos = Photo.objects.filter(
entity_id__isnull=True,
entity_type__isnull=True,
)
for photo in orphaned_photos[:10]: # Limit to 10 examples
issues.append({
"issue_type": "orphaned_media",
"entity_type": "photo",
"entity_id": str(photo.id),
"submission_id": "",
"severity": "info",
"description": "Photo without associated entity",
"detected_at": timezone.now().isoformat(),
})
except LookupError:
pass
# ================================================================
# Check 3: Stuck submissions with expired locks (from original)
# ================================================================
if scan_type in ["full", "submissions", "stuck"]:
try:
EditSubmission = apps.get_model("moderation", "EditSubmission")
# Find submissions that are claimed but claim has expired
# Assuming a claim expires after 30 minutes of inactivity
claim_expiry = timezone.now() - timedelta(minutes=30)
stuck_submissions = EditSubmission.objects.filter(
status__in=["CLAIMED", "claimed", "reviewing"],
claimed_at__lt=claim_expiry,
).exclude(claimed_at__isnull=True)
for sub in stuck_submissions[:10]: # Limit to 10 examples
hours_stuck = (timezone.now() - sub.claimed_at).total_seconds() / 3600
issues.append({
"issue_type": "stuck_submission",
"entity_type": "edit_submission",
"entity_id": str(sub.id),
"submission_id": str(sub.id),
"severity": "warning" if hours_stuck < 4 else "critical",
"description": (
f"Submission claimed by {sub.claimed_by.username if sub.claimed_by else 'unknown'} "
f"but stuck for {hours_stuck:.1f} hours"
),
"detected_at": timezone.now().isoformat(),
"metadata": {
"claimed_at": sub.claimed_at.isoformat() if sub.claimed_at else None,
"claimed_by": sub.claimed_by.username if sub.claimed_by else None,
"hours_stuck": round(hours_stuck, 1),
},
})
if fix_issues:
# Unclaim stuck submissions
sub.claimed_by = None
sub.claimed_at = None
sub.status = "PENDING"
sub.save(update_fields=["claimed_by", "claimed_at", "status"])
fixed_count += 1
except LookupError:
pass
# ================================================================
# Check: Entities with approvals but no version records (from original)
# Uses pghistory events as proxy for version records
# ================================================================
if scan_type in ["full", "versions"]:
try:
# Check if pghistory events exist for recently approved submissions
EditSubmission = apps.get_model("moderation", "EditSubmission")
recently_approved = EditSubmission.objects.filter(
status__in=["APPROVED", "approved"],
handled_at__gte=cutoff_time,
)
for sub in recently_approved[:10]:
# Check if the target object has history
target = sub.content_object
if target and hasattr(target, 'events'):
try:
event_count = target.events.count()
if event_count == 0:
issues.append({
"issue_type": "missing_version_record",
"entity_type": sub.content_type.model,
"entity_id": str(sub.object_id),
"submission_id": str(sub.id),
"severity": "critical",
"description": f"Approved {sub.content_type.model} has no version history",
"detected_at": timezone.now().isoformat(),
})
except Exception:
pass
except LookupError:
pass
# Calculate summary counts
critical_count = sum(1 for i in issues if i.get("severity") == "critical")
warning_count = sum(1 for i in issues if i.get("severity") == "warning")
info_count = sum(1 for i in issues if i.get("severity") == "info")
# Return in frontend-expected format
return Response({
"success": True,
"scan_timestamp": timezone.now().isoformat(),
"hours_scanned": hours_back,
"issues_found": len(issues),
"issues": issues,
"summary": {
"critical": critical_count,
"warning": warning_count,
"info": info_count,
},
})
except Exception as e:
capture_and_log(e, "Pipeline integrity scan - error", source="api")
return Response(
{"detail": "Failed to run integrity scan"},
status=status.HTTP_500_INTERNAL_SERVER_ERROR,
)