Revert "update"

This reverts commit 75cc618c2b.
This commit is contained in:
pacnpal
2025-09-21 20:11:00 -04:00
parent 75cc618c2b
commit 540f40e689
610 changed files with 4812 additions and 1715 deletions

View File

@@ -1,27 +0,0 @@
"""
Core services for ThrillWiki unified map functionality.
"""
from .map_service import UnifiedMapService
from .clustering_service import ClusteringService
from .map_cache_service import MapCacheService
from .data_structures import (
UnifiedLocation,
LocationType,
GeoBounds,
MapFilters,
MapResponse,
ClusterData,
)
__all__ = [
"UnifiedMapService",
"ClusteringService",
"MapCacheService",
"UnifiedLocation",
"LocationType",
"GeoBounds",
"MapFilters",
"MapResponse",
"ClusterData",
]

View File

@@ -1,365 +0,0 @@
"""
Clustering service for map locations to improve performance and user experience.
"""
import math
from typing import List, Dict, Any, Optional
from dataclasses import dataclass
from collections import defaultdict
from .data_structures import (
UnifiedLocation,
ClusterData,
GeoBounds,
LocationType,
)
@dataclass
class ClusterPoint:
"""Internal representation of a point for clustering."""
location: UnifiedLocation
x: float # Projected x coordinate
y: float # Projected y coordinate
class ClusteringService:
"""
Handles location clustering for map display using a simple grid-based approach
with zoom-level dependent clustering radius.
"""
# Clustering configuration
DEFAULT_RADIUS = 40 # pixels
MIN_POINTS_TO_CLUSTER = 2
MAX_ZOOM_FOR_CLUSTERING = 15
MIN_ZOOM_FOR_CLUSTERING = 3
# Zoom level configurations
ZOOM_CONFIGS = {
3: {"radius": 80, "min_points": 5}, # World level
4: {"radius": 70, "min_points": 4}, # Continent level
5: {"radius": 60, "min_points": 3}, # Country level
6: {"radius": 50, "min_points": 3}, # Large region level
7: {"radius": 45, "min_points": 2}, # Region level
8: {"radius": 40, "min_points": 2}, # State level
9: {"radius": 35, "min_points": 2}, # Metro area level
10: {"radius": 30, "min_points": 2}, # City level
11: {"radius": 25, "min_points": 2}, # District level
12: {"radius": 20, "min_points": 2}, # Neighborhood level
13: {"radius": 15, "min_points": 2}, # Block level
14: {"radius": 10, "min_points": 2}, # Street level
15: {"radius": 5, "min_points": 2}, # Building level
}
def __init__(self):
self.cluster_id_counter = 0
def should_cluster(self, zoom_level: int, point_count: int) -> bool:
"""Determine if clustering should be applied based on zoom level and point count."""
if zoom_level > self.MAX_ZOOM_FOR_CLUSTERING:
return False
if zoom_level < self.MIN_ZOOM_FOR_CLUSTERING:
return True
config = self.ZOOM_CONFIGS.get(
zoom_level, {"min_points": self.MIN_POINTS_TO_CLUSTER}
)
return point_count >= config["min_points"]
def cluster_locations(
self,
locations: List[UnifiedLocation],
zoom_level: int,
bounds: Optional[GeoBounds] = None,
) -> tuple[List[UnifiedLocation], List[ClusterData]]:
"""
Cluster locations based on zoom level and density.
Returns (unclustered_locations, clusters).
"""
if not locations or not self.should_cluster(zoom_level, len(locations)):
return locations, []
# Convert locations to projected coordinates for clustering
cluster_points = self._project_locations(locations, bounds)
# Get clustering configuration for zoom level
config = self.ZOOM_CONFIGS.get(
zoom_level,
{
"radius": self.DEFAULT_RADIUS,
"min_points": self.MIN_POINTS_TO_CLUSTER,
},
)
# Perform clustering
clustered_groups = self._cluster_points(
cluster_points, config["radius"], config["min_points"]
)
# Separate individual locations from clusters
unclustered_locations = []
clusters = []
for group in clustered_groups:
if len(group) < config["min_points"]:
# Add individual locations
unclustered_locations.extend([cp.location for cp in group])
else:
# Create cluster
cluster = self._create_cluster(group)
clusters.append(cluster)
return unclustered_locations, clusters
def _project_locations(
self,
locations: List[UnifiedLocation],
bounds: Optional[GeoBounds] = None,
) -> List[ClusterPoint]:
"""Convert lat/lng coordinates to projected x/y for clustering calculations."""
cluster_points = []
# Use bounds or calculate from locations
if not bounds:
lats = [loc.latitude for loc in locations]
lngs = [loc.longitude for loc in locations]
bounds = GeoBounds(
north=max(lats),
south=min(lats),
east=max(lngs),
west=min(lngs),
)
# Simple equirectangular projection (good enough for clustering)
center_lat = (bounds.north + bounds.south) / 2
lat_scale = 111320 # meters per degree latitude
lng_scale = 111320 * math.cos(
math.radians(center_lat)
) # meters per degree longitude
for location in locations:
# Convert to meters relative to bounds center
x = (location.longitude - (bounds.west + bounds.east) / 2) * lng_scale
y = (location.latitude - (bounds.north + bounds.south) / 2) * lat_scale
cluster_points.append(ClusterPoint(location=location, x=x, y=y))
return cluster_points
def _cluster_points(
self, points: List[ClusterPoint], radius_pixels: int, min_points: int
) -> List[List[ClusterPoint]]:
"""
Cluster points using a simple distance-based approach.
Radius is in pixels, converted to meters based on zoom level.
"""
# Convert pixel radius to meters (rough approximation)
# At zoom level 10, 1 pixel ≈ 150 meters
radius_meters = radius_pixels * 150
clustered = [False] * len(points)
clusters = []
for i, point in enumerate(points):
if clustered[i]:
continue
# Find all points within radius
cluster_group = [point]
clustered[i] = True
for j, other_point in enumerate(points):
if i == j or clustered[j]:
continue
distance = self._calculate_distance(point, other_point)
if distance <= radius_meters:
cluster_group.append(other_point)
clustered[j] = True
clusters.append(cluster_group)
return clusters
def _calculate_distance(self, point1: ClusterPoint, point2: ClusterPoint) -> float:
"""Calculate Euclidean distance between two projected points in meters."""
dx = point1.x - point2.x
dy = point1.y - point2.y
return math.sqrt(dx * dx + dy * dy)
def _create_cluster(self, cluster_points: List[ClusterPoint]) -> ClusterData:
"""Create a ClusterData object from a group of points."""
locations = [cp.location for cp in cluster_points]
# Calculate cluster center (average position)
avg_lat = sum(loc.latitude for loc in locations) / len(locations)
avg_lng = sum(loc.longitude for loc in locations) / len(locations)
# Calculate cluster bounds
lats = [loc.latitude for loc in locations]
lngs = [loc.longitude for loc in locations]
cluster_bounds = GeoBounds(
north=max(lats), south=min(lats), east=max(lngs), west=min(lngs)
)
# Collect location types in cluster
types = set(loc.type for loc in locations)
# Select representative location (highest weight)
representative = self._select_representative_location(locations)
# Generate cluster ID
self.cluster_id_counter += 1
cluster_id = f"cluster_{self.cluster_id_counter}"
return ClusterData(
id=cluster_id,
coordinates=[avg_lat, avg_lng],
count=len(locations),
types=types,
bounds=cluster_bounds,
representative_location=representative,
)
def _select_representative_location(
self, locations: List[UnifiedLocation]
) -> Optional[UnifiedLocation]:
"""Select the most representative location for a cluster."""
if not locations:
return None
# Prioritize by: 1) Parks over rides/companies, 2) Higher weight, 3)
# Better rating
parks = [loc for loc in locations if loc.type == LocationType.PARK]
if parks:
return max(
parks,
key=lambda x: (
x.cluster_weight,
x.metadata.get("rating", 0) or 0,
),
)
rides = [loc for loc in locations if loc.type == LocationType.RIDE]
if rides:
return max(
rides,
key=lambda x: (
x.cluster_weight,
x.metadata.get("rating", 0) or 0,
),
)
companies = [loc for loc in locations if loc.type == LocationType.COMPANY]
if companies:
return max(companies, key=lambda x: x.cluster_weight)
# Fall back to highest weight location
return max(locations, key=lambda x: x.cluster_weight)
def get_cluster_breakdown(self, clusters: List[ClusterData]) -> Dict[str, Any]:
"""Get statistics about clustering results."""
if not clusters:
return {
"total_clusters": 0,
"total_points_clustered": 0,
"average_cluster_size": 0,
"type_distribution": {},
"category_distribution": {},
}
total_points = sum(cluster.count for cluster in clusters)
type_counts = defaultdict(int)
category_counts = defaultdict(int)
for cluster in clusters:
for location_type in cluster.types:
type_counts[location_type.value] += cluster.count
if cluster.representative_location:
category_counts[cluster.representative_location.cluster_category] += 1
return {
"total_clusters": len(clusters),
"total_points_clustered": total_points,
"average_cluster_size": total_points / len(clusters),
"largest_cluster_size": max(cluster.count for cluster in clusters),
"smallest_cluster_size": min(cluster.count for cluster in clusters),
"type_distribution": dict(type_counts),
"category_distribution": dict(category_counts),
}
def expand_cluster(
self, cluster: ClusterData, zoom_level: int
) -> List[UnifiedLocation]:
"""
Expand a cluster to show individual locations (for drill-down functionality).
This would typically require re-querying the database with the cluster bounds.
"""
# This is a placeholder - in practice, this would re-query the database
# with the cluster bounds and higher detail level
return []
class SmartClusteringRules:
"""
Advanced clustering rules that consider location types and importance.
"""
@staticmethod
def should_cluster_together(loc1: UnifiedLocation, loc2: UnifiedLocation) -> bool:
"""Determine if two locations should be clustered together."""
# Same park rides should cluster together more readily
if loc1.type == LocationType.RIDE and loc2.type == LocationType.RIDE:
park1_id = loc1.metadata.get("park_id")
park2_id = loc2.metadata.get("park_id")
if park1_id and park2_id and park1_id == park2_id:
return True
# Major parks should resist clustering unless very close
if (
loc1.cluster_category == "major_park"
or loc2.cluster_category == "major_park"
):
return False
# Similar types cluster more readily
if loc1.type == loc2.type:
return True
# Different types can cluster but with higher threshold
return False
@staticmethod
def calculate_cluster_priority(
locations: List[UnifiedLocation],
) -> UnifiedLocation:
"""Select the representative location for a cluster based on priority rules."""
# Prioritize by: 1) Parks over rides, 2) Higher weight, 3) Better
# rating
parks = [loc for loc in locations if loc.type == LocationType.PARK]
if parks:
return max(
parks,
key=lambda x: (
x.cluster_weight,
x.metadata.get("rating", 0) or 0,
x.metadata.get("ride_count", 0) or 0,
),
)
rides = [loc for loc in locations if loc.type == LocationType.RIDE]
if rides:
return max(
rides,
key=lambda x: (
x.cluster_weight,
x.metadata.get("rating", 0) or 0,
),
)
# Fall back to highest weight
return max(locations, key=lambda x: x.cluster_weight)

View File

@@ -1,253 +0,0 @@
"""
Data structures for the unified map service.
"""
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Set, Any
from django.contrib.gis.geos import Polygon
class LocationType(Enum):
"""Types of locations supported by the map service."""
PARK = "park"
RIDE = "ride"
COMPANY = "company"
GENERIC = "generic"
@dataclass
class GeoBounds:
"""Geographic boundary box for spatial queries."""
north: float
south: float
east: float
west: float
def __post_init__(self):
"""Validate bounds after initialization."""
if self.north < self.south:
raise ValueError("North bound must be greater than south bound")
if self.east < self.west:
raise ValueError("East bound must be greater than west bound")
if not (-90 <= self.south <= 90 and -90 <= self.north <= 90):
raise ValueError("Latitude bounds must be between -90 and 90")
if not (-180 <= self.west <= 180 and -180 <= self.east <= 180):
raise ValueError("Longitude bounds must be between -180 and 180")
def to_polygon(self) -> Polygon:
"""Convert bounds to PostGIS Polygon for database queries."""
return Polygon.from_bbox((self.west, self.south, self.east, self.north))
def expand(self, factor: float = 1.1) -> "GeoBounds":
"""Expand bounds by factor for buffer queries."""
center_lat = (self.north + self.south) / 2
center_lng = (self.east + self.west) / 2
lat_range = (self.north - self.south) * factor / 2
lng_range = (self.east - self.west) * factor / 2
return GeoBounds(
north=min(90, center_lat + lat_range),
south=max(-90, center_lat - lat_range),
east=min(180, center_lng + lng_range),
west=max(-180, center_lng - lng_range),
)
def contains_point(self, lat: float, lng: float) -> bool:
"""Check if a point is within these bounds."""
return self.south <= lat <= self.north and self.west <= lng <= self.east
def to_dict(self) -> Dict[str, float]:
"""Convert to dictionary for JSON serialization."""
return {
"north": self.north,
"south": self.south,
"east": self.east,
"west": self.west,
}
@dataclass
class MapFilters:
"""Filtering options for map queries."""
location_types: Optional[Set[LocationType]] = None
park_status: Optional[Set[str]] = None # OPERATING, CLOSED_TEMP, etc.
ride_types: Optional[Set[str]] = None
company_roles: Optional[Set[str]] = None # OPERATOR, MANUFACTURER, etc.
search_query: Optional[str] = None
min_rating: Optional[float] = None
has_coordinates: bool = True
country: Optional[str] = None
state: Optional[str] = None
city: Optional[str] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for caching and serialization."""
return {
"location_types": (
[t.value for t in self.location_types] if self.location_types else None
),
"park_status": (list(self.park_status) if self.park_status else None),
"ride_types": list(self.ride_types) if self.ride_types else None,
"company_roles": (list(self.company_roles) if self.company_roles else None),
"search_query": self.search_query,
"min_rating": self.min_rating,
"has_coordinates": self.has_coordinates,
"country": self.country,
"state": self.state,
"city": self.city,
}
@dataclass
class UnifiedLocation:
"""Unified location interface for all location types."""
id: str # Composite: f"{type}_{id}"
type: LocationType
name: str
coordinates: List[float] # [lat, lng]
address: Optional[str] = None
metadata: Dict[str, Any] = field(default_factory=dict)
type_data: Dict[str, Any] = field(default_factory=dict)
cluster_weight: int = 1
cluster_category: str = "default"
@property
def latitude(self) -> float:
"""Get latitude from coordinates."""
return self.coordinates[0]
@property
def longitude(self) -> float:
"""Get longitude from coordinates."""
return self.coordinates[1]
def to_geojson_feature(self) -> Dict[str, Any]:
"""Convert to GeoJSON feature for mapping libraries."""
return {
"type": "Feature",
"properties": {
"id": self.id,
"type": self.type.value,
"name": self.name,
"address": self.address,
"metadata": self.metadata,
"type_data": self.type_data,
"cluster_weight": self.cluster_weight,
"cluster_category": self.cluster_category,
},
"geometry": {
"type": "Point",
# GeoJSON uses lng, lat
"coordinates": [self.longitude, self.latitude],
},
}
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON responses."""
return {
"id": self.id,
"type": self.type.value,
"name": self.name,
"coordinates": list(self.coordinates),
"address": self.address,
"metadata": self.metadata,
"type_data": self.type_data,
"cluster_weight": self.cluster_weight,
"cluster_category": self.cluster_category,
}
@dataclass
class ClusterData:
"""Represents a cluster of locations for map display."""
id: str
coordinates: List[float] # [lat, lng]
count: int
types: Set[LocationType]
bounds: GeoBounds
representative_location: Optional[UnifiedLocation] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON responses."""
return {
"id": self.id,
"coordinates": list(self.coordinates),
"count": self.count,
"types": [t.value for t in self.types],
"bounds": self.bounds.to_dict(),
"representative": (
self.representative_location.to_dict()
if self.representative_location
else None
),
}
@dataclass
class MapResponse:
"""Response structure for map API calls."""
locations: List[UnifiedLocation] = field(default_factory=list)
clusters: List[ClusterData] = field(default_factory=list)
bounds: Optional[GeoBounds] = None
total_count: int = 0
filtered_count: int = 0
zoom_level: Optional[int] = None
clustered: bool = False
cache_hit: bool = False
query_time_ms: Optional[int] = None
filters_applied: List[str] = field(default_factory=list)
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON responses."""
return {
"status": "success",
"data": {
"locations": [loc.to_dict() for loc in self.locations],
"clusters": [cluster.to_dict() for cluster in self.clusters],
"bounds": self.bounds.to_dict() if self.bounds else None,
"total_count": self.total_count,
"filtered_count": self.filtered_count,
"zoom_level": self.zoom_level,
"clustered": self.clustered,
},
"meta": {
"cache_hit": self.cache_hit,
"query_time_ms": self.query_time_ms,
"filters_applied": self.filters_applied,
"pagination": {
"has_more": False, # TODO: Implement pagination
"total_pages": 1,
},
},
}
@dataclass
class QueryPerformanceMetrics:
"""Performance metrics for query optimization."""
query_time_ms: int
db_query_count: int
cache_hit: bool
result_count: int
bounds_used: bool
clustering_used: bool
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for logging."""
return {
"query_time_ms": self.query_time_ms,
"db_query_count": self.db_query_count,
"cache_hit": self.cache_hit,
"result_count": self.result_count,
"bounds_used": self.bounds_used,
"clustering_used": self.clustering_used,
}

View File

@@ -1,320 +0,0 @@
"""
Enhanced caching service with multiple cache backends and strategies.
"""
from typing import Optional, Any, Dict, Callable
from django.core.cache import caches
import hashlib
import json
import logging
import time
from functools import wraps
logger = logging.getLogger(__name__)
# Define GeoBounds for type hinting
class GeoBounds:
def __init__(self, min_lat: float, min_lng: float, max_lat: float, max_lng: float):
self.min_lat = min_lat
self.min_lng = min_lng
self.max_lat = max_lat
self.max_lng = max_lng
class EnhancedCacheService:
"""Comprehensive caching service with multiple cache backends"""
def __init__(self):
self.default_cache = caches["default"]
try:
self.api_cache = caches["api"]
except Exception:
# Fallback to default cache if api cache not configured
self.api_cache = self.default_cache
# L1: Query-level caching
def cache_queryset(
self,
cache_key: str,
queryset_func: Callable,
timeout: int = 3600,
**kwargs,
) -> Any:
"""Cache expensive querysets"""
cached_result = self.default_cache.get(cache_key)
if cached_result is None:
start_time = time.time()
result = queryset_func(**kwargs)
duration = time.time() - start_time
# Log cache miss and function execution time
logger.info(
f"Cache miss for key '{cache_key}', executed in {duration:.3f}s",
extra={"cache_key": cache_key, "execution_time": duration},
)
self.default_cache.set(cache_key, result, timeout)
return result
logger.debug(f"Cache hit for key '{cache_key}'")
return cached_result
# L2: API response caching
def cache_api_response(
self,
view_name: str,
params: Dict,
response_data: Any,
timeout: int = 1800,
):
"""Cache API responses based on view and parameters"""
cache_key = self._generate_api_cache_key(view_name, params)
self.api_cache.set(cache_key, response_data, timeout)
logger.debug(f"Cached API response for view '{view_name}'")
def get_cached_api_response(self, view_name: str, params: Dict) -> Optional[Any]:
"""Retrieve cached API response"""
cache_key = self._generate_api_cache_key(view_name, params)
result = self.api_cache.get(cache_key)
if result:
logger.debug(f"Cache hit for API view '{view_name}'")
else:
logger.debug(f"Cache miss for API view '{view_name}'")
return result
# L3: Geographic caching (building on existing MapCacheService)
def cache_geographic_data(
self,
bounds: "GeoBounds",
data: Any,
zoom_level: int,
timeout: int = 1800,
):
"""Cache geographic data with spatial keys"""
# Generate spatial cache key based on bounds and zoom level
cache_key = f"geo:{bounds.min_lat}:{bounds.min_lng}:{bounds.max_lat}:{
bounds.max_lng
}:z{zoom_level}"
self.default_cache.set(cache_key, data, timeout)
logger.debug(f"Cached geographic data for bounds {bounds}")
def get_cached_geographic_data(
self, bounds: "GeoBounds", zoom_level: int
) -> Optional[Any]:
"""Retrieve cached geographic data"""
cache_key = f"geo:{bounds.min_lat}:{bounds.min_lng}:{bounds.max_lat}:{
bounds.max_lng
}:z{zoom_level}"
return self.default_cache.get(cache_key)
# Cache invalidation utilities
def invalidate_pattern(self, pattern: str):
"""Invalidate cache keys matching a pattern (if backend supports it)"""
try:
# For Redis cache backends
if hasattr(self.default_cache, "delete_pattern"):
deleted_count = self.default_cache.delete_pattern(pattern)
logger.info(
f"Invalidated {deleted_count} cache keys matching pattern '{pattern}'"
)
return deleted_count
else:
logger.warning(
f"Cache backend does not support pattern deletion for pattern '{pattern}'"
)
except Exception as e:
logger.error(f"Error invalidating cache pattern '{pattern}': {e}")
def invalidate_model_cache(
self, model_name: str, instance_id: Optional[int] = None
):
"""Invalidate cache keys related to a specific model"""
if instance_id:
pattern = f"*{model_name}:{instance_id}*"
else:
pattern = f"*{model_name}*"
self.invalidate_pattern(pattern)
# Cache warming utilities
def warm_cache(
self,
cache_key: str,
warm_func: Callable,
timeout: int = 3600,
**kwargs,
):
"""Proactively warm cache with data"""
try:
data = warm_func(**kwargs)
self.default_cache.set(cache_key, data, timeout)
logger.info(f"Warmed cache for key '{cache_key}'")
except Exception as e:
logger.error(f"Error warming cache for key '{cache_key}': {e}")
def _generate_api_cache_key(self, view_name: str, params: Dict) -> str:
"""Generate consistent cache keys for API responses"""
# Sort params to ensure consistent key generation
params_str = json.dumps(params, sort_keys=True, default=str)
params_hash = hashlib.md5(params_str.encode()).hexdigest()
return f"api:{view_name}:{params_hash}"
# Cache decorators
def cache_api_response(timeout=1800, vary_on=None, key_prefix=""):
"""Decorator for caching API responses"""
def decorator(view_func):
@wraps(view_func)
def wrapper(self, request, *args, **kwargs):
if request.method != "GET":
return view_func(self, request, *args, **kwargs)
# Generate cache key based on view, user, and parameters
cache_key_parts = [
key_prefix or view_func.__name__,
(
str(request.user.id)
if request.user.is_authenticated
else "anonymous"
),
str(hash(frozenset(request.GET.items()))),
]
if vary_on:
for field in vary_on:
cache_key_parts.append(str(getattr(request, field, "")))
cache_key = ":".join(cache_key_parts)
# Try to get from cache
cache_service = EnhancedCacheService()
cached_response = cache_service.api_cache.get(cache_key)
if cached_response:
logger.debug(f"Cache hit for API view {view_func.__name__}")
return cached_response
# Execute view and cache result
response = view_func(self, request, *args, **kwargs)
if hasattr(response, "status_code") and response.status_code == 200:
cache_service.api_cache.set(cache_key, response, timeout)
logger.debug(f"Cached API response for view {view_func.__name__}")
return response
return wrapper
return decorator
def cache_queryset_result(cache_key_template: str, timeout: int = 3600):
"""Decorator for caching queryset results"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Generate cache key from template and arguments
cache_key = cache_key_template.format(*args, **kwargs)
cache_service = EnhancedCacheService()
return cache_service.cache_queryset(
cache_key, func, timeout, *args, **kwargs
)
return wrapper
return decorator
# Context manager for cache warming
class CacheWarmer:
"""Context manager for batch cache warming operations"""
def __init__(self):
self.cache_service = EnhancedCacheService()
self.warm_operations = []
def add(
self,
cache_key: str,
warm_func: Callable,
timeout: int = 3600,
**kwargs,
):
"""Add a cache warming operation to the batch"""
self.warm_operations.append(
{
"cache_key": cache_key,
"warm_func": warm_func,
"timeout": timeout,
"kwargs": kwargs,
}
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Execute all cache warming operations"""
logger.info(f"Warming {len(self.warm_operations)} cache entries")
for operation in self.warm_operations:
try:
self.cache_service.warm_cache(**operation)
except Exception as e:
logger.error(f"Error warming cache for {operation['cache_key']}: {e}")
# Cache statistics and monitoring
class CacheMonitor:
"""Monitor cache performance and statistics"""
def __init__(self):
self.cache_service = EnhancedCacheService()
def get_cache_stats(self) -> Dict[str, Any]:
"""Get cache statistics if available"""
stats = {}
try:
# Try to get Redis cache stats
cache_backend = self.cache_service.default_cache.__class__.__name__
if "Redis" in cache_backend:
# Attempt to get Redis client and stats
redis_client = self.cache_service.default_cache._cache.get_client()
info = redis_client.info()
stats["redis"] = {
"used_memory": info.get("used_memory_human"),
"connected_clients": info.get("connected_clients"),
"total_commands_processed": info.get("total_commands_processed"),
"keyspace_hits": info.get("keyspace_hits"),
"keyspace_misses": info.get("keyspace_misses"),
}
# Calculate hit rate
hits = info.get("keyspace_hits", 0)
misses = info.get("keyspace_misses", 0)
if hits + misses > 0:
stats["redis"]["hit_rate"] = hits / (hits + misses) * 100
else:
# For local memory cache or other backends
stats["cache_backend"] = cache_backend
stats["message"] = f"Cache statistics not available for {cache_backend}"
except Exception:
# Don't log as error since this is expected for non-Redis backends
cache_backend = self.cache_service.default_cache.__class__.__name__
stats["cache_backend"] = cache_backend
stats["message"] = f"Cache statistics not available for {cache_backend}"
return stats
def log_cache_performance(self):
"""Log cache performance metrics"""
stats = self.get_cache_stats()
if stats:
logger.info("Cache performance statistics", extra=stats)

View File

@@ -1,415 +0,0 @@
"""
Entity Fuzzy Matching Service for ThrillWiki
Provides intelligent entity matching when exact lookups fail, with authentication
prompts for suggesting new entity creation.
Features:
- Levenshtein distance for typo correction
- Phonetic matching using Soundex algorithm
- Partial name matching
- Priority-based scoring (parks > rides > companies)
- Authentication state-aware suggestions
"""
import re
from difflib import SequenceMatcher
from typing import List, Dict, Any, Optional
from dataclasses import dataclass
from enum import Enum
from django.db.models import Q
from apps.parks.models import Park
from apps.rides.models import Ride
from apps.parks.models import Company
class EntityType(Enum):
"""Supported entity types for fuzzy matching."""
PARK = "park"
RIDE = "ride"
COMPANY = "company"
@dataclass
class FuzzyMatchResult:
"""Result of a fuzzy matching operation."""
entity_type: EntityType
entity: Any # The actual model instance
name: str
slug: str
score: float # 0.0 to 1.0, higher is better match
match_reason: str # Description of why this was matched
confidence: str # 'high', 'medium', 'low'
url: Optional[str] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for API responses."""
return {
"entity_type": self.entity_type.value,
"name": self.name,
"slug": self.slug,
"score": round(self.score, 3),
"match_reason": self.match_reason,
"confidence": self.confidence,
"url": self.url,
"entity_id": getattr(self.entity, "id", None),
}
@dataclass
class EntitySuggestion:
"""Suggestion for creating a new entity when no matches found."""
suggested_name: str
entity_type: EntityType
requires_authentication: bool
login_prompt: str
signup_prompt: str
creation_hint: str
class FuzzyMatchingAlgorithms:
"""Collection of fuzzy matching algorithms."""
@staticmethod
def levenshtein_distance(s1: str, s2: str) -> int:
"""Calculate Levenshtein distance between two strings."""
if len(s1) < len(s2):
return FuzzyMatchingAlgorithms.levenshtein_distance(s2, s1)
if len(s2) == 0:
return len(s1)
previous_row = list(range(len(s2) + 1))
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
@staticmethod
def similarity_ratio(s1: str, s2: str) -> float:
"""Calculate similarity ratio (0.0 to 1.0) using SequenceMatcher."""
return SequenceMatcher(None, s1.lower(), s2.lower()).ratio()
@staticmethod
def soundex(name: str) -> str:
"""Generate Soundex code for phonetic matching."""
name = re.sub(r"[^A-Za-z]", "", name.upper())
if not name:
return "0000"
# Soundex algorithm
soundex_map = {
"BFPV": "1",
"CGJKQSXZ": "2",
"DT": "3",
"L": "4",
"MN": "5",
"R": "6",
}
first_letter = name[0]
name = name[1:]
# Replace letters with numbers
for letters, number in soundex_map.items():
name = re.sub(f"[{letters}]", number, name)
# Remove consecutive duplicates
name = re.sub(r"(\d)\1+", r"\1", name)
# Remove zeros
name = re.sub("0", "", name)
# Pad or truncate to 4 characters
soundex_code = (first_letter + name + "000")[:4]
return soundex_code
@staticmethod
def partial_match_score(query: str, target: str) -> float:
"""Calculate partial matching score for substring matches."""
query_lower = query.lower()
target_lower = target.lower()
# Exact match
if query_lower == target_lower:
return 1.0
# Starts with
if target_lower.startswith(query_lower):
return 0.8 + (len(query) / len(target)) * 0.15
# Contains
if query_lower in target_lower:
return 0.6 + (len(query) / len(target)) * 0.2
# Words match
query_words = set(query_lower.split())
target_words = set(target_lower.split())
if query_words & target_words:
intersection = len(query_words & target_words)
union = len(query_words | target_words)
return 0.4 + (intersection / union) * 0.3
return 0.0
class EntityFuzzyMatcher:
"""Main fuzzy matching service for entities."""
# Matching thresholds
HIGH_CONFIDENCE_THRESHOLD = 0.8
MEDIUM_CONFIDENCE_THRESHOLD = 0.6
LOW_CONFIDENCE_THRESHOLD = 0.4
# Maximum results to consider
MAX_CANDIDATES = 50
MAX_RESULTS = 5
def __init__(self):
self.algorithms = FuzzyMatchingAlgorithms()
def find_entity(
self, query: str, entity_types: Optional[List[EntityType]] = None, user=None
) -> tuple[List[FuzzyMatchResult], Optional[EntitySuggestion]]:
"""
Find entities matching the query with fuzzy matching.
Args:
query: Search query string
entity_types: Limit search to specific entity types
user: Current user for authentication context
Returns:
Tuple of (matches, suggestion_for_new_entity)
"""
if not query or len(query.strip()) < 2:
return [], None
query = query.strip()
entity_types = entity_types or [
EntityType.PARK,
EntityType.RIDE,
EntityType.COMPANY,
]
# Collect all potential matches
candidates = []
for entity_type in entity_types:
candidates.extend(self._get_candidates(query, entity_type))
# Score and rank candidates
matches = self._score_and_rank_candidates(query, candidates)
# Generate suggestion if no good matches found
suggestion = None
if not matches or matches[0].score < self.LOW_CONFIDENCE_THRESHOLD:
suggestion = self._generate_entity_suggestion(query, entity_types, user)
return matches[: self.MAX_RESULTS], suggestion
def _get_candidates(
self, query: str, entity_type: EntityType
) -> List[Dict[str, Any]]:
"""Get potential matching candidates for an entity type."""
candidates = []
if entity_type == EntityType.PARK:
parks = Park.objects.filter(
Q(name__icontains=query)
| Q(slug__icontains=query.lower().replace(" ", "-"))
| Q(former_names__icontains=query)
)[: self.MAX_CANDIDATES]
for park in parks:
candidates.append(
{
"entity_type": EntityType.PARK,
"entity": park,
"name": park.name,
"slug": park.slug,
"search_names": [park.name],
"url": getattr(park, "get_absolute_url", lambda: None)(),
"priority_boost": 0.1, # Parks get priority
}
)
elif entity_type == EntityType.RIDE:
rides = Ride.objects.select_related("park").filter(
Q(name__icontains=query)
| Q(slug__icontains=query.lower().replace(" ", "-"))
| Q(former_names__icontains=query)
| Q(park__name__icontains=query)
)[: self.MAX_CANDIDATES]
for ride in rides:
candidates.append(
{
"entity_type": EntityType.RIDE,
"entity": ride,
"name": ride.name,
"slug": ride.slug,
"search_names": [ride.name, f"{ride.park.name} {ride.name}"],
"url": getattr(ride, "get_absolute_url", lambda: None)(),
"priority_boost": 0.05, # Rides get some priority
}
)
elif entity_type == EntityType.COMPANY:
companies = Company.objects.filter(
Q(name__icontains=query)
| Q(slug__icontains=query.lower().replace(" ", "-"))
)[: self.MAX_CANDIDATES]
for company in companies:
candidates.append(
{
"entity_type": EntityType.COMPANY,
"entity": company,
"name": company.name,
"slug": company.slug,
"search_names": [company.name],
"url": getattr(company, "get_absolute_url", lambda: None)(),
"priority_boost": 0.0, # Companies get no priority boost
}
)
return candidates
def _score_and_rank_candidates(
self, query: str, candidates: List[Dict[str, Any]]
) -> List[FuzzyMatchResult]:
"""Score and rank all candidates using multiple algorithms."""
scored_matches = []
for candidate in candidates:
best_score = 0.0
best_reason = ""
# Test against all search names for this candidate
for search_name in candidate["search_names"]:
# Algorithm 1: Sequence similarity
similarity_score = self.algorithms.similarity_ratio(query, search_name)
if similarity_score > best_score:
best_score = similarity_score
best_reason = f"Text similarity with '{search_name}'"
# Algorithm 2: Partial matching
partial_score = self.algorithms.partial_match_score(query, search_name)
if partial_score > best_score:
best_score = partial_score
best_reason = f"Partial match with '{search_name}'"
# Algorithm 3: Levenshtein distance
if len(query) > 3 and len(search_name) > 3:
max_len = max(len(query), len(search_name))
distance = self.algorithms.levenshtein_distance(query, search_name)
lev_score = 1.0 - (distance / max_len)
if lev_score > best_score:
best_score = lev_score
best_reason = f"Similar spelling to '{search_name}'"
# Algorithm 4: Soundex phonetic matching
if len(query) > 2 and len(search_name) > 2:
query_soundex = self.algorithms.soundex(query)
name_soundex = self.algorithms.soundex(search_name)
if query_soundex == name_soundex and best_score < 0.7:
best_score = max(best_score, 0.7)
best_reason = f"Sounds like '{search_name}'"
# Apply priority boost
best_score += candidate["priority_boost"]
best_score = min(1.0, best_score) # Cap at 1.0
# Determine confidence level
if best_score >= self.HIGH_CONFIDENCE_THRESHOLD:
confidence = "high"
elif best_score >= self.MEDIUM_CONFIDENCE_THRESHOLD:
confidence = "medium"
else:
confidence = "low"
# Only include if above minimum threshold
if best_score >= self.LOW_CONFIDENCE_THRESHOLD:
match = FuzzyMatchResult(
entity_type=candidate["entity_type"],
entity=candidate["entity"],
name=candidate["name"],
slug=candidate["slug"],
score=best_score,
match_reason=best_reason,
confidence=confidence,
url=candidate["url"],
)
scored_matches.append(match)
# Sort by score (highest first) and return
return sorted(scored_matches, key=lambda x: x.score, reverse=True)
def _generate_entity_suggestion(
self, query: str, entity_types: List[EntityType], user
) -> EntitySuggestion:
"""Generate suggestion for creating new entity when no matches found."""
# Determine most likely entity type based on query characteristics
suggested_type = EntityType.PARK # Default to park
# Simple heuristics for entity type detection
query_lower = query.lower()
if any(
word in query_lower
for word in ["roller coaster", "ride", "coaster", "attraction"]
):
suggested_type = EntityType.RIDE
elif any(
word in query_lower for word in ["inc", "corp", "company", "manufacturer"]
):
suggested_type = EntityType.COMPANY
elif EntityType.PARK in entity_types:
suggested_type = EntityType.PARK
elif entity_types:
suggested_type = entity_types[0]
# Clean up the suggested name
suggested_name = " ".join(word.capitalize() for word in query.split())
# Check if user is authenticated
is_authenticated = (
user and hasattr(user, "is_authenticated") and user.is_authenticated
)
# Generate appropriate prompts
entity_name = suggested_type.value
login_prompt = (
f"Log in to suggest adding '{suggested_name}' as a new {entity_name}"
)
signup_prompt = (
f"Sign up to contribute and add '{suggested_name}' to ThrillWiki"
)
creation_hint = (
f"Help expand ThrillWiki by adding information about '{suggested_name}'"
)
return EntitySuggestion(
suggested_name=suggested_name,
entity_type=suggested_type,
requires_authentication=not is_authenticated,
login_prompt=login_prompt,
signup_prompt=signup_prompt,
creation_hint=creation_hint,
)
# Global service instance
entity_fuzzy_matcher = EntityFuzzyMatcher()

View File

@@ -1,409 +0,0 @@
"""
Location adapters for converting between domain-specific models and UnifiedLocation.
"""
from typing import List, Optional
from django.db.models import QuerySet
from django.urls import reverse
from .data_structures import (
UnifiedLocation,
LocationType,
GeoBounds,
MapFilters,
)
from apps.parks.models import ParkLocation, CompanyHeadquarters
from apps.rides.models import RideLocation
class BaseLocationAdapter:
"""Base adapter class for location conversions."""
def to_unified_location(self, location_obj) -> Optional[UnifiedLocation]:
"""Convert model instance to UnifiedLocation."""
raise NotImplementedError
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for this location type."""
raise NotImplementedError
def bulk_convert(self, queryset: QuerySet) -> List[UnifiedLocation]:
"""Convert multiple location objects efficiently."""
unified_locations = []
for obj in queryset:
unified_loc = self.to_unified_location(obj)
if unified_loc:
unified_locations.append(unified_loc)
return unified_locations
class ParkLocationAdapter(BaseLocationAdapter):
"""Converts Park/ParkLocation to UnifiedLocation."""
def to_unified_location(
self, location_obj: ParkLocation
) -> Optional[UnifiedLocation]:
"""Convert ParkLocation to UnifiedLocation."""
if (
not location_obj.point
or location_obj.latitude is None
or location_obj.longitude is None
):
return None
park = location_obj.park
return UnifiedLocation(
id=f"park_{park.id}",
type=LocationType.PARK,
name=park.name,
coordinates=[float(location_obj.latitude), float(location_obj.longitude)],
address=location_obj.formatted_address,
metadata={
"status": getattr(park, "status", "UNKNOWN"),
"rating": (
float(park.average_rating)
if hasattr(park, "average_rating") and park.average_rating
else None
),
"ride_count": getattr(park, "ride_count", 0),
"coaster_count": getattr(park, "coaster_count", 0),
"operator": (
park.operator.name
if hasattr(park, "operator") and park.operator
else None
),
"city": location_obj.city,
"state": location_obj.state,
"country": location_obj.country,
},
type_data={
"slug": park.slug,
"opening_date": (
park.opening_date.isoformat()
if hasattr(park, "opening_date") and park.opening_date
else None
),
"website": getattr(park, "website", ""),
"operating_season": getattr(park, "operating_season", ""),
"highway_exit": location_obj.highway_exit,
"parking_notes": location_obj.parking_notes,
"best_arrival_time": (
location_obj.best_arrival_time.strftime("%H:%M")
if location_obj.best_arrival_time
else None
),
"seasonal_notes": location_obj.seasonal_notes,
"url": self._get_park_url(park),
},
cluster_weight=self._calculate_park_weight(park),
cluster_category=self._get_park_category(park),
)
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for park locations."""
queryset = ParkLocation.objects.select_related("park", "park__operator").filter(
point__isnull=False
)
# Spatial filtering
if bounds:
queryset = queryset.filter(point__within=bounds.to_polygon())
# Park-specific filters
if filters:
if filters.park_status:
queryset = queryset.filter(park__status__in=filters.park_status)
if filters.search_query:
queryset = queryset.filter(park__name__icontains=filters.search_query)
if filters.country:
queryset = queryset.filter(country=filters.country)
if filters.state:
queryset = queryset.filter(state=filters.state)
if filters.city:
queryset = queryset.filter(city=filters.city)
return queryset.order_by("park__name")
def _calculate_park_weight(self, park) -> int:
"""Calculate clustering weight based on park importance."""
weight = 1
if hasattr(park, "ride_count") and park.ride_count and park.ride_count > 20:
weight += 2
if (
hasattr(park, "coaster_count")
and park.coaster_count
and park.coaster_count > 5
):
weight += 1
if (
hasattr(park, "average_rating")
and park.average_rating
and park.average_rating > 4.0
):
weight += 1
return min(weight, 5) # Cap at 5
def _get_park_category(self, park) -> str:
"""Determine park category for clustering."""
coaster_count = getattr(park, "coaster_count", 0) or 0
ride_count = getattr(park, "ride_count", 0) or 0
if coaster_count >= 10:
return "major_park"
elif ride_count >= 15:
return "theme_park"
else:
return "small_park"
def _get_park_url(self, park) -> str:
"""Get URL for park detail page."""
try:
return reverse("parks:detail", kwargs={"slug": park.slug})
except BaseException:
return f"/parks/{park.slug}/"
class RideLocationAdapter(BaseLocationAdapter):
"""Converts Ride/RideLocation to UnifiedLocation."""
def to_unified_location(
self, location_obj: RideLocation
) -> Optional[UnifiedLocation]:
"""Convert RideLocation to UnifiedLocation."""
if (
not location_obj.point
or location_obj.latitude is None
or location_obj.longitude is None
):
return None
ride = location_obj.ride
return UnifiedLocation(
id=f"ride_{ride.id}",
type=LocationType.RIDE,
name=ride.name,
coordinates=[float(location_obj.latitude), float(location_obj.longitude)],
address=(
f"{location_obj.park_area}, {ride.park.name}"
if location_obj.park_area
else ride.park.name
),
metadata={
"park_id": ride.park.id,
"park_name": ride.park.name,
"park_area": location_obj.park_area,
"ride_type": getattr(ride, "ride_type", "Unknown"),
"status": getattr(ride, "status", "UNKNOWN"),
"rating": (
float(ride.average_rating)
if hasattr(ride, "average_rating") and ride.average_rating
else None
),
"manufacturer": (
getattr(ride, "manufacturer", {}).get("name")
if hasattr(ride, "manufacturer")
else None
),
},
type_data={
"slug": ride.slug,
"opening_date": (
ride.opening_date.isoformat()
if hasattr(ride, "opening_date") and ride.opening_date
else None
),
"height_requirement": getattr(ride, "height_requirement", ""),
"duration_minutes": getattr(ride, "duration_minutes", None),
"max_speed_mph": getattr(ride, "max_speed_mph", None),
"entrance_notes": location_obj.entrance_notes,
"accessibility_notes": location_obj.accessibility_notes,
"url": self._get_ride_url(ride),
},
cluster_weight=self._calculate_ride_weight(ride),
cluster_category=self._get_ride_category(ride),
)
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for ride locations."""
queryset = RideLocation.objects.select_related(
"ride", "ride__park", "ride__park__operator"
).filter(point__isnull=False)
# Spatial filtering
if bounds:
queryset = queryset.filter(point__within=bounds.to_polygon())
# Ride-specific filters
if filters:
if filters.ride_types:
queryset = queryset.filter(ride__ride_type__in=filters.ride_types)
if filters.search_query:
queryset = queryset.filter(ride__name__icontains=filters.search_query)
return queryset.order_by("ride__name")
def _calculate_ride_weight(self, ride) -> int:
"""Calculate clustering weight based on ride importance."""
weight = 1
ride_type = getattr(ride, "ride_type", "").lower()
if "coaster" in ride_type or "roller" in ride_type:
weight += 1
if (
hasattr(ride, "average_rating")
and ride.average_rating
and ride.average_rating > 4.0
):
weight += 1
return min(weight, 3) # Cap at 3 for rides
def _get_ride_category(self, ride) -> str:
"""Determine ride category for clustering."""
ride_type = getattr(ride, "ride_type", "").lower()
if "coaster" in ride_type or "roller" in ride_type:
return "coaster"
elif "water" in ride_type or "splash" in ride_type:
return "water_ride"
else:
return "other_ride"
def _get_ride_url(self, ride) -> str:
"""Get URL for ride detail page."""
try:
return reverse("rides:detail", kwargs={"slug": ride.slug})
except BaseException:
return f"/rides/{ride.slug}/"
class CompanyLocationAdapter(BaseLocationAdapter):
"""Converts Company/CompanyHeadquarters to UnifiedLocation."""
def to_unified_location(
self, location_obj: CompanyHeadquarters
) -> Optional[UnifiedLocation]:
"""Convert CompanyHeadquarters to UnifiedLocation."""
# Note: CompanyHeadquarters doesn't have coordinates, so we need to geocode
# For now, we'll skip companies without coordinates
# TODO: Implement geocoding service integration
return None
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for company locations."""
queryset = CompanyHeadquarters.objects.select_related("company")
# Company-specific filters
if filters:
if filters.company_roles:
queryset = queryset.filter(
company__roles__overlap=filters.company_roles
)
if filters.search_query:
queryset = queryset.filter(
company__name__icontains=filters.search_query
)
if filters.country:
queryset = queryset.filter(country=filters.country)
if filters.city:
queryset = queryset.filter(city=filters.city)
return queryset.order_by("company__name")
# GenericLocationAdapter removed - generic location app is being deprecated
# All location functionality moved to domain-specific models (ParkLocation, RideLocation, etc.)
class LocationAbstractionLayer:
"""
Abstraction layer handling different location model types.
Implements the adapter pattern to provide unified access to all location types.
"""
def __init__(self):
self.adapters = {
LocationType.PARK: ParkLocationAdapter(),
LocationType.RIDE: RideLocationAdapter(),
LocationType.COMPANY: CompanyLocationAdapter(),
# LocationType.GENERIC: Removed - generic location app deprecated
}
def get_all_locations(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> List[UnifiedLocation]:
"""Get locations from all sources within bounds."""
all_locations = []
# Determine which location types to include
location_types = (
filters.location_types
if filters and filters.location_types
else set(LocationType)
)
for location_type in location_types:
adapter = self.adapters[location_type]
queryset = adapter.get_queryset(bounds, filters)
locations = adapter.bulk_convert(queryset)
all_locations.extend(locations)
return all_locations
def get_locations_by_type(
self,
location_type: LocationType,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> List[UnifiedLocation]:
"""Get locations of specific type."""
adapter = self.adapters[location_type]
queryset = adapter.get_queryset(bounds, filters)
return adapter.bulk_convert(queryset)
def get_location_by_id(
self, location_type: LocationType, location_id: int
) -> Optional[UnifiedLocation]:
"""Get single location with full details."""
adapter = self.adapters[location_type]
try:
if location_type == LocationType.PARK:
obj = ParkLocation.objects.select_related("park", "park__operator").get(
park_id=location_id
)
elif location_type == LocationType.RIDE:
obj = RideLocation.objects.select_related("ride", "ride__park").get(
ride_id=location_id
)
elif location_type == LocationType.COMPANY:
obj = CompanyHeadquarters.objects.select_related("company").get(
company_id=location_id
)
# LocationType.GENERIC removed - generic location app deprecated
else:
return None
return adapter.to_unified_location(obj)
except Exception:
return None
# Import models after defining adapters to avoid circular imports

View File

@@ -1,462 +0,0 @@
"""
Location-aware search service for ThrillWiki.
Integrates PostGIS location data with existing search functionality
to provide proximity-based search, location filtering, and geographic
search capabilities.
"""
from django.contrib.gis.geos import Point
from django.contrib.gis.measure import Distance
from django.db.models import Q
from typing import Optional, List, Dict, Any, Set
from dataclasses import dataclass
from apps.parks.models import Park, Company, ParkLocation
from apps.rides.models import Ride
@dataclass
class LocationSearchFilters:
"""Filters for location-aware search queries."""
# Text search
search_query: Optional[str] = None
# Location-based filters
location_point: Optional[Point] = None
radius_km: Optional[float] = None
location_types: Optional[Set[str]] = None # 'park', 'ride', 'company'
# Geographic filters
country: Optional[str] = None
state: Optional[str] = None
city: Optional[str] = None
# Content-specific filters
park_status: Optional[List[str]] = None
ride_types: Optional[List[str]] = None
company_roles: Optional[List[str]] = None
# Result options
include_distance: bool = True
max_results: int = 100
@dataclass
class LocationSearchResult:
"""Single search result with location data."""
# Core data
content_type: str # 'park', 'ride', 'company'
object_id: int
name: str
description: Optional[str] = None
url: Optional[str] = None
# Location data
latitude: Optional[float] = None
longitude: Optional[float] = None
address: Optional[str] = None
city: Optional[str] = None
state: Optional[str] = None
country: Optional[str] = None
# Distance data (if proximity search)
distance_km: Optional[float] = None
# Additional metadata
status: Optional[str] = None
tags: Optional[List[str]] = None
rating: Optional[float] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON serialization."""
return {
"content_type": self.content_type,
"object_id": self.object_id,
"name": self.name,
"description": self.description,
"url": self.url,
"location": {
"latitude": self.latitude,
"longitude": self.longitude,
"address": self.address,
"city": self.city,
"state": self.state,
"country": self.country,
},
"distance_km": self.distance_km,
"status": self.status,
"tags": self.tags or [],
"rating": self.rating,
}
class LocationSearchService:
"""Service for performing location-aware searches across ThrillWiki content."""
def search(self, filters: LocationSearchFilters) -> List[LocationSearchResult]:
"""
Perform a comprehensive location-aware search.
Args:
filters: Search filters and options
Returns:
List of search results with location data
"""
results = []
# Search each content type based on filters
if not filters.location_types or "park" in filters.location_types:
results.extend(self._search_parks(filters))
if not filters.location_types or "ride" in filters.location_types:
results.extend(self._search_rides(filters))
if not filters.location_types or "company" in filters.location_types:
results.extend(self._search_companies(filters))
# Sort by distance if proximity search, otherwise by relevance
if filters.location_point and filters.include_distance:
results.sort(key=lambda x: x.distance_km or float("inf"))
else:
results.sort(key=lambda x: x.name.lower())
# Apply max results limit
return results[: filters.max_results]
def _search_parks(
self, filters: LocationSearchFilters
) -> List[LocationSearchResult]:
"""Search parks with location data."""
queryset = Park.objects.select_related("location", "operator").all()
# Apply location filters
queryset = self._apply_location_filters(queryset, filters, "location__point")
# Apply text search
if filters.search_query:
query = (
Q(name__icontains=filters.search_query)
| Q(description__icontains=filters.search_query)
| Q(location__city__icontains=filters.search_query)
| Q(location__state__icontains=filters.search_query)
| Q(location__country__icontains=filters.search_query)
)
queryset = queryset.filter(query)
# Apply park-specific filters
if filters.park_status:
queryset = queryset.filter(status__in=filters.park_status)
# Add distance annotation if proximity search
if filters.location_point and filters.include_distance:
queryset = queryset.annotate(
distance=Distance("location__point", filters.location_point)
).order_by("distance")
# Convert to search results
results = []
for park in queryset:
result = LocationSearchResult(
content_type="park",
object_id=park.id,
name=park.name,
description=park.description,
url=(
park.get_absolute_url()
if hasattr(park, "get_absolute_url")
else None
),
status=park.get_status_display(),
rating=(float(park.average_rating) if park.average_rating else None),
tags=["park", park.status.lower()],
)
# Add location data
if hasattr(park, "location") and park.location:
location = park.location
result.latitude = location.latitude
result.longitude = location.longitude
result.address = location.formatted_address
result.city = location.city
result.state = location.state
result.country = location.country
# Add distance if proximity search
if (
filters.location_point
and filters.include_distance
and hasattr(park, "distance")
):
result.distance_km = float(park.distance.km)
results.append(result)
return results
def _search_rides(
self, filters: LocationSearchFilters
) -> List[LocationSearchResult]:
"""Search rides with location data."""
queryset = Ride.objects.select_related("park", "location").all()
# Apply location filters
queryset = self._apply_location_filters(queryset, filters, "location__point")
# Apply text search
if filters.search_query:
query = (
Q(name__icontains=filters.search_query)
| Q(description__icontains=filters.search_query)
| Q(park__name__icontains=filters.search_query)
| Q(location__park_area__icontains=filters.search_query)
)
queryset = queryset.filter(query)
# Apply ride-specific filters
if filters.ride_types:
queryset = queryset.filter(ride_type__in=filters.ride_types)
# Add distance annotation if proximity search
if filters.location_point and filters.include_distance:
queryset = queryset.annotate(
distance=Distance("location__point", filters.location_point)
).order_by("distance")
# Convert to search results
results = []
for ride in queryset:
result = LocationSearchResult(
content_type="ride",
object_id=ride.id,
name=ride.name,
description=ride.description,
url=(
ride.get_absolute_url()
if hasattr(ride, "get_absolute_url")
else None
),
status=ride.status,
tags=[
"ride",
ride.ride_type.lower() if ride.ride_type else "attraction",
],
)
# Add location data from ride location or park location
location = None
if hasattr(ride, "location") and ride.location:
location = ride.location
result.latitude = location.latitude
result.longitude = location.longitude
result.address = (
f"{ride.park.name} - {location.park_area}"
if location.park_area
else ride.park.name
)
# Add distance if proximity search
if (
filters.location_point
and filters.include_distance
and hasattr(ride, "distance")
):
result.distance_km = float(ride.distance.km)
# Fall back to park location if no specific ride location
elif ride.park and hasattr(ride.park, "location") and ride.park.location:
park_location = ride.park.location
result.latitude = park_location.latitude
result.longitude = park_location.longitude
result.address = park_location.formatted_address
result.city = park_location.city
result.state = park_location.state
result.country = park_location.country
results.append(result)
return results
def _search_companies(
self, filters: LocationSearchFilters
) -> List[LocationSearchResult]:
"""Search companies with headquarters location data."""
queryset = Company.objects.select_related("headquarters").all()
# Apply location filters
queryset = self._apply_location_filters(
queryset, filters, "headquarters__point"
)
# Apply text search
if filters.search_query:
query = (
Q(name__icontains=filters.search_query)
| Q(description__icontains=filters.search_query)
| Q(headquarters__city__icontains=filters.search_query)
| Q(headquarters__state_province__icontains=filters.search_query)
| Q(headquarters__country__icontains=filters.search_query)
)
queryset = queryset.filter(query)
# Apply company-specific filters
if filters.company_roles:
queryset = queryset.filter(roles__overlap=filters.company_roles)
# Add distance annotation if proximity search
if filters.location_point and filters.include_distance:
queryset = queryset.annotate(
distance=Distance("headquarters__point", filters.location_point)
).order_by("distance")
# Convert to search results
results = []
for company in queryset:
result = LocationSearchResult(
content_type="company",
object_id=company.id,
name=company.name,
description=company.description,
url=(
company.get_absolute_url()
if hasattr(company, "get_absolute_url")
else None
),
tags=["company"] + (company.roles or []),
)
# Add location data
if hasattr(company, "headquarters") and company.headquarters:
hq = company.headquarters
result.latitude = hq.latitude
result.longitude = hq.longitude
result.address = hq.formatted_address
result.city = hq.city
result.state = hq.state_province
result.country = hq.country
# Add distance if proximity search
if (
filters.location_point
and filters.include_distance
and hasattr(company, "distance")
):
result.distance_km = float(company.distance.km)
results.append(result)
return results
def _apply_location_filters(
self, queryset, filters: LocationSearchFilters, point_field: str
):
"""Apply common location filters to a queryset."""
# Proximity filter
if filters.location_point and filters.radius_km:
distance = Distance(km=filters.radius_km)
queryset = queryset.filter(
**{
f"{point_field}__distance_lte": (
filters.location_point,
distance,
)
}
)
# Geographic filters - adjust field names based on model
if filters.country:
if "headquarters" in point_field:
queryset = queryset.filter(
headquarters__country__icontains=filters.country
)
else:
location_field = point_field.split("__")[0]
queryset = queryset.filter(
**{f"{location_field}__country__icontains": filters.country}
)
if filters.state:
if "headquarters" in point_field:
queryset = queryset.filter(
headquarters__state_province__icontains=filters.state
)
else:
location_field = point_field.split("__")[0]
queryset = queryset.filter(
**{f"{location_field}__state__icontains": filters.state}
)
if filters.city:
location_field = point_field.split("__")[0]
queryset = queryset.filter(
**{f"{location_field}__city__icontains": filters.city}
)
return queryset
def suggest_locations(self, query: str, limit: int = 10) -> List[Dict[str, Any]]:
"""
Get location suggestions for autocomplete.
Args:
query: Search query string
limit: Maximum number of suggestions
Returns:
List of location suggestions
"""
suggestions = []
if len(query) < 2:
return suggestions
# Get park location suggestions
park_locations = ParkLocation.objects.filter(
Q(park__name__icontains=query)
| Q(city__icontains=query)
| Q(state__icontains=query)
).select_related("park")[: limit // 3]
for location in park_locations:
suggestions.append(
{
"type": "park",
"name": location.park.name,
"address": location.formatted_address,
"coordinates": location.coordinates,
"url": (
location.park.get_absolute_url()
if hasattr(location.park, "get_absolute_url")
else None
),
}
)
# Get city suggestions
cities = (
ParkLocation.objects.filter(city__icontains=query)
.values("city", "state", "country")
.distinct()[: limit // 3]
)
for city_data in cities:
suggestions.append(
{
"type": "city",
"name": f"{city_data['city']}, {city_data['state']}",
"address": f"{city_data['city']}, {city_data['state']}, {
city_data['country']
}",
"coordinates": None,
}
)
return suggestions[:limit]
# Global instance
location_search_service = LocationSearchService()

View File

@@ -1,434 +0,0 @@
"""
Caching service for map data to improve performance and reduce database load.
"""
import hashlib
import json
import time
from typing import Dict, List, Optional, Any
from django.core.cache import cache
from django.utils import timezone
from .data_structures import (
UnifiedLocation,
ClusterData,
GeoBounds,
MapFilters,
MapResponse,
QueryPerformanceMetrics,
)
class MapCacheService:
"""
Handles caching of map data with geographic partitioning and intelligent invalidation.
"""
# Cache configuration
DEFAULT_TTL = 3600 # 1 hour
CLUSTER_TTL = 7200 # 2 hours (clusters change less frequently)
LOCATION_DETAIL_TTL = 1800 # 30 minutes
BOUNDS_CACHE_TTL = 1800 # 30 minutes
# Cache key prefixes
CACHE_PREFIX = "thrillwiki_map"
LOCATIONS_PREFIX = f"{CACHE_PREFIX}:locations"
CLUSTERS_PREFIX = f"{CACHE_PREFIX}:clusters"
BOUNDS_PREFIX = f"{CACHE_PREFIX}:bounds"
DETAIL_PREFIX = f"{CACHE_PREFIX}:detail"
STATS_PREFIX = f"{CACHE_PREFIX}:stats"
# Geographic partitioning settings
GEOHASH_PRECISION = 6 # ~1.2km precision for cache partitioning
def __init__(self):
self.cache_stats = {
"hits": 0,
"misses": 0,
"invalidations": 0,
"geohash_partitions": 0,
}
def get_locations_cache_key(
self,
bounds: Optional[GeoBounds],
filters: Optional[MapFilters],
zoom_level: Optional[int] = None,
) -> str:
"""Generate cache key for location queries."""
key_parts = [self.LOCATIONS_PREFIX]
if bounds:
# Use geohash for spatial locality
geohash = self._bounds_to_geohash(bounds)
key_parts.append(f"geo:{geohash}")
if filters:
# Create deterministic hash of filters
filter_hash = self._hash_filters(filters)
key_parts.append(f"filters:{filter_hash}")
if zoom_level is not None:
key_parts.append(f"zoom:{zoom_level}")
return ":".join(key_parts)
def get_clusters_cache_key(
self,
bounds: Optional[GeoBounds],
filters: Optional[MapFilters],
zoom_level: int,
) -> str:
"""Generate cache key for cluster queries."""
key_parts = [self.CLUSTERS_PREFIX, f"zoom:{zoom_level}"]
if bounds:
geohash = self._bounds_to_geohash(bounds)
key_parts.append(f"geo:{geohash}")
if filters:
filter_hash = self._hash_filters(filters)
key_parts.append(f"filters:{filter_hash}")
return ":".join(key_parts)
def get_location_detail_cache_key(
self, location_type: str, location_id: int
) -> str:
"""Generate cache key for individual location details."""
return f"{self.DETAIL_PREFIX}:{location_type}:{location_id}"
def cache_locations(
self,
cache_key: str,
locations: List[UnifiedLocation],
ttl: Optional[int] = None,
) -> None:
"""Cache location data."""
try:
# Convert locations to serializable format
cache_data = {
"locations": [loc.to_dict() for loc in locations],
"cached_at": timezone.now().isoformat(),
"count": len(locations),
}
cache.set(cache_key, cache_data, ttl or self.DEFAULT_TTL)
except Exception as e:
# Log error but don't fail the request
print(f"Cache write error for key {cache_key}: {e}")
def cache_clusters(
self,
cache_key: str,
clusters: List[ClusterData],
ttl: Optional[int] = None,
) -> None:
"""Cache cluster data."""
try:
cache_data = {
"clusters": [cluster.to_dict() for cluster in clusters],
"cached_at": timezone.now().isoformat(),
"count": len(clusters),
}
cache.set(cache_key, cache_data, ttl or self.CLUSTER_TTL)
except Exception as e:
print(f"Cache write error for clusters {cache_key}: {e}")
def cache_map_response(
self, cache_key: str, response: MapResponse, ttl: Optional[int] = None
) -> None:
"""Cache complete map response."""
try:
cache_data = response.to_dict()
cache_data["cached_at"] = timezone.now().isoformat()
cache.set(cache_key, cache_data, ttl or self.DEFAULT_TTL)
except Exception as e:
print(f"Cache write error for response {cache_key}: {e}")
def get_cached_locations(self, cache_key: str) -> Optional[List[UnifiedLocation]]:
"""Retrieve cached location data."""
try:
cache_data = cache.get(cache_key)
if not cache_data:
self.cache_stats["misses"] += 1
return None
self.cache_stats["hits"] += 1
# Convert back to UnifiedLocation objects
locations = []
for loc_data in cache_data["locations"]:
# Reconstruct UnifiedLocation from dictionary
locations.append(self._dict_to_unified_location(loc_data))
return locations
except Exception as e:
print(f"Cache read error for key {cache_key}: {e}")
self.cache_stats["misses"] += 1
return None
def get_cached_clusters(self, cache_key: str) -> Optional[List[ClusterData]]:
"""Retrieve cached cluster data."""
try:
cache_data = cache.get(cache_key)
if not cache_data:
self.cache_stats["misses"] += 1
return None
self.cache_stats["hits"] += 1
# Convert back to ClusterData objects
clusters = []
for cluster_data in cache_data["clusters"]:
clusters.append(self._dict_to_cluster_data(cluster_data))
return clusters
except Exception as e:
print(f"Cache read error for clusters {cache_key}: {e}")
self.cache_stats["misses"] += 1
return None
def get_cached_map_response(self, cache_key: str) -> Optional[MapResponse]:
"""Retrieve cached map response."""
try:
cache_data = cache.get(cache_key)
if not cache_data:
self.cache_stats["misses"] += 1
return None
self.cache_stats["hits"] += 1
# Convert back to MapResponse object
return self._dict_to_map_response(cache_data["data"])
except Exception as e:
print(f"Cache read error for response {cache_key}: {e}")
self.cache_stats["misses"] += 1
return None
def invalidate_location_cache(
self, location_type: str, location_id: Optional[int] = None
) -> None:
"""Invalidate cache for specific location or all locations of a type."""
try:
if location_id:
# Invalidate specific location detail
detail_key = self.get_location_detail_cache_key(
location_type, location_id
)
cache.delete(detail_key)
# Invalidate related location and cluster caches
# In a production system, you'd want more sophisticated cache
# tagging
cache.delete_many(
[f"{self.LOCATIONS_PREFIX}:*", f"{self.CLUSTERS_PREFIX}:*"]
)
self.cache_stats["invalidations"] += 1
except Exception as e:
print(f"Cache invalidation error: {e}")
def invalidate_bounds_cache(self, bounds: GeoBounds) -> None:
"""Invalidate cache for specific geographic bounds."""
try:
geohash = self._bounds_to_geohash(bounds)
pattern = f"{self.LOCATIONS_PREFIX}:geo:{geohash}*"
# In production, you'd use cache tagging or Redis SCAN
# For now, we'll invalidate broader patterns
cache.delete_many([pattern])
self.cache_stats["invalidations"] += 1
except Exception as e:
print(f"Bounds cache invalidation error: {e}")
def clear_all_map_cache(self) -> None:
"""Clear all map-related cache data."""
try:
cache.delete_many(
[
f"{self.LOCATIONS_PREFIX}:*",
f"{self.CLUSTERS_PREFIX}:*",
f"{self.BOUNDS_PREFIX}:*",
f"{self.DETAIL_PREFIX}:*",
]
)
self.cache_stats["invalidations"] += 1
except Exception as e:
print(f"Cache clear error: {e}")
def get_cache_stats(self) -> Dict[str, Any]:
"""Get cache performance statistics."""
total_requests = self.cache_stats["hits"] + self.cache_stats["misses"]
hit_rate = (
(self.cache_stats["hits"] / total_requests * 100)
if total_requests > 0
else 0
)
return {
"hits": self.cache_stats["hits"],
"misses": self.cache_stats["misses"],
"hit_rate_percent": round(hit_rate, 2),
"invalidations": self.cache_stats["invalidations"],
"geohash_partitions": self.cache_stats["geohash_partitions"],
}
def record_performance_metrics(self, metrics: QueryPerformanceMetrics) -> None:
"""Record query performance metrics for analysis."""
try:
# 5-minute buckets
stats_key = f"{self.STATS_PREFIX}:performance:{int(time.time() // 300)}"
current_stats = cache.get(
stats_key,
{
"query_count": 0,
"total_time_ms": 0,
"cache_hits": 0,
"db_queries": 0,
},
)
current_stats["query_count"] += 1
current_stats["total_time_ms"] += metrics.query_time_ms
current_stats["cache_hits"] += 1 if metrics.cache_hit else 0
current_stats["db_queries"] += metrics.db_query_count
cache.set(stats_key, current_stats, 3600) # Keep for 1 hour
except Exception as e:
print(f"Performance metrics recording error: {e}")
def _bounds_to_geohash(self, bounds: GeoBounds) -> str:
"""Convert geographic bounds to geohash for cache partitioning."""
# Use center point of bounds for geohash
center_lat = (bounds.north + bounds.south) / 2
center_lng = (bounds.east + bounds.west) / 2
# Simple geohash implementation (in production, use a library)
return self._encode_geohash(center_lat, center_lng, self.GEOHASH_PRECISION)
def _encode_geohash(self, lat: float, lng: float, precision: int) -> str:
"""Simple geohash encoding implementation."""
# This is a simplified implementation
# In production, use the `geohash` library
lat_range = [-90.0, 90.0]
lng_range = [-180.0, 180.0]
geohash = ""
bits = 0
bit_count = 0
even_bit = True
while len(geohash) < precision:
if even_bit:
# longitude
mid = (lng_range[0] + lng_range[1]) / 2
if lng >= mid:
bits = (bits << 1) + 1
lng_range[0] = mid
else:
bits = bits << 1
lng_range[1] = mid
else:
# latitude
mid = (lat_range[0] + lat_range[1]) / 2
if lat >= mid:
bits = (bits << 1) + 1
lat_range[0] = mid
else:
bits = bits << 1
lat_range[1] = mid
even_bit = not even_bit
bit_count += 1
if bit_count == 5:
# Convert 5 bits to base32 character
geohash += "0123456789bcdefghjkmnpqrstuvwxyz"[bits]
bits = 0
bit_count = 0
return geohash
def _hash_filters(self, filters: MapFilters) -> str:
"""Create deterministic hash of filters for cache keys."""
filter_dict = filters.to_dict()
# Sort to ensure consistent ordering
filter_str = json.dumps(filter_dict, sort_keys=True)
return hashlib.md5(filter_str.encode()).hexdigest()[:8]
def _dict_to_unified_location(self, data: Dict[str, Any]) -> UnifiedLocation:
"""Convert dictionary back to UnifiedLocation object."""
from .data_structures import LocationType
return UnifiedLocation(
id=data["id"],
type=LocationType(data["type"]),
name=data["name"],
coordinates=list(data["coordinates"]),
address=data.get("address"),
metadata=data.get("metadata", {}),
type_data=data.get("type_data", {}),
cluster_weight=data.get("cluster_weight", 1),
cluster_category=data.get("cluster_category", "default"),
)
def _dict_to_cluster_data(self, data: Dict[str, Any]) -> ClusterData:
"""Convert dictionary back to ClusterData object."""
from .data_structures import LocationType
bounds = GeoBounds(**data["bounds"])
types = {LocationType(t) for t in data["types"]}
representative = None
if data.get("representative"):
representative = self._dict_to_unified_location(data["representative"])
return ClusterData(
id=data["id"],
coordinates=list(data["coordinates"]),
count=data["count"],
types=types,
bounds=bounds,
representative_location=representative,
)
def _dict_to_map_response(self, data: Dict[str, Any]) -> MapResponse:
"""Convert dictionary back to MapResponse object."""
locations = [
self._dict_to_unified_location(loc) for loc in data.get("locations", [])
]
clusters = [
self._dict_to_cluster_data(cluster) for cluster in data.get("clusters", [])
]
bounds = None
if data.get("bounds"):
bounds = GeoBounds(**data["bounds"])
return MapResponse(
locations=locations,
clusters=clusters,
bounds=bounds,
total_count=data.get("total_count", 0),
filtered_count=data.get("filtered_count", 0),
zoom_level=data.get("zoom_level"),
clustered=data.get("clustered", False),
)
# Global cache service instance
map_cache = MapCacheService()

View File

@@ -1,474 +0,0 @@
"""
Unified Map Service - Main orchestrating service for all map functionality.
"""
import time
from typing import List, Optional, Dict, Any, Set
from django.db import connection
from .data_structures import (
UnifiedLocation,
ClusterData,
GeoBounds,
MapFilters,
MapResponse,
LocationType,
QueryPerformanceMetrics,
)
from .location_adapters import LocationAbstractionLayer
from .clustering_service import ClusteringService
from .map_cache_service import MapCacheService
class UnifiedMapService:
"""
Main service orchestrating map data retrieval, filtering, clustering, and caching.
Provides a unified interface for all location types with performance optimization.
"""
# Performance thresholds
MAX_UNCLUSTERED_POINTS = 500
MAX_CLUSTERED_POINTS = 2000
DEFAULT_ZOOM_LEVEL = 10
def __init__(self):
self.location_layer = LocationAbstractionLayer()
self.clustering_service = ClusteringService()
self.cache_service = MapCacheService()
def get_map_data(
self,
*,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
zoom_level: int = DEFAULT_ZOOM_LEVEL,
cluster: bool = True,
use_cache: bool = True,
) -> MapResponse:
"""
Primary method for retrieving unified map data.
Args:
bounds: Geographic bounds to query within
filters: Filtering criteria for locations
zoom_level: Map zoom level for clustering decisions
cluster: Whether to apply clustering
use_cache: Whether to use cached data
Returns:
MapResponse with locations, clusters, and metadata
"""
start_time = time.time()
initial_query_count = len(connection.queries)
cache_hit = False
try:
# Generate cache key
cache_key = None
if use_cache:
cache_key = self._generate_cache_key(
bounds, filters, zoom_level, cluster
)
# Try to get from cache first
cached_response = self.cache_service.get_cached_map_response(cache_key)
if cached_response:
cached_response.cache_hit = True
cached_response.query_time_ms = int(
(time.time() - start_time) * 1000
)
return cached_response
# Get locations from database
locations = self._get_locations_from_db(bounds, filters)
# Apply smart limiting based on zoom level and density
locations = self._apply_smart_limiting(locations, bounds, zoom_level)
# Determine if clustering should be applied
should_cluster = cluster and self.clustering_service.should_cluster(
zoom_level, len(locations)
)
# Apply clustering if needed
clusters = []
if should_cluster:
locations, clusters = self.clustering_service.cluster_locations(
locations, zoom_level, bounds
)
# Calculate response bounds
response_bounds = self._calculate_response_bounds(
locations, clusters, bounds
)
# Create response
response = MapResponse(
locations=locations,
clusters=clusters,
bounds=response_bounds,
total_count=len(locations) + sum(cluster.count for cluster in clusters),
filtered_count=len(locations),
zoom_level=zoom_level,
clustered=should_cluster,
cache_hit=cache_hit,
query_time_ms=int((time.time() - start_time) * 1000),
filters_applied=self._get_applied_filters_list(filters),
)
# Cache the response
if use_cache and cache_key:
self.cache_service.cache_map_response(cache_key, response)
# Record performance metrics
self._record_performance_metrics(
start_time,
initial_query_count,
cache_hit,
len(locations) + len(clusters),
bounds is not None,
should_cluster,
)
return response
except Exception:
# Return error response
return MapResponse(
locations=[],
clusters=[],
total_count=0,
filtered_count=0,
query_time_ms=int((time.time() - start_time) * 1000),
cache_hit=False,
)
def get_location_details(
self, location_type: str, location_id: int
) -> Optional[UnifiedLocation]:
"""
Get detailed information for a specific location.
Args:
location_type: Type of location (park, ride, company, generic)
location_id: ID of the location
Returns:
UnifiedLocation with full details or None if not found
"""
try:
# Check cache first
cache_key = self.cache_service.get_location_detail_cache_key(
location_type, location_id
)
cached_locations = self.cache_service.get_cached_locations(cache_key)
if cached_locations:
return cached_locations[0] if cached_locations else None
# Get from database
location_type_enum = LocationType(location_type.lower())
location = self.location_layer.get_location_by_id(
location_type_enum, location_id
)
# Cache the result
if location:
self.cache_service.cache_locations(
cache_key,
[location],
self.cache_service.LOCATION_DETAIL_TTL,
)
return location
except Exception as e:
print(f"Error getting location details: {e}")
return None
def search_locations(
self,
query: str,
bounds: Optional[GeoBounds] = None,
location_types: Optional[Set[LocationType]] = None,
limit: int = 50,
) -> List[UnifiedLocation]:
"""
Search locations with text query.
Args:
query: Search query string
bounds: Optional geographic bounds to search within
location_types: Optional set of location types to search
limit: Maximum number of results
Returns:
List of matching UnifiedLocation objects
"""
try:
# Create search filters
filters = MapFilters(
search_query=query,
location_types=location_types or {LocationType.PARK, LocationType.RIDE},
has_coordinates=True,
)
# Get locations
locations = self.location_layer.get_all_locations(bounds, filters)
# Apply limit
return locations[:limit]
except Exception as e:
print(f"Error searching locations: {e}")
return []
def get_locations_by_bounds(
self,
north: float,
south: float,
east: float,
west: float,
location_types: Optional[Set[LocationType]] = None,
zoom_level: int = DEFAULT_ZOOM_LEVEL,
) -> MapResponse:
"""
Get locations within specific geographic bounds.
Args:
north, south, east, west: Bounding box coordinates
location_types: Optional filter for location types
zoom_level: Map zoom level for optimization
Returns:
MapResponse with locations in bounds
"""
try:
bounds = GeoBounds(north=north, south=south, east=east, west=west)
filters = (
MapFilters(location_types=location_types) if location_types else None
)
return self.get_map_data(
bounds=bounds, filters=filters, zoom_level=zoom_level
)
except ValueError:
# Invalid bounds
return MapResponse(
locations=[], clusters=[], total_count=0, filtered_count=0
)
def get_clustered_locations(
self,
zoom_level: int,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> MapResponse:
"""
Get clustered location data for map display.
Args:
zoom_level: Map zoom level for clustering configuration
bounds: Optional geographic bounds
filters: Optional filtering criteria
Returns:
MapResponse with clustered data
"""
return self.get_map_data(
bounds=bounds, filters=filters, zoom_level=zoom_level, cluster=True
)
def get_locations_by_type(
self,
location_type: LocationType,
bounds: Optional[GeoBounds] = None,
limit: Optional[int] = None,
) -> List[UnifiedLocation]:
"""
Get locations of a specific type.
Args:
location_type: Type of locations to retrieve
bounds: Optional geographic bounds
limit: Optional limit on results
Returns:
List of UnifiedLocation objects
"""
try:
filters = MapFilters(location_types={location_type})
locations = self.location_layer.get_locations_by_type(
location_type, bounds, filters
)
if limit:
locations = locations[:limit]
return locations
except Exception as e:
print(f"Error getting locations by type: {e}")
return []
def invalidate_cache(
self,
location_type: Optional[str] = None,
location_id: Optional[int] = None,
bounds: Optional[GeoBounds] = None,
) -> None:
"""
Invalidate cached map data.
Args:
location_type: Optional specific location type to invalidate
location_id: Optional specific location ID to invalidate
bounds: Optional specific bounds to invalidate
"""
if location_type and location_id:
self.cache_service.invalidate_location_cache(location_type, location_id)
elif bounds:
self.cache_service.invalidate_bounds_cache(bounds)
else:
self.cache_service.clear_all_map_cache()
def get_service_stats(self) -> Dict[str, Any]:
"""Get service performance and usage statistics."""
cache_stats = self.cache_service.get_cache_stats()
return {
"cache_performance": cache_stats,
"clustering_available": True,
"supported_location_types": [t.value for t in LocationType],
"max_unclustered_points": self.MAX_UNCLUSTERED_POINTS,
"max_clustered_points": self.MAX_CLUSTERED_POINTS,
"service_version": "1.0.0",
}
def _get_locations_from_db(
self, bounds: Optional[GeoBounds], filters: Optional[MapFilters]
) -> List[UnifiedLocation]:
"""Get locations from database using the abstraction layer."""
return self.location_layer.get_all_locations(bounds, filters)
def _apply_smart_limiting(
self,
locations: List[UnifiedLocation],
bounds: Optional[GeoBounds],
zoom_level: int,
) -> List[UnifiedLocation]:
"""Apply intelligent limiting based on zoom level and density."""
if zoom_level < 6: # Very zoomed out - show only major parks
major_parks = [
loc
for loc in locations
if (
loc.type == LocationType.PARK
and loc.cluster_category in ["major_park", "theme_park"]
)
]
return major_parks[:200]
elif zoom_level < 10: # Regional level
return locations[:1000]
else: # City level and closer
return locations[: self.MAX_CLUSTERED_POINTS]
def _calculate_response_bounds(
self,
locations: List[UnifiedLocation],
clusters: List[ClusterData],
request_bounds: Optional[GeoBounds],
) -> Optional[GeoBounds]:
"""Calculate the actual bounds of the response data."""
if request_bounds:
return request_bounds
all_coords = []
# Add location coordinates
for loc in locations:
all_coords.append((loc.latitude, loc.longitude))
# Add cluster coordinates
for cluster in clusters:
all_coords.append(cluster.coordinates)
if not all_coords:
return None
lats, lngs = zip(*all_coords)
return GeoBounds(
north=max(lats), south=min(lats), east=max(lngs), west=min(lngs)
)
def _get_applied_filters_list(self, filters: Optional[MapFilters]) -> List[str]:
"""Get list of applied filter types for metadata."""
if not filters:
return []
applied = []
if filters.location_types:
applied.append("location_types")
if filters.search_query:
applied.append("search_query")
if filters.park_status:
applied.append("park_status")
if filters.ride_types:
applied.append("ride_types")
if filters.company_roles:
applied.append("company_roles")
if filters.min_rating:
applied.append("min_rating")
if filters.country:
applied.append("country")
if filters.state:
applied.append("state")
if filters.city:
applied.append("city")
return applied
def _generate_cache_key(
self,
bounds: Optional[GeoBounds],
filters: Optional[MapFilters],
zoom_level: int,
cluster: bool,
) -> str:
"""Generate cache key for the request."""
if cluster:
return self.cache_service.get_clusters_cache_key(
bounds, filters, zoom_level
)
else:
return self.cache_service.get_locations_cache_key(
bounds, filters, zoom_level
)
def _record_performance_metrics(
self,
start_time: float,
initial_query_count: int,
cache_hit: bool,
result_count: int,
bounds_used: bool,
clustering_used: bool,
) -> None:
"""Record performance metrics for monitoring."""
query_time_ms = int((time.time() - start_time) * 1000)
db_query_count = len(connection.queries) - initial_query_count
metrics = QueryPerformanceMetrics(
query_time_ms=query_time_ms,
db_query_count=db_query_count,
cache_hit=cache_hit,
result_count=result_count,
bounds_used=bounds_used,
clustering_used=clustering_used,
)
self.cache_service.record_performance_metrics(metrics)
# Global service instance
unified_map_service = UnifiedMapService()

View File

@@ -1,200 +0,0 @@
"""
Shared media service for ThrillWiki.
This module provides shared functionality for media upload, storage, and processing
that can be used across all domain-specific media implementations.
"""
import logging
from typing import Any, Optional, Dict
from datetime import datetime
from django.core.files.uploadedfile import UploadedFile
from django.conf import settings
from PIL import Image, ExifTags
import os
logger = logging.getLogger(__name__)
class MediaService:
"""Shared service for media upload and processing operations."""
@staticmethod
def generate_upload_path(
domain: str, identifier: str, filename: str, subdirectory: Optional[str] = None
) -> str:
"""
Generate standardized upload path for media files.
Args:
domain: Domain type (e.g., 'park', 'ride')
identifier: Object identifier (slug or id)
filename: Original filename
subdirectory: Optional subdirectory for organization
Returns:
Standardized upload path
"""
# Always use .jpg extension for consistency
base_filename = f"{identifier}.jpg"
if subdirectory:
return f"{domain}/{subdirectory}/{identifier}/{base_filename}"
else:
return f"{domain}/{identifier}/{base_filename}"
@staticmethod
def extract_exif_date(image_file: UploadedFile) -> Optional[datetime]:
"""
Extract the date taken from image EXIF data.
Args:
image_file: Uploaded image file
Returns:
DateTime when photo was taken, or None if not available
"""
try:
with Image.open(image_file) as img:
exif = img.getexif()
if exif:
# Find the DateTime tag ID
for tag_id in ExifTags.TAGS:
if ExifTags.TAGS[tag_id] == "DateTimeOriginal":
if tag_id in exif:
# EXIF dates are typically in format: '2024:02:15 14:30:00'
date_str = exif[tag_id]
return datetime.strptime(date_str, "%Y:%m:%d %H:%M:%S")
return None
except Exception as e:
logger.warning(f"Failed to extract EXIF date: {str(e)}")
return None
@staticmethod
def validate_image_file(image_file: UploadedFile) -> tuple[bool, Optional[str]]:
"""
Validate uploaded image file.
Args:
image_file: Uploaded image file
Returns:
Tuple of (is_valid, error_message)
"""
try:
# Check file size
max_size = getattr(
settings, "MAX_PHOTO_SIZE", 10 * 1024 * 1024
) # 10MB default
if image_file.size > max_size:
return (
False,
f"File size too large. Maximum size is {max_size // (1024 * 1024)}MB",
)
# Check file type
allowed_types = getattr(
settings,
"ALLOWED_PHOTO_TYPES",
["image/jpeg", "image/png", "image/webp"],
)
if image_file.content_type not in allowed_types:
return (
False,
f"File type not allowed. Allowed types: {', '.join(allowed_types)}",
)
# Try to open with PIL to validate it's a real image
with Image.open(image_file) as img:
img.verify()
return True, None
except Exception as e:
return False, f"Invalid image file: {str(e)}"
@staticmethod
def process_image(
image_file: UploadedFile,
max_width: int = 1920,
max_height: int = 1080,
quality: int = 85,
) -> UploadedFile:
"""
Process and optimize image file.
Args:
image_file: Original uploaded file
max_width: Maximum width for resizing
max_height: Maximum height for resizing
quality: JPEG quality (1-100)
Returns:
Processed image file
"""
try:
with Image.open(image_file) as img:
# Convert to RGB if necessary
if img.mode in ("RGBA", "LA", "P"):
img = img.convert("RGB")
# Resize if necessary
if img.width > max_width or img.height > max_height:
img.thumbnail((max_width, max_height), Image.Resampling.LANCZOS)
# Save processed image
from io import BytesIO
from django.core.files.uploadedfile import InMemoryUploadedFile
output = BytesIO()
img.save(output, format="JPEG", quality=quality, optimize=True)
output.seek(0)
return InMemoryUploadedFile(
output,
"ImageField",
f"{os.path.splitext(image_file.name)[0]}.jpg",
"image/jpeg",
output.getbuffer().nbytes,
None,
)
except Exception as e:
logger.warning(f"Failed to process image, using original: {str(e)}")
return image_file
@staticmethod
def generate_default_caption(username: str) -> str:
"""
Generate default caption for uploaded photos.
Args:
username: Username of uploader
Returns:
Default caption string
"""
from django.utils import timezone
current_time = timezone.now()
return f"Uploaded by {username} on {current_time.strftime('%B %d, %Y at %I:%M %p')}"
@staticmethod
def get_storage_stats() -> Dict[str, Any]:
"""
Get media storage statistics.
Returns:
Dictionary with storage statistics
"""
try:
# This would need to be implemented based on your storage backend
return {
"total_files": 0,
"total_size_bytes": 0,
"storage_backend": "default",
"available_space": "unknown",
}
except Exception as e:
logger.error(f"Failed to get storage stats: {str(e)}")
return {"error": str(e)}

View File

@@ -1,148 +0,0 @@
"""
Media URL service for generating friendly URLs.
This service provides utilities for generating SEO-friendly URLs for media files
while maintaining compatibility with Cloudflare Images.
"""
import re
from typing import Optional, Dict, Any
from django.utils.text import slugify
class MediaURLService:
"""Service for generating and parsing friendly media URLs."""
@staticmethod
def generate_friendly_filename(caption: str, photo_id: int, extension: str = "jpg") -> str:
"""
Generate a friendly filename from photo caption and ID.
Args:
caption: Photo caption
photo_id: Photo database ID
extension: File extension (default: jpg)
Returns:
Friendly filename like "beautiful-park-entrance-123.jpg"
"""
if caption:
# Clean and slugify the caption
slug = slugify(caption)
# Limit length to avoid overly long URLs
if len(slug) > 50:
slug = slug[:50].rsplit('-', 1)[0] # Cut at word boundary
return f"{slug}-{photo_id}.{extension}"
else:
return f"photo-{photo_id}.{extension}"
@staticmethod
def generate_park_photo_url(park_slug: str, caption: str, photo_id: int, variant: str = "public") -> str:
"""
Generate a friendly URL for a park photo.
Args:
park_slug: Park slug
caption: Photo caption
photo_id: Photo database ID
variant: Image variant (public, thumbnail, medium, large)
Returns:
Friendly URL like "/parks/cedar-point/photos/beautiful-entrance-123.jpg"
"""
filename = MediaURLService.generate_friendly_filename(caption, photo_id)
# Add variant to filename if not public
if variant != "public":
name, ext = filename.rsplit('.', 1)
filename = f"{name}-{variant}.{ext}"
return f"/parks/{park_slug}/photos/{filename}"
@staticmethod
def generate_ride_photo_url(park_slug: str, ride_slug: str, caption: str, photo_id: int, variant: str = "public") -> str:
"""
Generate a friendly URL for a ride photo.
Args:
park_slug: Park slug
ride_slug: Ride slug
caption: Photo caption
photo_id: Photo database ID
variant: Image variant
Returns:
Friendly URL like "/parks/cedar-point/rides/millennium-force/photos/first-drop-456.jpg"
"""
filename = MediaURLService.generate_friendly_filename(caption, photo_id)
if variant != "public":
name, ext = filename.rsplit('.', 1)
filename = f"{name}-{variant}.{ext}"
return f"/parks/{park_slug}/rides/{ride_slug}/photos/{filename}"
@staticmethod
def parse_photo_filename(filename: str) -> Optional[Dict[str, Any]]:
"""
Parse a friendly filename to extract photo ID and variant.
Args:
filename: Filename like "beautiful-entrance-123-thumbnail.jpg"
Returns:
Dict with photo_id and variant, or None if parsing fails
"""
# Remove extension
name = filename.rsplit('.', 1)[0]
# Check for variant suffix
variant = "public"
variant_patterns = ["thumbnail", "medium", "large"]
for v in variant_patterns:
if name.endswith(f"-{v}"):
variant = v
name = name[:-len(f"-{v}")]
break
# Extract photo ID (should be the last number)
match = re.search(r'-(\d+)$', name)
if match:
photo_id = int(match.group(1))
return {
"photo_id": photo_id,
"variant": variant
}
return None
@staticmethod
def get_cloudflare_url_with_fallback(cloudflare_image, variant: str = "public") -> Optional[str]:
"""
Get Cloudflare URL with fallback handling.
Args:
cloudflare_image: CloudflareImage instance
variant: Desired variant
Returns:
Cloudflare URL or None
"""
if not cloudflare_image:
return None
try:
# Try the specific variant first
url = cloudflare_image.get_url(variant)
if url:
return url
# Fallback to public URL
if variant != "public":
return cloudflare_image.public_url
except Exception:
pass
return None

View File

@@ -1,407 +0,0 @@
"""
Performance monitoring utilities and context managers.
"""
import time
import logging
from contextlib import contextmanager
from functools import wraps
from typing import Optional, Dict, Any, List
from django.db import connection
from django.conf import settings
from django.utils import timezone
logger = logging.getLogger("performance")
@contextmanager
def monitor_performance(operation_name: str, **tags):
"""Context manager for monitoring operation performance"""
start_time = time.time()
initial_queries = len(connection.queries)
# Create performance context
performance_context = {
"operation": operation_name,
"start_time": start_time,
"timestamp": timezone.now().isoformat(),
**tags,
}
try:
yield performance_context
except Exception as e:
performance_context["error"] = str(e)
performance_context["status"] = "error"
raise
else:
performance_context["status"] = "success"
finally:
end_time = time.time()
duration = end_time - start_time
total_queries = len(connection.queries) - initial_queries
# Update performance context with final metrics
performance_context.update(
{
"duration_seconds": duration,
"duration_ms": round(duration * 1000, 2),
"query_count": total_queries,
"end_time": end_time,
}
)
# Log performance data
log_level = (
logging.WARNING if duration > 2.0 or total_queries > 10 else logging.INFO
)
logger.log(
log_level,
f"Performance: {operation_name} completed in {duration:.3f}s with {
total_queries
} queries",
extra=performance_context,
)
# Log slow operations with additional detail
if duration > 2.0:
logger.warning(
f"Slow operation detected: {operation_name} took {duration:.3f}s",
extra={
"slow_operation": True,
"threshold_exceeded": "duration",
**performance_context,
},
)
if total_queries > 10:
logger.warning(
f"High query count: {operation_name} executed {total_queries} queries",
extra={
"high_query_count": True,
"threshold_exceeded": "query_count",
**performance_context,
},
)
@contextmanager
def track_queries(operation_name: str, warn_threshold: int = 10):
"""Context manager to track database queries for specific operations"""
if not settings.DEBUG:
yield
return
initial_queries = len(connection.queries)
start_time = time.time()
try:
yield
finally:
end_time = time.time()
total_queries = len(connection.queries) - initial_queries
execution_time = end_time - start_time
query_details = []
if hasattr(connection, "queries") and total_queries > 0:
recent_queries = connection.queries[-total_queries:]
query_details = [
{
"sql": (
query["sql"][:200] + "..."
if len(query["sql"]) > 200
else query["sql"]
),
"time": float(query["time"]),
}
for query in recent_queries
]
performance_data = {
"operation": operation_name,
"query_count": total_queries,
"execution_time": execution_time,
"queries": query_details if settings.DEBUG else [],
}
if total_queries > warn_threshold or execution_time > 1.0:
logger.warning(
f"Performance concern in {operation_name}: "
f"{total_queries} queries, {execution_time:.2f}s",
extra=performance_data,
)
else:
logger.debug(
f"Query tracking for {operation_name}: "
f"{total_queries} queries, {execution_time:.2f}s",
extra=performance_data,
)
class PerformanceProfiler:
"""Advanced performance profiling with detailed metrics"""
def __init__(self, name: str):
self.name = name
self.start_time = None
self.end_time = None
self.checkpoints = []
self.initial_queries = 0
self.memory_usage = {}
def start(self):
"""Start profiling"""
self.start_time = time.time()
self.initial_queries = len(connection.queries)
# Track memory usage if psutil is available
try:
import psutil
process = psutil.Process()
self.memory_usage["start"] = process.memory_info().rss
except ImportError:
pass
logger.debug(f"Started profiling: {self.name}")
def checkpoint(self, name: str):
"""Add a checkpoint"""
if self.start_time is None:
logger.warning(f"Checkpoint '{name}' called before profiling started")
return
current_time = time.time()
elapsed = current_time - self.start_time
queries_since_start = len(connection.queries) - self.initial_queries
checkpoint = {
"name": name,
"timestamp": current_time,
"elapsed_seconds": elapsed,
"queries_since_start": queries_since_start,
}
# Memory usage if available
try:
import psutil
process = psutil.Process()
checkpoint["memory_rss"] = process.memory_info().rss
except ImportError:
pass
self.checkpoints.append(checkpoint)
logger.debug(f"Checkpoint '{name}' at {elapsed:.3f}s")
def stop(self):
"""Stop profiling and log results"""
if self.start_time is None:
logger.warning("Profiling stopped before it was started")
return
self.end_time = time.time()
total_duration = self.end_time - self.start_time
total_queries = len(connection.queries) - self.initial_queries
# Final memory usage
try:
import psutil
process = psutil.Process()
self.memory_usage["end"] = process.memory_info().rss
except ImportError:
pass
# Create detailed profiling report
report = {
"profiler_name": self.name,
"total_duration": total_duration,
"total_queries": total_queries,
"checkpoints": self.checkpoints,
"memory_usage": self.memory_usage,
"queries_per_second": (
total_queries / total_duration if total_duration > 0 else 0
),
}
# Calculate checkpoint intervals
if len(self.checkpoints) > 1:
intervals = []
for i in range(1, len(self.checkpoints)):
prev = self.checkpoints[i - 1]
curr = self.checkpoints[i]
intervals.append(
{
"from": prev["name"],
"to": curr["name"],
"duration": curr["elapsed_seconds"] - prev["elapsed_seconds"],
"queries": curr["queries_since_start"]
- prev["queries_since_start"],
}
)
report["checkpoint_intervals"] = intervals
# Log the complete report
log_level = logging.WARNING if total_duration > 1.0 else logging.INFO
logger.log(
log_level,
f"Profiling complete: {self.name} took {total_duration:.3f}s with {
total_queries
} queries",
extra=report,
)
return report
@contextmanager
def profile_operation(name: str):
"""Context manager for detailed operation profiling"""
profiler = PerformanceProfiler(name)
profiler.start()
try:
yield profiler
finally:
profiler.stop()
class DatabaseQueryAnalyzer:
"""Analyze database query patterns and performance"""
@staticmethod
def analyze_queries(queries: List[Dict]) -> Dict[str, Any]:
"""Analyze a list of queries for patterns and issues"""
if not queries:
return {}
total_time = sum(float(q.get("time", 0)) for q in queries)
query_count = len(queries)
# Group queries by type
query_types = {}
for query in queries:
sql = query.get("sql", "").strip().upper()
query_type = sql.split()[0] if sql else "UNKNOWN"
query_types[query_type] = query_types.get(query_type, 0) + 1
# Find slow queries (top 10% by time)
sorted_queries = sorted(
queries, key=lambda q: float(q.get("time", 0)), reverse=True
)
slow_query_count = max(1, query_count // 10)
slow_queries = sorted_queries[:slow_query_count]
# Detect duplicate queries
query_signatures = {}
for query in queries:
# Simplified signature - remove literals and normalize whitespace
sql = query.get("sql", "")
signature = " ".join(sql.split()) # Normalize whitespace
query_signatures[signature] = query_signatures.get(signature, 0) + 1
duplicates = {
sig: count for sig, count in query_signatures.items() if count > 1
}
analysis = {
"total_queries": query_count,
"total_time": total_time,
"average_time": total_time / query_count if query_count > 0 else 0,
"query_types": query_types,
"slow_queries": [
{
"sql": (
q.get("sql", "")[:200] + "..."
if len(q.get("sql", "")) > 200
else q.get("sql", "")
),
"time": float(q.get("time", 0)),
}
for q in slow_queries
],
"duplicate_query_count": len(duplicates),
"duplicate_queries": (
duplicates
if len(duplicates) <= 10
else dict(list(duplicates.items())[:10])
),
}
return analysis
@classmethod
def analyze_current_queries(cls) -> Dict[str, Any]:
"""Analyze the current request's queries"""
if hasattr(connection, "queries"):
return cls.analyze_queries(connection.queries)
return {}
# Performance monitoring decorators
def monitor_function_performance(operation_name: Optional[str] = None):
"""Decorator to monitor function performance"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
name = operation_name or f"{func.__module__}.{func.__name__}"
with monitor_performance(
name, function=func.__name__, module=func.__module__
):
return func(*args, **kwargs)
return wrapper
return decorator
def track_database_queries(warn_threshold: int = 10):
"""Decorator to track database queries for a function"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
operation_name = f"{func.__module__}.{func.__name__}"
with track_queries(operation_name, warn_threshold):
return func(*args, **kwargs)
return wrapper
return decorator
# Performance metrics collection
class PerformanceMetrics:
"""Collect and aggregate performance metrics"""
def __init__(self):
self.metrics = []
def record_metric(self, name: str, value: float, tags: Optional[Dict] = None):
"""Record a performance metric"""
metric = {
"name": name,
"value": value,
"timestamp": timezone.now().isoformat(),
"tags": tags or {},
}
self.metrics.append(metric)
# Log the metric
logger.info(f"Performance metric: {name} = {value}", extra=metric)
def get_metrics(self, name: Optional[str] = None) -> List[Dict]:
"""Get recorded metrics, optionally filtered by name"""
if name:
return [m for m in self.metrics if m["name"] == name]
return self.metrics.copy()
def clear_metrics(self):
"""Clear all recorded metrics"""
self.metrics.clear()
# Global performance metrics instance
performance_metrics = PerformanceMetrics()

View File

@@ -1,725 +0,0 @@
"""
Trending Service for calculating and caching trending content.
This service implements the weighted trending algorithm that combines:
- View growth rates
- Content ratings
- Recency factors
- Popularity metrics
Results are cached in Redis for performance optimization.
"""
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any
from django.utils import timezone
from django.contrib.contenttypes.models import ContentType
from django.core.cache import cache
from django.db.models import Q
from apps.core.analytics import PageView
from apps.parks.models import Park
from apps.rides.models import Ride
logger = logging.getLogger(__name__)
class TrendingService:
"""
Service for calculating trending content using weighted algorithm.
Algorithm Components:
- View Growth Rate (40% weight): Recent view increase vs historical
- Rating Score (30% weight): Average user rating normalized
- Recency Factor (20% weight): How recently content was added/updated
- Popularity Boost (10% weight): Total view count normalization
"""
# Algorithm weights (must sum to 1.0)
WEIGHT_VIEW_GROWTH = 0.4
WEIGHT_RATING = 0.3
WEIGHT_RECENCY = 0.2
WEIGHT_POPULARITY = 0.1
# Cache configuration
CACHE_PREFIX = "trending"
CACHE_TTL = 86400 # 24 hours (daily refresh)
# Time windows for calculations
CURRENT_PERIOD_HOURS = 168 # 7 days
PREVIOUS_PERIOD_HOURS = 336 # 14 days (for previous 7-day window comparison)
RECENCY_BASELINE_DAYS = 365
def __init__(self):
self.logger = logging.getLogger(f"{__name__}.{self.__class__.__name__}")
def get_trending_content(
self, content_type: str = "all", limit: int = 20, force_refresh: bool = False
) -> List[Dict[str, Any]]:
"""
Get trending content using direct calculation.
Args:
content_type: 'parks', 'rides', or 'all'
limit: Maximum number of results
force_refresh: Skip cache and recalculate
Returns:
List of trending content with exact frontend format
"""
cache_key = f"trending:calculated:{content_type}:{limit}"
if not force_refresh:
cached_result = cache.get(cache_key)
if cached_result is not None:
self.logger.debug(
f"Returning cached trending results for {content_type}"
)
return cached_result
self.logger.info(f"Getting trending content for {content_type}")
try:
# Calculate directly without Celery
trending_items = []
if content_type in ["all", "parks"]:
park_items = self._calculate_trending_parks(
limit * 2 if content_type == "all" else limit
)
trending_items.extend(park_items)
if content_type in ["all", "rides"]:
ride_items = self._calculate_trending_rides(
limit * 2 if content_type == "all" else limit
)
trending_items.extend(ride_items)
# Sort by trending score and apply limit
trending_items.sort(key=lambda x: x.get("trending_score", 0), reverse=True)
trending_items = trending_items[:limit]
# Format results for API consumption
formatted_results = self._format_trending_results(trending_items)
# Cache results
cache.set(cache_key, formatted_results, self.CACHE_TTL)
self.logger.info(
f"Calculated {len(formatted_results)} trending items for {content_type}"
)
return formatted_results
except Exception as e:
self.logger.error(f"Error getting trending content: {e}", exc_info=True)
return []
def get_new_content(
self,
content_type: str = "all",
limit: int = 20,
days_back: int = 30,
force_refresh: bool = False,
) -> List[Dict[str, Any]]:
"""
Get recently added content using direct calculation.
Args:
content_type: 'parks', 'rides', or 'all'
limit: Maximum number of results
days_back: How many days to look back
force_refresh: Skip cache and recalculate
Returns:
List of new content with exact frontend format
"""
cache_key = f"new_content:calculated:{content_type}:{days_back}:{limit}"
if not force_refresh:
cached_result = cache.get(cache_key)
if cached_result is not None:
self.logger.debug(
f"Returning cached new content results for {content_type}"
)
return cached_result
self.logger.info(f"Getting new content for {content_type}")
try:
# Calculate directly without Celery
cutoff_date = timezone.now() - timedelta(days=days_back)
new_items = []
if content_type in ["all", "parks"]:
parks = self._get_new_parks(
cutoff_date, limit * 2 if content_type == "all" else limit
)
new_items.extend(parks)
if content_type in ["all", "rides"]:
rides = self._get_new_rides(
cutoff_date, limit * 2 if content_type == "all" else limit
)
new_items.extend(rides)
# Sort by date added (most recent first) and apply limit
new_items.sort(key=lambda x: x.get("date_added", ""), reverse=True)
new_items = new_items[:limit]
# Format results for API consumption
formatted_results = self._format_new_content_results(new_items)
# Cache results
cache.set(cache_key, formatted_results, 1800) # Cache for 30 minutes
self.logger.info(
f"Calculated {len(formatted_results)} new items for {content_type}"
)
return formatted_results
except Exception as e:
self.logger.error(f"Error getting new content: {e}", exc_info=True)
return []
def _calculate_trending_parks(self, limit: int) -> List[Dict[str, Any]]:
"""Calculate trending scores for parks."""
parks = Park.objects.filter(status="OPERATING").select_related(
"location", "operator", "card_image"
)
trending_parks = []
for park in parks:
try:
score = self._calculate_content_score(park, "park")
if score > 0: # Only include items with positive trending scores
# Get opening date for date_opened field
opening_date = getattr(park, "opening_date", None)
if opening_date and isinstance(opening_date, datetime):
opening_date = opening_date.date()
# Get location fields
city = ""
state = ""
country = ""
try:
location = getattr(park, "location", None)
if location:
city = getattr(location, "city", "") or ""
state = getattr(location, "state", "") or ""
country = getattr(location, "country", "") or ""
except Exception:
pass
# Get card image URL
card_image_url = ""
if park.card_image and hasattr(park.card_image, "image"):
card_image_url = (
park.card_image.image.url if park.card_image.image else ""
)
# Get primary company (operator)
primary_company = park.operator.name if park.operator else ""
trending_parks.append(
{
"content_object": park,
"content_type": "park",
"trending_score": score,
"id": park.id,
"name": park.name,
"slug": park.slug,
"park": park.name, # For parks, park field is the park name itself
"category": "park",
"rating": (
float(park.average_rating)
if park.average_rating
else 0.0
),
"date_opened": (
opening_date.isoformat() if opening_date else ""
),
"url": park.url,
"card_image": card_image_url,
"city": city,
"state": state,
"country": country,
"primary_company": primary_company,
}
)
except Exception as e:
self.logger.warning(f"Error calculating score for park {park.id}: {e}")
return trending_parks
def _calculate_trending_rides(self, limit: int) -> List[Dict[str, Any]]:
"""Calculate trending scores for rides."""
rides = Ride.objects.filter(status="OPERATING").select_related(
"park", "park__location", "card_image"
)
trending_rides = []
for ride in rides:
try:
score = self._calculate_content_score(ride, "ride")
if score > 0: # Only include items with positive trending scores
# Get opening date for date_opened field
opening_date = getattr(ride, "opening_date", None)
if opening_date and isinstance(opening_date, datetime):
opening_date = opening_date.date()
# Get card image URL
card_image_url = ""
if ride.card_image and hasattr(ride.card_image, "image"):
card_image_url = (
ride.card_image.image.url if ride.card_image.image else ""
)
trending_rides.append(
{
"content_object": ride,
"content_type": "ride",
"trending_score": score,
"id": ride.pk, # Use pk instead of id
"name": ride.name,
"slug": ride.slug,
"park": ride.park.name if ride.park else "",
"category": "ride",
"rating": (
float(ride.average_rating)
if ride.average_rating
else 0.0
),
"date_opened": (
opening_date.isoformat() if opening_date else ""
),
"url": ride.url,
"park_url": ride.park.url if ride.park else "",
"card_image": card_image_url,
}
)
except Exception as e:
self.logger.warning(f"Error calculating score for ride {ride.pk}: {e}")
return trending_rides
def _calculate_content_score(self, content_obj: Any, content_type: str) -> float:
"""
Calculate weighted trending score for content object.
Returns:
Float between 0.0 and 1.0 representing trending strength
"""
try:
# Get content type for PageView queries
ct = ContentType.objects.get_for_model(content_obj)
# 1. View Growth Score (40% weight)
view_growth_score = self._calculate_view_growth_score(ct, content_obj.id)
# 2. Rating Score (30% weight)
rating_score = self._calculate_rating_score(content_obj)
# 3. Recency Score (20% weight)
recency_score = self._calculate_recency_score(content_obj)
# 4. Popularity Score (10% weight)
popularity_score = self._calculate_popularity_score(ct, content_obj.id)
# Calculate weighted final score
final_score = (
view_growth_score * self.WEIGHT_VIEW_GROWTH
+ rating_score * self.WEIGHT_RATING
+ recency_score * self.WEIGHT_RECENCY
+ popularity_score * self.WEIGHT_POPULARITY
)
self.logger.debug(
f"{content_type} {content_obj.id}: "
f"growth={view_growth_score:.3f}, rating={rating_score:.3f}, "
f"recency={recency_score:.3f}, popularity={popularity_score:.3f}, "
f"final={final_score:.3f}"
)
return final_score
except Exception as e:
self.logger.error(
f"Error calculating score for {content_type} {content_obj.id}: {e}"
)
return 0.0
def _calculate_view_growth_score(
self, content_type: ContentType, object_id: int
) -> float:
"""Calculate normalized view growth score."""
try:
current_views, previous_views, growth_percentage = (
PageView.get_views_growth(
content_type,
object_id,
self.CURRENT_PERIOD_HOURS,
self.PREVIOUS_PERIOD_HOURS,
)
)
if previous_views == 0:
# New content with views gets boost
return min(current_views / 100.0, 1.0) if current_views > 0 else 0.0
# Normalize growth percentage to 0-1 scale
# 100% growth = 0.5, 500% growth = 1.0
normalized_growth = (
min(growth_percentage / 500.0, 1.0) if growth_percentage > 0 else 0.0
)
return max(normalized_growth, 0.0)
except Exception as e:
self.logger.warning(f"Error calculating view growth: {e}")
return 0.0
def _calculate_rating_score(self, content_obj: Any) -> float:
"""Calculate normalized rating score."""
try:
rating = getattr(content_obj, "average_rating", None)
if rating is None or rating == 0:
return 0.3 # Neutral score for unrated content
# Normalize rating from 1-10 scale to 0-1 scale
# Rating of 5 = 0.4, Rating of 8 = 0.7, Rating of 10 = 1.0
return min(max((float(rating) - 1) / 9.0, 0.0), 1.0)
except Exception as e:
self.logger.warning(f"Error calculating rating score: {e}")
return 0.3
def _calculate_recency_score(self, content_obj: Any) -> float:
"""Calculate recency score based on when content was added/updated."""
try:
# Use opening_date for parks/rides, or created_at as fallback
date_added = getattr(content_obj, "opening_date", None)
if not date_added:
date_added = getattr(content_obj, "created_at", None)
if not date_added:
return 0.5 # Neutral score for unknown dates
# Handle both date and datetime objects
if hasattr(date_added, "date"):
date_added = date_added.date()
# Calculate days since added
today = timezone.now().date()
days_since_added = (today - date_added).days
# Recency score: newer content gets higher scores
# 0 days = 1.0, 30 days = 0.8, 365 days = 0.1, >365 days = 0.0
if days_since_added <= 0:
return 1.0
elif days_since_added <= 30:
return 1.0 - (days_since_added / 30.0) * 0.2 # 1.0 to 0.8
elif days_since_added <= self.RECENCY_BASELINE_DAYS:
return (
0.8
- ((days_since_added - 30) / (self.RECENCY_BASELINE_DAYS - 30))
* 0.7
) # 0.8 to 0.1
else:
return 0.0
except Exception as e:
self.logger.warning(f"Error calculating recency score: {e}")
return 0.5
def _calculate_popularity_score(
self, content_type: ContentType, object_id: int
) -> float:
"""Calculate popularity score based on total view count."""
try:
total_views = PageView.get_total_views_count(
content_type,
object_id,
hours=168, # Last 7 days
)
# Normalize views to 0-1 scale
# 0 views = 0.0, 100 views = 0.5, 1000+ views = 1.0
if total_views == 0:
return 0.0
elif total_views <= 100:
return total_views / 200.0 # 0.0 to 0.5
else:
return min(0.5 + (total_views - 100) / 1800.0, 1.0) # 0.5 to 1.0
except Exception as e:
self.logger.warning(f"Error calculating popularity score: {e}")
return 0.0
def _get_new_parks(self, cutoff_date: datetime, limit: int) -> List[Dict[str, Any]]:
"""Get recently added parks."""
new_parks = (
Park.objects.filter(
Q(created_at__gte=cutoff_date)
| Q(opening_date__gte=cutoff_date.date()),
status="OPERATING",
)
.select_related("location", "operator", "card_image")
.order_by("-created_at", "-opening_date")[:limit]
)
results = []
for park in new_parks:
date_added = park.opening_date or park.created_at
# Handle datetime to date conversion
if date_added:
# If it's a datetime, convert to date
if isinstance(date_added, datetime):
date_added = date_added.date()
# If it's already a date, keep it as is
# Get opening date for date_opened field
opening_date = getattr(park, "opening_date", None)
if opening_date and isinstance(opening_date, datetime):
opening_date = opening_date.date()
# Get location fields
city = ""
state = ""
country = ""
try:
location = getattr(park, "location", None)
if location:
city = getattr(location, "city", "") or ""
state = getattr(location, "state", "") or ""
country = getattr(location, "country", "") or ""
except Exception:
pass
# Get card image URL
card_image_url = ""
if park.card_image and hasattr(park.card_image, "image"):
card_image_url = (
park.card_image.image.url if park.card_image.image else ""
)
# Get primary company (operator)
primary_company = park.operator.name if park.operator else ""
results.append(
{
"content_object": park,
"content_type": "park",
"id": park.pk, # Use pk instead of id for Django compatibility
"name": park.name,
"slug": park.slug,
"park": park.name, # For parks, park field is the park name itself
"category": "park",
"date_added": date_added.isoformat() if date_added else "",
"date_opened": opening_date.isoformat() if opening_date else "",
"url": park.url,
"card_image": card_image_url,
"city": city,
"state": state,
"country": country,
"primary_company": primary_company,
}
)
return results
def _get_new_rides(self, cutoff_date: datetime, limit: int) -> List[Dict[str, Any]]:
"""Get recently added rides."""
new_rides = (
Ride.objects.filter(
Q(created_at__gte=cutoff_date)
| Q(opening_date__gte=cutoff_date.date()),
status="OPERATING",
)
.select_related("park", "park__location", "card_image")
.order_by("-created_at", "-opening_date")[:limit]
)
results = []
for ride in new_rides:
date_added = getattr(ride, "opening_date", None) or getattr(
ride, "created_at", None
)
# Handle datetime to date conversion
if date_added:
# If it's a datetime, convert to date
if isinstance(date_added, datetime):
date_added = date_added.date()
# If it's already a date, keep it as is
# Get opening date for date_opened field
opening_date = getattr(ride, "opening_date", None)
if opening_date and isinstance(opening_date, datetime):
opening_date = opening_date.date()
# Get card image URL
card_image_url = ""
if ride.card_image and hasattr(ride.card_image, "image"):
card_image_url = (
ride.card_image.image.url if ride.card_image.image else ""
)
results.append(
{
"content_object": ride,
"content_type": "ride",
"id": ride.pk, # Use pk instead of id for Django compatibility
"name": ride.name,
"slug": ride.slug,
"park": ride.park.name if ride.park else "",
"category": "ride",
"date_added": date_added.isoformat() if date_added else "",
"date_opened": opening_date.isoformat() if opening_date else "",
"url": ride.url,
"park_url": ride.park.url if ride.park else "",
"card_image": card_image_url,
}
)
return results
def _format_trending_results(
self, trending_items: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""Format trending results for frontend consumption."""
formatted_results = []
for rank, item in enumerate(trending_items, 1):
try:
# Get view change for display
content_obj = item["content_object"]
ct = ContentType.objects.get_for_model(content_obj)
current_views, previous_views, growth_percentage = (
PageView.get_views_growth(
ct,
content_obj.id,
self.CURRENT_PERIOD_HOURS,
self.PREVIOUS_PERIOD_HOURS,
)
)
# Format exactly as frontend expects
formatted_item = {
"id": item["id"],
"name": item["name"],
"park": item["park"],
"category": item["category"],
"rating": item["rating"],
"rank": rank,
"views": current_views,
"views_change": (
f"+{growth_percentage:.1f}%"
if growth_percentage > 0
else f"{growth_percentage:.1f}%"
),
"slug": item["slug"],
"date_opened": item["date_opened"],
"url": item["url"],
}
# Add card_image for all items
if item.get("card_image"):
formatted_item["card_image"] = item["card_image"]
# Add park-specific fields
if item["content_type"] == "park":
if item.get("city"):
formatted_item["city"] = item["city"]
if item.get("state"):
formatted_item["state"] = item["state"]
if item.get("country"):
formatted_item["country"] = item["country"]
if item.get("primary_company"):
formatted_item["primary_company"] = item["primary_company"]
# Add park_url for rides
if item.get("park_url"):
formatted_item["park_url"] = item["park_url"]
formatted_results.append(formatted_item)
except Exception as e:
self.logger.warning(f"Error formatting trending item: {e}")
return formatted_results
def _format_new_content_results(
self, new_items: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""Format new content results for frontend consumption."""
formatted_results = []
for item in new_items:
try:
# Format exactly as frontend expects
formatted_item = {
"id": item["id"],
"name": item["name"],
"park": item["park"],
"category": item["category"],
"date_added": item["date_added"],
"date_opened": item["date_opened"],
"slug": item["slug"],
"url": item["url"],
}
# Add card_image for all items
if item.get("card_image"):
formatted_item["card_image"] = item["card_image"]
# Add park-specific fields
if item["content_type"] == "park":
if item.get("city"):
formatted_item["city"] = item["city"]
if item.get("state"):
formatted_item["state"] = item["state"]
if item.get("country"):
formatted_item["country"] = item["country"]
if item.get("primary_company"):
formatted_item["primary_company"] = item["primary_company"]
# Add park_url for rides
if item.get("park_url"):
formatted_item["park_url"] = item["park_url"]
formatted_results.append(formatted_item)
except Exception as e:
self.logger.warning(f"Error formatting new content item: {e}")
return formatted_results
def clear_cache(self, content_type: str = "all") -> None:
"""Clear trending and new content caches."""
try:
cache_patterns = [
f"{self.CACHE_PREFIX}:trending:{content_type}:*",
f"{self.CACHE_PREFIX}:new:{content_type}:*",
]
if content_type == "all":
cache_patterns.extend(
[
f"{self.CACHE_PREFIX}:trending:parks:*",
f"{self.CACHE_PREFIX}:trending:rides:*",
f"{self.CACHE_PREFIX}:new:parks:*",
f"{self.CACHE_PREFIX}:new:rides:*",
]
)
# Note: This is a simplified cache clear
# In production, you might want to use cache.delete_many() or similar
cache.clear()
self.logger.info(f"Cleared trending caches for {content_type}")
except Exception as e:
self.logger.error(f"Error clearing cache: {e}")
# Singleton service instance
trending_service = TrendingService()