mirror of
https://github.com/pacnpal/thrillwiki_django_no_react.git
synced 2025-12-23 11:11:10 -05:00
Refactor test utilities and enhance ASGI settings
- Cleaned up and standardized assertions in ApiTestMixin for API response validation. - Updated ASGI settings to use os.environ for setting the DJANGO_SETTINGS_MODULE. - Removed unused imports and improved formatting in settings.py. - Refactored URL patterns in urls.py for better readability and organization. - Enhanced view functions in views.py for consistency and clarity. - Added .flake8 configuration for linting and style enforcement. - Introduced type stubs for django-environ to improve type checking with Pylance.
This commit is contained in:
@@ -11,17 +11,17 @@ from .data_structures import (
|
||||
GeoBounds,
|
||||
MapFilters,
|
||||
MapResponse,
|
||||
ClusterData
|
||||
ClusterData,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'UnifiedMapService',
|
||||
'ClusteringService',
|
||||
'MapCacheService',
|
||||
'UnifiedLocation',
|
||||
'LocationType',
|
||||
'GeoBounds',
|
||||
'MapFilters',
|
||||
'MapResponse',
|
||||
'ClusterData'
|
||||
]
|
||||
"UnifiedMapService",
|
||||
"ClusteringService",
|
||||
"MapCacheService",
|
||||
"UnifiedLocation",
|
||||
"LocationType",
|
||||
"GeoBounds",
|
||||
"MapFilters",
|
||||
"MapResponse",
|
||||
"ClusterData",
|
||||
]
|
||||
|
||||
@@ -3,21 +3,22 @@ Clustering service for map locations to improve performance and user experience.
|
||||
"""
|
||||
|
||||
import math
|
||||
from typing import List, Tuple, Dict, Any, Optional, Set
|
||||
from typing import List, Tuple, Dict, Any, Optional
|
||||
from dataclasses import dataclass
|
||||
from collections import defaultdict
|
||||
|
||||
from .data_structures import (
|
||||
UnifiedLocation,
|
||||
ClusterData,
|
||||
GeoBounds,
|
||||
LocationType
|
||||
UnifiedLocation,
|
||||
ClusterData,
|
||||
GeoBounds,
|
||||
LocationType,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ClusterPoint:
|
||||
"""Internal representation of a point for clustering."""
|
||||
|
||||
location: UnifiedLocation
|
||||
x: float # Projected x coordinate
|
||||
y: float # Projected y coordinate
|
||||
@@ -28,48 +29,50 @@ class ClusteringService:
|
||||
Handles location clustering for map display using a simple grid-based approach
|
||||
with zoom-level dependent clustering radius.
|
||||
"""
|
||||
|
||||
|
||||
# Clustering configuration
|
||||
DEFAULT_RADIUS = 40 # pixels
|
||||
MIN_POINTS_TO_CLUSTER = 2
|
||||
MAX_ZOOM_FOR_CLUSTERING = 15
|
||||
MIN_ZOOM_FOR_CLUSTERING = 3
|
||||
|
||||
|
||||
# Zoom level configurations
|
||||
ZOOM_CONFIGS = {
|
||||
3: {'radius': 80, 'min_points': 5}, # World level
|
||||
4: {'radius': 70, 'min_points': 4}, # Continent level
|
||||
5: {'radius': 60, 'min_points': 3}, # Country level
|
||||
6: {'radius': 50, 'min_points': 3}, # Large region level
|
||||
7: {'radius': 45, 'min_points': 2}, # Region level
|
||||
8: {'radius': 40, 'min_points': 2}, # State level
|
||||
9: {'radius': 35, 'min_points': 2}, # Metro area level
|
||||
10: {'radius': 30, 'min_points': 2}, # City level
|
||||
11: {'radius': 25, 'min_points': 2}, # District level
|
||||
12: {'radius': 20, 'min_points': 2}, # Neighborhood level
|
||||
13: {'radius': 15, 'min_points': 2}, # Block level
|
||||
14: {'radius': 10, 'min_points': 2}, # Street level
|
||||
15: {'radius': 5, 'min_points': 2}, # Building level
|
||||
3: {"radius": 80, "min_points": 5}, # World level
|
||||
4: {"radius": 70, "min_points": 4}, # Continent level
|
||||
5: {"radius": 60, "min_points": 3}, # Country level
|
||||
6: {"radius": 50, "min_points": 3}, # Large region level
|
||||
7: {"radius": 45, "min_points": 2}, # Region level
|
||||
8: {"radius": 40, "min_points": 2}, # State level
|
||||
9: {"radius": 35, "min_points": 2}, # Metro area level
|
||||
10: {"radius": 30, "min_points": 2}, # City level
|
||||
11: {"radius": 25, "min_points": 2}, # District level
|
||||
12: {"radius": 20, "min_points": 2}, # Neighborhood level
|
||||
13: {"radius": 15, "min_points": 2}, # Block level
|
||||
14: {"radius": 10, "min_points": 2}, # Street level
|
||||
15: {"radius": 5, "min_points": 2}, # Building level
|
||||
}
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.cluster_id_counter = 0
|
||||
|
||||
|
||||
def should_cluster(self, zoom_level: int, point_count: int) -> bool:
|
||||
"""Determine if clustering should be applied based on zoom level and point count."""
|
||||
if zoom_level > self.MAX_ZOOM_FOR_CLUSTERING:
|
||||
return False
|
||||
if zoom_level < self.MIN_ZOOM_FOR_CLUSTERING:
|
||||
return True
|
||||
|
||||
config = self.ZOOM_CONFIGS.get(zoom_level, {'min_points': self.MIN_POINTS_TO_CLUSTER})
|
||||
return point_count >= config['min_points']
|
||||
|
||||
|
||||
config = self.ZOOM_CONFIGS.get(
|
||||
zoom_level, {"min_points": self.MIN_POINTS_TO_CLUSTER}
|
||||
)
|
||||
return point_count >= config["min_points"]
|
||||
|
||||
def cluster_locations(
|
||||
self,
|
||||
locations: List[UnifiedLocation],
|
||||
self,
|
||||
locations: List[UnifiedLocation],
|
||||
zoom_level: int,
|
||||
bounds: Optional[GeoBounds] = None
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
) -> Tuple[List[UnifiedLocation], List[ClusterData]]:
|
||||
"""
|
||||
Cluster locations based on zoom level and density.
|
||||
@@ -77,42 +80,47 @@ class ClusteringService:
|
||||
"""
|
||||
if not locations or not self.should_cluster(zoom_level, len(locations)):
|
||||
return locations, []
|
||||
|
||||
|
||||
# Convert locations to projected coordinates for clustering
|
||||
cluster_points = self._project_locations(locations, bounds)
|
||||
|
||||
|
||||
# Get clustering configuration for zoom level
|
||||
config = self.ZOOM_CONFIGS.get(zoom_level, {
|
||||
'radius': self.DEFAULT_RADIUS,
|
||||
'min_points': self.MIN_POINTS_TO_CLUSTER
|
||||
})
|
||||
|
||||
config = self.ZOOM_CONFIGS.get(
|
||||
zoom_level,
|
||||
{
|
||||
"radius": self.DEFAULT_RADIUS,
|
||||
"min_points": self.MIN_POINTS_TO_CLUSTER,
|
||||
},
|
||||
)
|
||||
|
||||
# Perform clustering
|
||||
clustered_groups = self._cluster_points(cluster_points, config['radius'], config['min_points'])
|
||||
|
||||
clustered_groups = self._cluster_points(
|
||||
cluster_points, config["radius"], config["min_points"]
|
||||
)
|
||||
|
||||
# Separate individual locations from clusters
|
||||
unclustered_locations = []
|
||||
clusters = []
|
||||
|
||||
|
||||
for group in clustered_groups:
|
||||
if len(group) < config['min_points']:
|
||||
if len(group) < config["min_points"]:
|
||||
# Add individual locations
|
||||
unclustered_locations.extend([cp.location for cp in group])
|
||||
else:
|
||||
# Create cluster
|
||||
cluster = self._create_cluster(group)
|
||||
clusters.append(cluster)
|
||||
|
||||
|
||||
return unclustered_locations, clusters
|
||||
|
||||
|
||||
def _project_locations(
|
||||
self,
|
||||
locations: List[UnifiedLocation],
|
||||
bounds: Optional[GeoBounds] = None
|
||||
self,
|
||||
locations: List[UnifiedLocation],
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
) -> List[ClusterPoint]:
|
||||
"""Convert lat/lng coordinates to projected x/y for clustering calculations."""
|
||||
cluster_points = []
|
||||
|
||||
|
||||
# Use bounds or calculate from locations
|
||||
if not bounds:
|
||||
lats = [loc.latitude for loc in locations]
|
||||
@@ -121,32 +129,27 @@ class ClusteringService:
|
||||
north=max(lats),
|
||||
south=min(lats),
|
||||
east=max(lngs),
|
||||
west=min(lngs)
|
||||
west=min(lngs),
|
||||
)
|
||||
|
||||
|
||||
# Simple equirectangular projection (good enough for clustering)
|
||||
center_lat = (bounds.north + bounds.south) / 2
|
||||
lat_scale = 111320 # meters per degree latitude
|
||||
lng_scale = 111320 * math.cos(math.radians(center_lat)) # meters per degree longitude
|
||||
|
||||
lng_scale = 111320 * math.cos(
|
||||
math.radians(center_lat)
|
||||
) # meters per degree longitude
|
||||
|
||||
for location in locations:
|
||||
# Convert to meters relative to bounds center
|
||||
x = (location.longitude - (bounds.west + bounds.east) / 2) * lng_scale
|
||||
y = (location.latitude - (bounds.north + bounds.south) / 2) * lat_scale
|
||||
|
||||
cluster_points.append(ClusterPoint(
|
||||
location=location,
|
||||
x=x,
|
||||
y=y
|
||||
))
|
||||
|
||||
|
||||
cluster_points.append(ClusterPoint(location=location, x=x, y=y))
|
||||
|
||||
return cluster_points
|
||||
|
||||
|
||||
def _cluster_points(
|
||||
self,
|
||||
points: List[ClusterPoint],
|
||||
radius_pixels: int,
|
||||
min_points: int
|
||||
self, points: List[ClusterPoint], radius_pixels: int, min_points: int
|
||||
) -> List[List[ClusterPoint]]:
|
||||
"""
|
||||
Cluster points using a simple distance-based approach.
|
||||
@@ -155,134 +158,142 @@ class ClusteringService:
|
||||
# Convert pixel radius to meters (rough approximation)
|
||||
# At zoom level 10, 1 pixel ≈ 150 meters
|
||||
radius_meters = radius_pixels * 150
|
||||
|
||||
|
||||
clustered = [False] * len(points)
|
||||
clusters = []
|
||||
|
||||
|
||||
for i, point in enumerate(points):
|
||||
if clustered[i]:
|
||||
continue
|
||||
|
||||
|
||||
# Find all points within radius
|
||||
cluster_group = [point]
|
||||
clustered[i] = True
|
||||
|
||||
|
||||
for j, other_point in enumerate(points):
|
||||
if i == j or clustered[j]:
|
||||
continue
|
||||
|
||||
|
||||
distance = self._calculate_distance(point, other_point)
|
||||
if distance <= radius_meters:
|
||||
cluster_group.append(other_point)
|
||||
clustered[j] = True
|
||||
|
||||
|
||||
clusters.append(cluster_group)
|
||||
|
||||
|
||||
return clusters
|
||||
|
||||
|
||||
def _calculate_distance(self, point1: ClusterPoint, point2: ClusterPoint) -> float:
|
||||
"""Calculate Euclidean distance between two projected points in meters."""
|
||||
dx = point1.x - point2.x
|
||||
dy = point1.y - point2.y
|
||||
return math.sqrt(dx * dx + dy * dy)
|
||||
|
||||
|
||||
def _create_cluster(self, cluster_points: List[ClusterPoint]) -> ClusterData:
|
||||
"""Create a ClusterData object from a group of points."""
|
||||
locations = [cp.location for cp in cluster_points]
|
||||
|
||||
|
||||
# Calculate cluster center (average position)
|
||||
avg_lat = sum(loc.latitude for loc in locations) / len(locations)
|
||||
avg_lng = sum(loc.longitude for loc in locations) / len(locations)
|
||||
|
||||
|
||||
# Calculate cluster bounds
|
||||
lats = [loc.latitude for loc in locations]
|
||||
lngs = [loc.longitude for loc in locations]
|
||||
cluster_bounds = GeoBounds(
|
||||
north=max(lats),
|
||||
south=min(lats),
|
||||
east=max(lngs),
|
||||
west=min(lngs)
|
||||
north=max(lats), south=min(lats), east=max(lngs), west=min(lngs)
|
||||
)
|
||||
|
||||
|
||||
# Collect location types in cluster
|
||||
types = set(loc.type for loc in locations)
|
||||
|
||||
|
||||
# Select representative location (highest weight)
|
||||
representative = self._select_representative_location(locations)
|
||||
|
||||
|
||||
# Generate cluster ID
|
||||
self.cluster_id_counter += 1
|
||||
cluster_id = f"cluster_{self.cluster_id_counter}"
|
||||
|
||||
|
||||
return ClusterData(
|
||||
id=cluster_id,
|
||||
coordinates=(avg_lat, avg_lng),
|
||||
count=len(locations),
|
||||
types=types,
|
||||
bounds=cluster_bounds,
|
||||
representative_location=representative
|
||||
representative_location=representative,
|
||||
)
|
||||
|
||||
def _select_representative_location(self, locations: List[UnifiedLocation]) -> Optional[UnifiedLocation]:
|
||||
|
||||
def _select_representative_location(
|
||||
self, locations: List[UnifiedLocation]
|
||||
) -> Optional[UnifiedLocation]:
|
||||
"""Select the most representative location for a cluster."""
|
||||
if not locations:
|
||||
return None
|
||||
|
||||
# Prioritize by: 1) Parks over rides/companies, 2) Higher weight, 3) Better rating
|
||||
|
||||
# Prioritize by: 1) Parks over rides/companies, 2) Higher weight, 3)
|
||||
# Better rating
|
||||
parks = [loc for loc in locations if loc.type == LocationType.PARK]
|
||||
if parks:
|
||||
return max(parks, key=lambda x: (
|
||||
x.cluster_weight,
|
||||
x.metadata.get('rating', 0) or 0
|
||||
))
|
||||
|
||||
return max(
|
||||
parks,
|
||||
key=lambda x: (
|
||||
x.cluster_weight,
|
||||
x.metadata.get("rating", 0) or 0,
|
||||
),
|
||||
)
|
||||
|
||||
rides = [loc for loc in locations if loc.type == LocationType.RIDE]
|
||||
if rides:
|
||||
return max(rides, key=lambda x: (
|
||||
x.cluster_weight,
|
||||
x.metadata.get('rating', 0) or 0
|
||||
))
|
||||
|
||||
return max(
|
||||
rides,
|
||||
key=lambda x: (
|
||||
x.cluster_weight,
|
||||
x.metadata.get("rating", 0) or 0,
|
||||
),
|
||||
)
|
||||
|
||||
companies = [loc for loc in locations if loc.type == LocationType.COMPANY]
|
||||
if companies:
|
||||
return max(companies, key=lambda x: x.cluster_weight)
|
||||
|
||||
|
||||
# Fall back to highest weight location
|
||||
return max(locations, key=lambda x: x.cluster_weight)
|
||||
|
||||
|
||||
def get_cluster_breakdown(self, clusters: List[ClusterData]) -> Dict[str, Any]:
|
||||
"""Get statistics about clustering results."""
|
||||
if not clusters:
|
||||
return {
|
||||
'total_clusters': 0,
|
||||
'total_points_clustered': 0,
|
||||
'average_cluster_size': 0,
|
||||
'type_distribution': {},
|
||||
'category_distribution': {}
|
||||
"total_clusters": 0,
|
||||
"total_points_clustered": 0,
|
||||
"average_cluster_size": 0,
|
||||
"type_distribution": {},
|
||||
"category_distribution": {},
|
||||
}
|
||||
|
||||
|
||||
total_points = sum(cluster.count for cluster in clusters)
|
||||
type_counts = defaultdict(int)
|
||||
category_counts = defaultdict(int)
|
||||
|
||||
|
||||
for cluster in clusters:
|
||||
for location_type in cluster.types:
|
||||
type_counts[location_type.value] += cluster.count
|
||||
|
||||
|
||||
if cluster.representative_location:
|
||||
category_counts[cluster.representative_location.cluster_category] += 1
|
||||
|
||||
|
||||
return {
|
||||
'total_clusters': len(clusters),
|
||||
'total_points_clustered': total_points,
|
||||
'average_cluster_size': total_points / len(clusters),
|
||||
'largest_cluster_size': max(cluster.count for cluster in clusters),
|
||||
'smallest_cluster_size': min(cluster.count for cluster in clusters),
|
||||
'type_distribution': dict(type_counts),
|
||||
'category_distribution': dict(category_counts)
|
||||
"total_clusters": len(clusters),
|
||||
"total_points_clustered": total_points,
|
||||
"average_cluster_size": total_points / len(clusters),
|
||||
"largest_cluster_size": max(cluster.count for cluster in clusters),
|
||||
"smallest_cluster_size": min(cluster.count for cluster in clusters),
|
||||
"type_distribution": dict(type_counts),
|
||||
"category_distribution": dict(category_counts),
|
||||
}
|
||||
|
||||
def expand_cluster(self, cluster: ClusterData, zoom_level: int) -> List[UnifiedLocation]:
|
||||
|
||||
def expand_cluster(
|
||||
self, cluster: ClusterData, zoom_level: int
|
||||
) -> List[UnifiedLocation]:
|
||||
"""
|
||||
Expand a cluster to show individual locations (for drill-down functionality).
|
||||
This would typically require re-querying the database with the cluster bounds.
|
||||
@@ -296,47 +307,59 @@ class SmartClusteringRules:
|
||||
"""
|
||||
Advanced clustering rules that consider location types and importance.
|
||||
"""
|
||||
|
||||
|
||||
@staticmethod
|
||||
def should_cluster_together(loc1: UnifiedLocation, loc2: UnifiedLocation) -> bool:
|
||||
"""Determine if two locations should be clustered together."""
|
||||
|
||||
|
||||
# Same park rides should cluster together more readily
|
||||
if loc1.type == LocationType.RIDE and loc2.type == LocationType.RIDE:
|
||||
park1_id = loc1.metadata.get('park_id')
|
||||
park2_id = loc2.metadata.get('park_id')
|
||||
park1_id = loc1.metadata.get("park_id")
|
||||
park2_id = loc2.metadata.get("park_id")
|
||||
if park1_id and park2_id and park1_id == park2_id:
|
||||
return True
|
||||
|
||||
|
||||
# Major parks should resist clustering unless very close
|
||||
if (loc1.cluster_category == "major_park" or loc2.cluster_category == "major_park"):
|
||||
if (
|
||||
loc1.cluster_category == "major_park"
|
||||
or loc2.cluster_category == "major_park"
|
||||
):
|
||||
return False
|
||||
|
||||
|
||||
# Similar types cluster more readily
|
||||
if loc1.type == loc2.type:
|
||||
return True
|
||||
|
||||
|
||||
# Different types can cluster but with higher threshold
|
||||
return False
|
||||
|
||||
|
||||
@staticmethod
|
||||
def calculate_cluster_priority(locations: List[UnifiedLocation]) -> UnifiedLocation:
|
||||
def calculate_cluster_priority(
|
||||
locations: List[UnifiedLocation],
|
||||
) -> UnifiedLocation:
|
||||
"""Select the representative location for a cluster based on priority rules."""
|
||||
# Prioritize by: 1) Parks over rides, 2) Higher weight, 3) Better rating
|
||||
# Prioritize by: 1) Parks over rides, 2) Higher weight, 3) Better
|
||||
# rating
|
||||
parks = [loc for loc in locations if loc.type == LocationType.PARK]
|
||||
if parks:
|
||||
return max(parks, key=lambda x: (
|
||||
x.cluster_weight,
|
||||
x.metadata.get('rating', 0) or 0,
|
||||
x.metadata.get('ride_count', 0) or 0
|
||||
))
|
||||
|
||||
return max(
|
||||
parks,
|
||||
key=lambda x: (
|
||||
x.cluster_weight,
|
||||
x.metadata.get("rating", 0) or 0,
|
||||
x.metadata.get("ride_count", 0) or 0,
|
||||
),
|
||||
)
|
||||
|
||||
rides = [loc for loc in locations if loc.type == LocationType.RIDE]
|
||||
if rides:
|
||||
return max(rides, key=lambda x: (
|
||||
x.cluster_weight,
|
||||
x.metadata.get('rating', 0) or 0
|
||||
))
|
||||
|
||||
return max(
|
||||
rides,
|
||||
key=lambda x: (
|
||||
x.cluster_weight,
|
||||
x.metadata.get("rating", 0) or 0,
|
||||
),
|
||||
)
|
||||
|
||||
# Fall back to highest weight
|
||||
return max(locations, key=lambda x: x.cluster_weight)
|
||||
return max(locations, key=lambda x: x.cluster_weight)
|
||||
|
||||
@@ -5,11 +5,12 @@ Data structures for the unified map service.
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import Dict, List, Optional, Set, Tuple, Any
|
||||
from django.contrib.gis.geos import Polygon, Point
|
||||
from django.contrib.gis.geos import Polygon
|
||||
|
||||
|
||||
class LocationType(Enum):
|
||||
"""Types of locations supported by the map service."""
|
||||
|
||||
PARK = "park"
|
||||
RIDE = "ride"
|
||||
COMPANY = "company"
|
||||
@@ -19,11 +20,12 @@ class LocationType(Enum):
|
||||
@dataclass
|
||||
class GeoBounds:
|
||||
"""Geographic boundary box for spatial queries."""
|
||||
|
||||
north: float
|
||||
south: float
|
||||
east: float
|
||||
west: float
|
||||
|
||||
|
||||
def __post_init__(self):
|
||||
"""Validate bounds after initialization."""
|
||||
if self.north < self.south:
|
||||
@@ -34,44 +36,44 @@ class GeoBounds:
|
||||
raise ValueError("Latitude bounds must be between -90 and 90")
|
||||
if not (-180 <= self.west <= 180 and -180 <= self.east <= 180):
|
||||
raise ValueError("Longitude bounds must be between -180 and 180")
|
||||
|
||||
|
||||
def to_polygon(self) -> Polygon:
|
||||
"""Convert bounds to PostGIS Polygon for database queries."""
|
||||
return Polygon.from_bbox((self.west, self.south, self.east, self.north))
|
||||
|
||||
def expand(self, factor: float = 1.1) -> 'GeoBounds':
|
||||
|
||||
def expand(self, factor: float = 1.1) -> "GeoBounds":
|
||||
"""Expand bounds by factor for buffer queries."""
|
||||
center_lat = (self.north + self.south) / 2
|
||||
center_lng = (self.east + self.west) / 2
|
||||
|
||||
|
||||
lat_range = (self.north - self.south) * factor / 2
|
||||
lng_range = (self.east - self.west) * factor / 2
|
||||
|
||||
|
||||
return GeoBounds(
|
||||
north=min(90, center_lat + lat_range),
|
||||
south=max(-90, center_lat - lat_range),
|
||||
east=min(180, center_lng + lng_range),
|
||||
west=max(-180, center_lng - lng_range)
|
||||
west=max(-180, center_lng - lng_range),
|
||||
)
|
||||
|
||||
|
||||
def contains_point(self, lat: float, lng: float) -> bool:
|
||||
"""Check if a point is within these bounds."""
|
||||
return (self.south <= lat <= self.north and
|
||||
self.west <= lng <= self.east)
|
||||
|
||||
return self.south <= lat <= self.north and self.west <= lng <= self.east
|
||||
|
||||
def to_dict(self) -> Dict[str, float]:
|
||||
"""Convert to dictionary for JSON serialization."""
|
||||
return {
|
||||
'north': self.north,
|
||||
'south': self.south,
|
||||
'east': self.east,
|
||||
'west': self.west
|
||||
"north": self.north,
|
||||
"south": self.south,
|
||||
"east": self.east,
|
||||
"west": self.west,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MapFilters:
|
||||
"""Filtering options for map queries."""
|
||||
|
||||
location_types: Optional[Set[LocationType]] = None
|
||||
park_status: Optional[Set[str]] = None # OPERATING, CLOSED_TEMP, etc.
|
||||
ride_types: Optional[Set[str]] = None
|
||||
@@ -82,26 +84,29 @@ class MapFilters:
|
||||
country: Optional[str] = None
|
||||
state: Optional[str] = None
|
||||
city: Optional[str] = None
|
||||
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Convert to dictionary for caching and serialization."""
|
||||
return {
|
||||
'location_types': [t.value for t in self.location_types] if self.location_types else None,
|
||||
'park_status': list(self.park_status) if self.park_status else None,
|
||||
'ride_types': list(self.ride_types) if self.ride_types else None,
|
||||
'company_roles': list(self.company_roles) if self.company_roles else None,
|
||||
'search_query': self.search_query,
|
||||
'min_rating': self.min_rating,
|
||||
'has_coordinates': self.has_coordinates,
|
||||
'country': self.country,
|
||||
'state': self.state,
|
||||
'city': self.city,
|
||||
"location_types": (
|
||||
[t.value for t in self.location_types] if self.location_types else None
|
||||
),
|
||||
"park_status": (list(self.park_status) if self.park_status else None),
|
||||
"ride_types": list(self.ride_types) if self.ride_types else None,
|
||||
"company_roles": (list(self.company_roles) if self.company_roles else None),
|
||||
"search_query": self.search_query,
|
||||
"min_rating": self.min_rating,
|
||||
"has_coordinates": self.has_coordinates,
|
||||
"country": self.country,
|
||||
"state": self.state,
|
||||
"city": self.city,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class UnifiedLocation:
|
||||
"""Unified location interface for all location types."""
|
||||
|
||||
id: str # Composite: f"{type}_{id}"
|
||||
type: LocationType
|
||||
name: str
|
||||
@@ -111,77 +116,84 @@ class UnifiedLocation:
|
||||
type_data: Dict[str, Any] = field(default_factory=dict)
|
||||
cluster_weight: int = 1
|
||||
cluster_category: str = "default"
|
||||
|
||||
|
||||
@property
|
||||
def latitude(self) -> float:
|
||||
"""Get latitude from coordinates."""
|
||||
return self.coordinates[0]
|
||||
|
||||
|
||||
@property
|
||||
def longitude(self) -> float:
|
||||
"""Get longitude from coordinates."""
|
||||
return self.coordinates[1]
|
||||
|
||||
|
||||
def to_geojson_feature(self) -> Dict[str, Any]:
|
||||
"""Convert to GeoJSON feature for mapping libraries."""
|
||||
return {
|
||||
'type': 'Feature',
|
||||
'properties': {
|
||||
'id': self.id,
|
||||
'type': self.type.value,
|
||||
'name': self.name,
|
||||
'address': self.address,
|
||||
'metadata': self.metadata,
|
||||
'type_data': self.type_data,
|
||||
'cluster_weight': self.cluster_weight,
|
||||
'cluster_category': self.cluster_category
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"id": self.id,
|
||||
"type": self.type.value,
|
||||
"name": self.name,
|
||||
"address": self.address,
|
||||
"metadata": self.metadata,
|
||||
"type_data": self.type_data,
|
||||
"cluster_weight": self.cluster_weight,
|
||||
"cluster_category": self.cluster_category,
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
# GeoJSON uses lng, lat
|
||||
"coordinates": [self.longitude, self.latitude],
|
||||
},
|
||||
'geometry': {
|
||||
'type': 'Point',
|
||||
'coordinates': [self.longitude, self.latitude] # GeoJSON uses lng, lat
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Convert to dictionary for JSON responses."""
|
||||
return {
|
||||
'id': self.id,
|
||||
'type': self.type.value,
|
||||
'name': self.name,
|
||||
'coordinates': list(self.coordinates),
|
||||
'address': self.address,
|
||||
'metadata': self.metadata,
|
||||
'type_data': self.type_data,
|
||||
'cluster_weight': self.cluster_weight,
|
||||
'cluster_category': self.cluster_category
|
||||
"id": self.id,
|
||||
"type": self.type.value,
|
||||
"name": self.name,
|
||||
"coordinates": list(self.coordinates),
|
||||
"address": self.address,
|
||||
"metadata": self.metadata,
|
||||
"type_data": self.type_data,
|
||||
"cluster_weight": self.cluster_weight,
|
||||
"cluster_category": self.cluster_category,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ClusterData:
|
||||
"""Represents a cluster of locations for map display."""
|
||||
|
||||
id: str
|
||||
coordinates: Tuple[float, float] # (lat, lng)
|
||||
count: int
|
||||
types: Set[LocationType]
|
||||
bounds: GeoBounds
|
||||
representative_location: Optional[UnifiedLocation] = None
|
||||
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Convert to dictionary for JSON responses."""
|
||||
return {
|
||||
'id': self.id,
|
||||
'coordinates': list(self.coordinates),
|
||||
'count': self.count,
|
||||
'types': [t.value for t in self.types],
|
||||
'bounds': self.bounds.to_dict(),
|
||||
'representative': self.representative_location.to_dict() if self.representative_location else None
|
||||
"id": self.id,
|
||||
"coordinates": list(self.coordinates),
|
||||
"count": self.count,
|
||||
"types": [t.value for t in self.types],
|
||||
"bounds": self.bounds.to_dict(),
|
||||
"representative": (
|
||||
self.representative_location.to_dict()
|
||||
if self.representative_location
|
||||
else None
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MapResponse:
|
||||
"""Response structure for map API calls."""
|
||||
|
||||
locations: List[UnifiedLocation] = field(default_factory=list)
|
||||
clusters: List[ClusterData] = field(default_factory=list)
|
||||
bounds: Optional[GeoBounds] = None
|
||||
@@ -192,49 +204,50 @@ class MapResponse:
|
||||
cache_hit: bool = False
|
||||
query_time_ms: Optional[int] = None
|
||||
filters_applied: List[str] = field(default_factory=list)
|
||||
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Convert to dictionary for JSON responses."""
|
||||
return {
|
||||
'status': 'success',
|
||||
'data': {
|
||||
'locations': [loc.to_dict() for loc in self.locations],
|
||||
'clusters': [cluster.to_dict() for cluster in self.clusters],
|
||||
'bounds': self.bounds.to_dict() if self.bounds else None,
|
||||
'total_count': self.total_count,
|
||||
'filtered_count': self.filtered_count,
|
||||
'zoom_level': self.zoom_level,
|
||||
'clustered': self.clustered
|
||||
"status": "success",
|
||||
"data": {
|
||||
"locations": [loc.to_dict() for loc in self.locations],
|
||||
"clusters": [cluster.to_dict() for cluster in self.clusters],
|
||||
"bounds": self.bounds.to_dict() if self.bounds else None,
|
||||
"total_count": self.total_count,
|
||||
"filtered_count": self.filtered_count,
|
||||
"zoom_level": self.zoom_level,
|
||||
"clustered": self.clustered,
|
||||
},
|
||||
"meta": {
|
||||
"cache_hit": self.cache_hit,
|
||||
"query_time_ms": self.query_time_ms,
|
||||
"filters_applied": self.filters_applied,
|
||||
"pagination": {
|
||||
"has_more": False, # TODO: Implement pagination
|
||||
"total_pages": 1,
|
||||
},
|
||||
},
|
||||
'meta': {
|
||||
'cache_hit': self.cache_hit,
|
||||
'query_time_ms': self.query_time_ms,
|
||||
'filters_applied': self.filters_applied,
|
||||
'pagination': {
|
||||
'has_more': False, # TODO: Implement pagination
|
||||
'total_pages': 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class QueryPerformanceMetrics:
|
||||
"""Performance metrics for query optimization."""
|
||||
|
||||
query_time_ms: int
|
||||
db_query_count: int
|
||||
cache_hit: bool
|
||||
result_count: int
|
||||
bounds_used: bool
|
||||
clustering_used: bool
|
||||
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Convert to dictionary for logging."""
|
||||
return {
|
||||
'query_time_ms': self.query_time_ms,
|
||||
'db_query_count': self.db_query_count,
|
||||
'cache_hit': self.cache_hit,
|
||||
'result_count': self.result_count,
|
||||
'bounds_used': self.bounds_used,
|
||||
'clustering_used': self.clustering_used
|
||||
}
|
||||
"query_time_ms": self.query_time_ms,
|
||||
"db_query_count": self.db_query_count,
|
||||
"cache_hit": self.cache_hit,
|
||||
"result_count": self.result_count,
|
||||
"bounds_used": self.bounds_used,
|
||||
"clustering_used": self.clustering_used,
|
||||
}
|
||||
|
||||
@@ -2,10 +2,8 @@
|
||||
Enhanced caching service with multiple cache backends and strategies.
|
||||
"""
|
||||
|
||||
from typing import Optional, Any, Dict, List, Callable
|
||||
from typing import Optional, Any, Dict, Callable
|
||||
from django.core.cache import caches
|
||||
from django.core.cache.utils import make_template_fragment_key
|
||||
from django.conf import settings
|
||||
import hashlib
|
||||
import json
|
||||
import logging
|
||||
@@ -14,6 +12,7 @@ from functools import wraps
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Define GeoBounds for type hinting
|
||||
class GeoBounds:
|
||||
def __init__(self, min_lat: float, min_lng: float, max_lat: float, max_lng: float):
|
||||
@@ -25,93 +24,134 @@ class GeoBounds:
|
||||
|
||||
class EnhancedCacheService:
|
||||
"""Comprehensive caching service with multiple cache backends"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.default_cache = caches['default']
|
||||
self.default_cache = caches["default"]
|
||||
try:
|
||||
self.api_cache = caches['api']
|
||||
self.api_cache = caches["api"]
|
||||
except Exception:
|
||||
# Fallback to default cache if api cache not configured
|
||||
self.api_cache = self.default_cache
|
||||
|
||||
|
||||
# L1: Query-level caching
|
||||
def cache_queryset(self, cache_key: str, queryset_func: Callable, timeout: int = 3600, **kwargs) -> Any:
|
||||
def cache_queryset(
|
||||
self,
|
||||
cache_key: str,
|
||||
queryset_func: Callable,
|
||||
timeout: int = 3600,
|
||||
**kwargs,
|
||||
) -> Any:
|
||||
"""Cache expensive querysets"""
|
||||
cached_result = self.default_cache.get(cache_key)
|
||||
if cached_result is None:
|
||||
start_time = time.time()
|
||||
result = queryset_func(**kwargs)
|
||||
duration = time.time() - start_time
|
||||
|
||||
|
||||
# Log cache miss and function execution time
|
||||
logger.info(
|
||||
f"Cache miss for key '{cache_key}', executed in {duration:.3f}s",
|
||||
extra={'cache_key': cache_key, 'execution_time': duration}
|
||||
f"Cache miss for key '{cache_key}', executed in {
|
||||
duration:.3f}s",
|
||||
extra={"cache_key": cache_key, "execution_time": duration},
|
||||
)
|
||||
|
||||
|
||||
self.default_cache.set(cache_key, result, timeout)
|
||||
return result
|
||||
|
||||
|
||||
logger.debug(f"Cache hit for key '{cache_key}'")
|
||||
return cached_result
|
||||
|
||||
# L2: API response caching
|
||||
def cache_api_response(self, view_name: str, params: Dict, response_data: Any, timeout: int = 1800):
|
||||
|
||||
# L2: API response caching
|
||||
def cache_api_response(
|
||||
self,
|
||||
view_name: str,
|
||||
params: Dict,
|
||||
response_data: Any,
|
||||
timeout: int = 1800,
|
||||
):
|
||||
"""Cache API responses based on view and parameters"""
|
||||
cache_key = self._generate_api_cache_key(view_name, params)
|
||||
self.api_cache.set(cache_key, response_data, timeout)
|
||||
logger.debug(f"Cached API response for view '{view_name}'")
|
||||
|
||||
|
||||
def get_cached_api_response(self, view_name: str, params: Dict) -> Optional[Any]:
|
||||
"""Retrieve cached API response"""
|
||||
cache_key = self._generate_api_cache_key(view_name, params)
|
||||
result = self.api_cache.get(cache_key)
|
||||
|
||||
|
||||
if result:
|
||||
logger.debug(f"Cache hit for API view '{view_name}'")
|
||||
else:
|
||||
logger.debug(f"Cache miss for API view '{view_name}'")
|
||||
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# L3: Geographic caching (building on existing MapCacheService)
|
||||
def cache_geographic_data(self, bounds: 'GeoBounds', data: Any, zoom_level: int, timeout: int = 1800):
|
||||
def cache_geographic_data(
|
||||
self,
|
||||
bounds: "GeoBounds",
|
||||
data: Any,
|
||||
zoom_level: int,
|
||||
timeout: int = 1800,
|
||||
):
|
||||
"""Cache geographic data with spatial keys"""
|
||||
# Generate spatial cache key based on bounds and zoom level
|
||||
cache_key = f"geo:{bounds.min_lat}:{bounds.min_lng}:{bounds.max_lat}:{bounds.max_lng}:z{zoom_level}"
|
||||
cache_key = f"geo:{
|
||||
bounds.min_lat}:{
|
||||
bounds.min_lng}:{
|
||||
bounds.max_lat}:{
|
||||
bounds.max_lng}:z{zoom_level}"
|
||||
self.default_cache.set(cache_key, data, timeout)
|
||||
logger.debug(f"Cached geographic data for bounds {bounds}")
|
||||
|
||||
def get_cached_geographic_data(self, bounds: 'GeoBounds', zoom_level: int) -> Optional[Any]:
|
||||
|
||||
def get_cached_geographic_data(
|
||||
self, bounds: "GeoBounds", zoom_level: int
|
||||
) -> Optional[Any]:
|
||||
"""Retrieve cached geographic data"""
|
||||
cache_key = f"geo:{bounds.min_lat}:{bounds.min_lng}:{bounds.max_lat}:{bounds.max_lng}:z{zoom_level}"
|
||||
cache_key = f"geo:{
|
||||
bounds.min_lat}:{
|
||||
bounds.min_lng}:{
|
||||
bounds.max_lat}:{
|
||||
bounds.max_lng}:z{zoom_level}"
|
||||
return self.default_cache.get(cache_key)
|
||||
|
||||
|
||||
# Cache invalidation utilities
|
||||
def invalidate_pattern(self, pattern: str):
|
||||
"""Invalidate cache keys matching a pattern (if backend supports it)"""
|
||||
try:
|
||||
# For Redis cache backends
|
||||
if hasattr(self.default_cache, 'delete_pattern'):
|
||||
if hasattr(self.default_cache, "delete_pattern"):
|
||||
deleted_count = self.default_cache.delete_pattern(pattern)
|
||||
logger.info(f"Invalidated {deleted_count} cache keys matching pattern '{pattern}'")
|
||||
logger.info(
|
||||
f"Invalidated {deleted_count} cache keys matching pattern '{pattern}'"
|
||||
)
|
||||
return deleted_count
|
||||
else:
|
||||
logger.warning(f"Cache backend does not support pattern deletion for pattern '{pattern}'")
|
||||
logger.warning(
|
||||
f"Cache backend does not support pattern deletion for pattern '{pattern}'"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error invalidating cache pattern '{pattern}': {e}")
|
||||
|
||||
def invalidate_model_cache(self, model_name: str, instance_id: Optional[int] = None):
|
||||
|
||||
def invalidate_model_cache(
|
||||
self, model_name: str, instance_id: Optional[int] = None
|
||||
):
|
||||
"""Invalidate cache keys related to a specific model"""
|
||||
if instance_id:
|
||||
pattern = f"*{model_name}:{instance_id}*"
|
||||
else:
|
||||
pattern = f"*{model_name}*"
|
||||
|
||||
|
||||
self.invalidate_pattern(pattern)
|
||||
|
||||
|
||||
# Cache warming utilities
|
||||
def warm_cache(self, cache_key: str, warm_func: Callable, timeout: int = 3600, **kwargs):
|
||||
def warm_cache(
|
||||
self,
|
||||
cache_key: str,
|
||||
warm_func: Callable,
|
||||
timeout: int = 3600,
|
||||
**kwargs,
|
||||
):
|
||||
"""Proactively warm cache with data"""
|
||||
try:
|
||||
data = warm_func(**kwargs)
|
||||
@@ -119,7 +159,7 @@ class EnhancedCacheService:
|
||||
logger.info(f"Warmed cache for key '{cache_key}'")
|
||||
except Exception as e:
|
||||
logger.error(f"Error warming cache for key '{cache_key}': {e}")
|
||||
|
||||
|
||||
def _generate_api_cache_key(self, view_name: str, params: Dict) -> str:
|
||||
"""Generate consistent cache keys for API responses"""
|
||||
# Sort params to ensure consistent key generation
|
||||
@@ -129,124 +169,150 @@ class EnhancedCacheService:
|
||||
|
||||
|
||||
# Cache decorators
|
||||
def cache_api_response(timeout=1800, vary_on=None, key_prefix=''):
|
||||
def cache_api_response(timeout=1800, vary_on=None, key_prefix=""):
|
||||
"""Decorator for caching API responses"""
|
||||
|
||||
def decorator(view_func):
|
||||
@wraps(view_func)
|
||||
def wrapper(self, request, *args, **kwargs):
|
||||
if request.method != 'GET':
|
||||
if request.method != "GET":
|
||||
return view_func(self, request, *args, **kwargs)
|
||||
|
||||
|
||||
# Generate cache key based on view, user, and parameters
|
||||
cache_key_parts = [
|
||||
key_prefix or view_func.__name__,
|
||||
str(request.user.id) if request.user.is_authenticated else 'anonymous',
|
||||
str(hash(frozenset(request.GET.items())))
|
||||
(
|
||||
str(request.user.id)
|
||||
if request.user.is_authenticated
|
||||
else "anonymous"
|
||||
),
|
||||
str(hash(frozenset(request.GET.items()))),
|
||||
]
|
||||
|
||||
|
||||
if vary_on:
|
||||
for field in vary_on:
|
||||
cache_key_parts.append(str(getattr(request, field, '')))
|
||||
|
||||
cache_key = ':'.join(cache_key_parts)
|
||||
|
||||
cache_key_parts.append(str(getattr(request, field, "")))
|
||||
|
||||
cache_key = ":".join(cache_key_parts)
|
||||
|
||||
# Try to get from cache
|
||||
cache_service = EnhancedCacheService()
|
||||
cached_response = cache_service.api_cache.get(cache_key)
|
||||
if cached_response:
|
||||
logger.debug(f"Cache hit for API view {view_func.__name__}")
|
||||
return cached_response
|
||||
|
||||
|
||||
# Execute view and cache result
|
||||
response = view_func(self, request, *args, **kwargs)
|
||||
if hasattr(response, 'status_code') and response.status_code == 200:
|
||||
if hasattr(response, "status_code") and response.status_code == 200:
|
||||
cache_service.api_cache.set(cache_key, response, timeout)
|
||||
logger.debug(f"Cached API response for view {view_func.__name__}")
|
||||
|
||||
logger.debug(
|
||||
f"Cached API response for view {
|
||||
view_func.__name__}"
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def cache_queryset_result(cache_key_template: str, timeout: int = 3600):
|
||||
"""Decorator for caching queryset results"""
|
||||
|
||||
def decorator(func):
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
# Generate cache key from template and arguments
|
||||
cache_key = cache_key_template.format(*args, **kwargs)
|
||||
|
||||
|
||||
cache_service = EnhancedCacheService()
|
||||
return cache_service.cache_queryset(cache_key, func, timeout, *args, **kwargs)
|
||||
return cache_service.cache_queryset(
|
||||
cache_key, func, timeout, *args, **kwargs
|
||||
)
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
# Context manager for cache warming
|
||||
class CacheWarmer:
|
||||
"""Context manager for batch cache warming operations"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.cache_service = EnhancedCacheService()
|
||||
self.warm_operations = []
|
||||
|
||||
def add(self, cache_key: str, warm_func: Callable, timeout: int = 3600, **kwargs):
|
||||
|
||||
def add(
|
||||
self,
|
||||
cache_key: str,
|
||||
warm_func: Callable,
|
||||
timeout: int = 3600,
|
||||
**kwargs,
|
||||
):
|
||||
"""Add a cache warming operation to the batch"""
|
||||
self.warm_operations.append({
|
||||
'cache_key': cache_key,
|
||||
'warm_func': warm_func,
|
||||
'timeout': timeout,
|
||||
'kwargs': kwargs
|
||||
})
|
||||
|
||||
self.warm_operations.append(
|
||||
{
|
||||
"cache_key": cache_key,
|
||||
"warm_func": warm_func,
|
||||
"timeout": timeout,
|
||||
"kwargs": kwargs,
|
||||
}
|
||||
)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
"""Execute all cache warming operations"""
|
||||
logger.info(f"Warming {len(self.warm_operations)} cache entries")
|
||||
|
||||
|
||||
for operation in self.warm_operations:
|
||||
try:
|
||||
self.cache_service.warm_cache(**operation)
|
||||
except Exception as e:
|
||||
logger.error(f"Error warming cache for {operation['cache_key']}: {e}")
|
||||
logger.error(
|
||||
f"Error warming cache for {
|
||||
operation['cache_key']}: {e}"
|
||||
)
|
||||
|
||||
|
||||
# Cache statistics and monitoring
|
||||
class CacheMonitor:
|
||||
"""Monitor cache performance and statistics"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.cache_service = EnhancedCacheService()
|
||||
|
||||
|
||||
def get_cache_stats(self) -> Dict[str, Any]:
|
||||
"""Get cache statistics if available"""
|
||||
stats = {}
|
||||
|
||||
|
||||
try:
|
||||
# Redis cache stats
|
||||
if hasattr(self.cache_service.default_cache, '_cache'):
|
||||
if hasattr(self.cache_service.default_cache, "_cache"):
|
||||
redis_client = self.cache_service.default_cache._cache.get_client()
|
||||
info = redis_client.info()
|
||||
stats['redis'] = {
|
||||
'used_memory': info.get('used_memory_human'),
|
||||
'connected_clients': info.get('connected_clients'),
|
||||
'total_commands_processed': info.get('total_commands_processed'),
|
||||
'keyspace_hits': info.get('keyspace_hits'),
|
||||
'keyspace_misses': info.get('keyspace_misses'),
|
||||
stats["redis"] = {
|
||||
"used_memory": info.get("used_memory_human"),
|
||||
"connected_clients": info.get("connected_clients"),
|
||||
"total_commands_processed": info.get("total_commands_processed"),
|
||||
"keyspace_hits": info.get("keyspace_hits"),
|
||||
"keyspace_misses": info.get("keyspace_misses"),
|
||||
}
|
||||
|
||||
|
||||
# Calculate hit rate
|
||||
hits = info.get('keyspace_hits', 0)
|
||||
misses = info.get('keyspace_misses', 0)
|
||||
hits = info.get("keyspace_hits", 0)
|
||||
misses = info.get("keyspace_misses", 0)
|
||||
if hits + misses > 0:
|
||||
stats['redis']['hit_rate'] = hits / (hits + misses) * 100
|
||||
stats["redis"]["hit_rate"] = hits / (hits + misses) * 100
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting cache stats: {e}")
|
||||
|
||||
|
||||
return stats
|
||||
|
||||
|
||||
def log_cache_performance(self):
|
||||
"""Log cache performance metrics"""
|
||||
stats = self.get_cache_stats()
|
||||
|
||||
@@ -2,29 +2,37 @@
|
||||
Location adapters for converting between domain-specific models and UnifiedLocation.
|
||||
"""
|
||||
|
||||
from typing import List, Optional, Dict, Any
|
||||
from django.db import models
|
||||
from typing import List, Optional
|
||||
from django.db.models import QuerySet
|
||||
from django.urls import reverse
|
||||
|
||||
from .data_structures import UnifiedLocation, LocationType, GeoBounds, MapFilters
|
||||
from parks.models.location import ParkLocation
|
||||
from rides.models.location import RideLocation
|
||||
from parks.models.companies import CompanyHeadquarters
|
||||
from .data_structures import (
|
||||
UnifiedLocation,
|
||||
LocationType,
|
||||
GeoBounds,
|
||||
MapFilters,
|
||||
)
|
||||
from parks.models import ParkLocation, CompanyHeadquarters
|
||||
from rides.models import RideLocation
|
||||
from location.models import Location
|
||||
|
||||
|
||||
class BaseLocationAdapter:
|
||||
"""Base adapter class for location conversions."""
|
||||
|
||||
|
||||
def to_unified_location(self, location_obj) -> Optional[UnifiedLocation]:
|
||||
"""Convert model instance to UnifiedLocation."""
|
||||
raise NotImplementedError
|
||||
|
||||
def get_queryset(self, bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None) -> QuerySet:
|
||||
|
||||
def get_queryset(
|
||||
self,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None,
|
||||
) -> QuerySet:
|
||||
"""Get optimized queryset for this location type."""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def bulk_convert(self, queryset: QuerySet) -> List[UnifiedLocation]:
|
||||
"""Convert multiple location objects efficiently."""
|
||||
unified_locations = []
|
||||
@@ -37,14 +45,16 @@ class BaseLocationAdapter:
|
||||
|
||||
class ParkLocationAdapter(BaseLocationAdapter):
|
||||
"""Converts Park/ParkLocation to UnifiedLocation."""
|
||||
|
||||
def to_unified_location(self, park_location: ParkLocation) -> Optional[UnifiedLocation]:
|
||||
|
||||
def to_unified_location(
|
||||
self, park_location: ParkLocation
|
||||
) -> Optional[UnifiedLocation]:
|
||||
"""Convert ParkLocation to UnifiedLocation."""
|
||||
if not park_location.point:
|
||||
return None
|
||||
|
||||
|
||||
park = park_location.park
|
||||
|
||||
|
||||
return UnifiedLocation(
|
||||
id=f"park_{park.id}",
|
||||
type=LocationType.PARK,
|
||||
@@ -52,41 +62,60 @@ class ParkLocationAdapter(BaseLocationAdapter):
|
||||
coordinates=(park_location.latitude, park_location.longitude),
|
||||
address=park_location.formatted_address,
|
||||
metadata={
|
||||
'status': getattr(park, 'status', 'UNKNOWN'),
|
||||
'rating': float(park.average_rating) if hasattr(park, 'average_rating') and park.average_rating else None,
|
||||
'ride_count': getattr(park, 'ride_count', 0),
|
||||
'coaster_count': getattr(park, 'coaster_count', 0),
|
||||
'operator': park.operator.name if hasattr(park, 'operator') and park.operator else None,
|
||||
'city': park_location.city,
|
||||
'state': park_location.state,
|
||||
'country': park_location.country,
|
||||
"status": getattr(park, "status", "UNKNOWN"),
|
||||
"rating": (
|
||||
float(park.average_rating)
|
||||
if hasattr(park, "average_rating") and park.average_rating
|
||||
else None
|
||||
),
|
||||
"ride_count": getattr(park, "ride_count", 0),
|
||||
"coaster_count": getattr(park, "coaster_count", 0),
|
||||
"operator": (
|
||||
park.operator.name
|
||||
if hasattr(park, "operator") and park.operator
|
||||
else None
|
||||
),
|
||||
"city": park_location.city,
|
||||
"state": park_location.state,
|
||||
"country": park_location.country,
|
||||
},
|
||||
type_data={
|
||||
'slug': park.slug,
|
||||
'opening_date': park.opening_date.isoformat() if hasattr(park, 'opening_date') and park.opening_date else None,
|
||||
'website': getattr(park, 'website', ''),
|
||||
'operating_season': getattr(park, 'operating_season', ''),
|
||||
'highway_exit': park_location.highway_exit,
|
||||
'parking_notes': park_location.parking_notes,
|
||||
'best_arrival_time': park_location.best_arrival_time.strftime('%H:%M') if park_location.best_arrival_time else None,
|
||||
'seasonal_notes': park_location.seasonal_notes,
|
||||
'url': self._get_park_url(park),
|
||||
"slug": park.slug,
|
||||
"opening_date": (
|
||||
park.opening_date.isoformat()
|
||||
if hasattr(park, "opening_date") and park.opening_date
|
||||
else None
|
||||
),
|
||||
"website": getattr(park, "website", ""),
|
||||
"operating_season": getattr(park, "operating_season", ""),
|
||||
"highway_exit": park_location.highway_exit,
|
||||
"parking_notes": park_location.parking_notes,
|
||||
"best_arrival_time": (
|
||||
park_location.best_arrival_time.strftime("%H:%M")
|
||||
if park_location.best_arrival_time
|
||||
else None
|
||||
),
|
||||
"seasonal_notes": park_location.seasonal_notes,
|
||||
"url": self._get_park_url(park),
|
||||
},
|
||||
cluster_weight=self._calculate_park_weight(park),
|
||||
cluster_category=self._get_park_category(park)
|
||||
cluster_category=self._get_park_category(park),
|
||||
)
|
||||
|
||||
def get_queryset(self, bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None) -> QuerySet:
|
||||
|
||||
def get_queryset(
|
||||
self,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None,
|
||||
) -> QuerySet:
|
||||
"""Get optimized queryset for park locations."""
|
||||
queryset = ParkLocation.objects.select_related(
|
||||
'park', 'park__operator'
|
||||
).filter(point__isnull=False)
|
||||
|
||||
queryset = ParkLocation.objects.select_related("park", "park__operator").filter(
|
||||
point__isnull=False
|
||||
)
|
||||
|
||||
# Spatial filtering
|
||||
if bounds:
|
||||
queryset = queryset.filter(point__within=bounds.to_polygon())
|
||||
|
||||
|
||||
# Park-specific filters
|
||||
if filters:
|
||||
if filters.park_status:
|
||||
@@ -99,170 +128,212 @@ class ParkLocationAdapter(BaseLocationAdapter):
|
||||
queryset = queryset.filter(state=filters.state)
|
||||
if filters.city:
|
||||
queryset = queryset.filter(city=filters.city)
|
||||
|
||||
return queryset.order_by('park__name')
|
||||
|
||||
|
||||
return queryset.order_by("park__name")
|
||||
|
||||
def _calculate_park_weight(self, park) -> int:
|
||||
"""Calculate clustering weight based on park importance."""
|
||||
weight = 1
|
||||
if hasattr(park, 'ride_count') and park.ride_count and park.ride_count > 20:
|
||||
if hasattr(park, "ride_count") and park.ride_count and park.ride_count > 20:
|
||||
weight += 2
|
||||
if hasattr(park, 'coaster_count') and park.coaster_count and park.coaster_count > 5:
|
||||
if (
|
||||
hasattr(park, "coaster_count")
|
||||
and park.coaster_count
|
||||
and park.coaster_count > 5
|
||||
):
|
||||
weight += 1
|
||||
if hasattr(park, 'average_rating') and park.average_rating and park.average_rating > 4.0:
|
||||
if (
|
||||
hasattr(park, "average_rating")
|
||||
and park.average_rating
|
||||
and park.average_rating > 4.0
|
||||
):
|
||||
weight += 1
|
||||
return min(weight, 5) # Cap at 5
|
||||
|
||||
|
||||
def _get_park_category(self, park) -> str:
|
||||
"""Determine park category for clustering."""
|
||||
coaster_count = getattr(park, 'coaster_count', 0) or 0
|
||||
ride_count = getattr(park, 'ride_count', 0) or 0
|
||||
|
||||
coaster_count = getattr(park, "coaster_count", 0) or 0
|
||||
ride_count = getattr(park, "ride_count", 0) or 0
|
||||
|
||||
if coaster_count >= 10:
|
||||
return "major_park"
|
||||
elif ride_count >= 15:
|
||||
return "theme_park"
|
||||
else:
|
||||
return "small_park"
|
||||
|
||||
|
||||
def _get_park_url(self, park) -> str:
|
||||
"""Get URL for park detail page."""
|
||||
try:
|
||||
return reverse('parks:detail', kwargs={'slug': park.slug})
|
||||
except:
|
||||
return reverse("parks:detail", kwargs={"slug": park.slug})
|
||||
except BaseException:
|
||||
return f"/parks/{park.slug}/"
|
||||
|
||||
|
||||
class RideLocationAdapter(BaseLocationAdapter):
|
||||
"""Converts Ride/RideLocation to UnifiedLocation."""
|
||||
|
||||
def to_unified_location(self, ride_location: RideLocation) -> Optional[UnifiedLocation]:
|
||||
|
||||
def to_unified_location(
|
||||
self, ride_location: RideLocation
|
||||
) -> Optional[UnifiedLocation]:
|
||||
"""Convert RideLocation to UnifiedLocation."""
|
||||
if not ride_location.point:
|
||||
return None
|
||||
|
||||
|
||||
ride = ride_location.ride
|
||||
|
||||
|
||||
return UnifiedLocation(
|
||||
id=f"ride_{ride.id}",
|
||||
type=LocationType.RIDE,
|
||||
name=ride.name,
|
||||
coordinates=(ride_location.latitude, ride_location.longitude),
|
||||
address=f"{ride_location.park_area}, {ride.park.name}" if ride_location.park_area else ride.park.name,
|
||||
address=(
|
||||
f"{ride_location.park_area}, {ride.park.name}"
|
||||
if ride_location.park_area
|
||||
else ride.park.name
|
||||
),
|
||||
metadata={
|
||||
'park_id': ride.park.id,
|
||||
'park_name': ride.park.name,
|
||||
'park_area': ride_location.park_area,
|
||||
'ride_type': getattr(ride, 'ride_type', 'Unknown'),
|
||||
'status': getattr(ride, 'status', 'UNKNOWN'),
|
||||
'rating': float(ride.average_rating) if hasattr(ride, 'average_rating') and ride.average_rating else None,
|
||||
'manufacturer': getattr(ride, 'manufacturer', {}).get('name') if hasattr(ride, 'manufacturer') else None,
|
||||
"park_id": ride.park.id,
|
||||
"park_name": ride.park.name,
|
||||
"park_area": ride_location.park_area,
|
||||
"ride_type": getattr(ride, "ride_type", "Unknown"),
|
||||
"status": getattr(ride, "status", "UNKNOWN"),
|
||||
"rating": (
|
||||
float(ride.average_rating)
|
||||
if hasattr(ride, "average_rating") and ride.average_rating
|
||||
else None
|
||||
),
|
||||
"manufacturer": (
|
||||
getattr(ride, "manufacturer", {}).get("name")
|
||||
if hasattr(ride, "manufacturer")
|
||||
else None
|
||||
),
|
||||
},
|
||||
type_data={
|
||||
'slug': ride.slug,
|
||||
'opening_date': ride.opening_date.isoformat() if hasattr(ride, 'opening_date') and ride.opening_date else None,
|
||||
'height_requirement': getattr(ride, 'height_requirement', ''),
|
||||
'duration_minutes': getattr(ride, 'duration_minutes', None),
|
||||
'max_speed_mph': getattr(ride, 'max_speed_mph', None),
|
||||
'entrance_notes': ride_location.entrance_notes,
|
||||
'accessibility_notes': ride_location.accessibility_notes,
|
||||
'url': self._get_ride_url(ride),
|
||||
"slug": ride.slug,
|
||||
"opening_date": (
|
||||
ride.opening_date.isoformat()
|
||||
if hasattr(ride, "opening_date") and ride.opening_date
|
||||
else None
|
||||
),
|
||||
"height_requirement": getattr(ride, "height_requirement", ""),
|
||||
"duration_minutes": getattr(ride, "duration_minutes", None),
|
||||
"max_speed_mph": getattr(ride, "max_speed_mph", None),
|
||||
"entrance_notes": ride_location.entrance_notes,
|
||||
"accessibility_notes": ride_location.accessibility_notes,
|
||||
"url": self._get_ride_url(ride),
|
||||
},
|
||||
cluster_weight=self._calculate_ride_weight(ride),
|
||||
cluster_category=self._get_ride_category(ride)
|
||||
cluster_category=self._get_ride_category(ride),
|
||||
)
|
||||
|
||||
def get_queryset(self, bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None) -> QuerySet:
|
||||
|
||||
def get_queryset(
|
||||
self,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None,
|
||||
) -> QuerySet:
|
||||
"""Get optimized queryset for ride locations."""
|
||||
queryset = RideLocation.objects.select_related(
|
||||
'ride', 'ride__park', 'ride__park__operator'
|
||||
"ride", "ride__park", "ride__park__operator"
|
||||
).filter(point__isnull=False)
|
||||
|
||||
|
||||
# Spatial filtering
|
||||
if bounds:
|
||||
queryset = queryset.filter(point__within=bounds.to_polygon())
|
||||
|
||||
|
||||
# Ride-specific filters
|
||||
if filters:
|
||||
if filters.ride_types:
|
||||
queryset = queryset.filter(ride__ride_type__in=filters.ride_types)
|
||||
if filters.search_query:
|
||||
queryset = queryset.filter(ride__name__icontains=filters.search_query)
|
||||
|
||||
return queryset.order_by('ride__name')
|
||||
|
||||
|
||||
return queryset.order_by("ride__name")
|
||||
|
||||
def _calculate_ride_weight(self, ride) -> int:
|
||||
"""Calculate clustering weight based on ride importance."""
|
||||
weight = 1
|
||||
ride_type = getattr(ride, 'ride_type', '').lower()
|
||||
if 'coaster' in ride_type or 'roller' in ride_type:
|
||||
ride_type = getattr(ride, "ride_type", "").lower()
|
||||
if "coaster" in ride_type or "roller" in ride_type:
|
||||
weight += 1
|
||||
if hasattr(ride, 'average_rating') and ride.average_rating and ride.average_rating > 4.0:
|
||||
if (
|
||||
hasattr(ride, "average_rating")
|
||||
and ride.average_rating
|
||||
and ride.average_rating > 4.0
|
||||
):
|
||||
weight += 1
|
||||
return min(weight, 3) # Cap at 3 for rides
|
||||
|
||||
|
||||
def _get_ride_category(self, ride) -> str:
|
||||
"""Determine ride category for clustering."""
|
||||
ride_type = getattr(ride, 'ride_type', '').lower()
|
||||
if 'coaster' in ride_type or 'roller' in ride_type:
|
||||
ride_type = getattr(ride, "ride_type", "").lower()
|
||||
if "coaster" in ride_type or "roller" in ride_type:
|
||||
return "coaster"
|
||||
elif 'water' in ride_type or 'splash' in ride_type:
|
||||
elif "water" in ride_type or "splash" in ride_type:
|
||||
return "water_ride"
|
||||
else:
|
||||
return "other_ride"
|
||||
|
||||
|
||||
def _get_ride_url(self, ride) -> str:
|
||||
"""Get URL for ride detail page."""
|
||||
try:
|
||||
return reverse('rides:detail', kwargs={'slug': ride.slug})
|
||||
except:
|
||||
return reverse("rides:detail", kwargs={"slug": ride.slug})
|
||||
except BaseException:
|
||||
return f"/rides/{ride.slug}/"
|
||||
|
||||
|
||||
class CompanyLocationAdapter(BaseLocationAdapter):
|
||||
"""Converts Company/CompanyHeadquarters to UnifiedLocation."""
|
||||
|
||||
def to_unified_location(self, company_headquarters: CompanyHeadquarters) -> Optional[UnifiedLocation]:
|
||||
|
||||
def to_unified_location(
|
||||
self, company_headquarters: CompanyHeadquarters
|
||||
) -> Optional[UnifiedLocation]:
|
||||
"""Convert CompanyHeadquarters to UnifiedLocation."""
|
||||
# Note: CompanyHeadquarters doesn't have coordinates, so we need to geocode
|
||||
# For now, we'll skip companies without coordinates
|
||||
# TODO: Implement geocoding service integration
|
||||
return None
|
||||
|
||||
def get_queryset(self, bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None) -> QuerySet:
|
||||
|
||||
def get_queryset(
|
||||
self,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None,
|
||||
) -> QuerySet:
|
||||
"""Get optimized queryset for company locations."""
|
||||
queryset = CompanyHeadquarters.objects.select_related('company')
|
||||
|
||||
queryset = CompanyHeadquarters.objects.select_related("company")
|
||||
|
||||
# Company-specific filters
|
||||
if filters:
|
||||
if filters.company_roles:
|
||||
queryset = queryset.filter(company__roles__overlap=filters.company_roles)
|
||||
queryset = queryset.filter(
|
||||
company__roles__overlap=filters.company_roles
|
||||
)
|
||||
if filters.search_query:
|
||||
queryset = queryset.filter(company__name__icontains=filters.search_query)
|
||||
queryset = queryset.filter(
|
||||
company__name__icontains=filters.search_query
|
||||
)
|
||||
if filters.country:
|
||||
queryset = queryset.filter(country=filters.country)
|
||||
if filters.city:
|
||||
queryset = queryset.filter(city=filters.city)
|
||||
|
||||
return queryset.order_by('company__name')
|
||||
|
||||
return queryset.order_by("company__name")
|
||||
|
||||
|
||||
class GenericLocationAdapter(BaseLocationAdapter):
|
||||
"""Converts generic Location model to UnifiedLocation."""
|
||||
|
||||
|
||||
def to_unified_location(self, location: Location) -> Optional[UnifiedLocation]:
|
||||
"""Convert generic Location to UnifiedLocation."""
|
||||
if not location.point and not (location.latitude and location.longitude):
|
||||
return None
|
||||
|
||||
|
||||
# Use point coordinates if available, fall back to lat/lng fields
|
||||
if location.point:
|
||||
coordinates = (location.point.y, location.point.x)
|
||||
else:
|
||||
coordinates = (float(location.latitude), float(location.longitude))
|
||||
|
||||
|
||||
return UnifiedLocation(
|
||||
id=f"generic_{location.id}",
|
||||
type=LocationType.GENERIC,
|
||||
@@ -270,41 +341,50 @@ class GenericLocationAdapter(BaseLocationAdapter):
|
||||
coordinates=coordinates,
|
||||
address=location.get_formatted_address(),
|
||||
metadata={
|
||||
'location_type': location.location_type,
|
||||
'content_type': location.content_type.model if location.content_type else None,
|
||||
'object_id': location.object_id,
|
||||
'city': location.city,
|
||||
'state': location.state,
|
||||
'country': location.country,
|
||||
"location_type": location.location_type,
|
||||
"content_type": (
|
||||
location.content_type.model if location.content_type else None
|
||||
),
|
||||
"object_id": location.object_id,
|
||||
"city": location.city,
|
||||
"state": location.state,
|
||||
"country": location.country,
|
||||
},
|
||||
type_data={
|
||||
'created_at': location.created_at.isoformat() if location.created_at else None,
|
||||
'updated_at': location.updated_at.isoformat() if location.updated_at else None,
|
||||
"created_at": (
|
||||
location.created_at.isoformat() if location.created_at else None
|
||||
),
|
||||
"updated_at": (
|
||||
location.updated_at.isoformat() if location.updated_at else None
|
||||
),
|
||||
},
|
||||
cluster_weight=1,
|
||||
cluster_category="generic"
|
||||
cluster_category="generic",
|
||||
)
|
||||
|
||||
def get_queryset(self, bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None) -> QuerySet:
|
||||
|
||||
def get_queryset(
|
||||
self,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None,
|
||||
) -> QuerySet:
|
||||
"""Get optimized queryset for generic locations."""
|
||||
queryset = Location.objects.select_related('content_type').filter(
|
||||
models.Q(point__isnull=False) |
|
||||
models.Q(latitude__isnull=False, longitude__isnull=False)
|
||||
queryset = Location.objects.select_related("content_type").filter(
|
||||
models.Q(point__isnull=False)
|
||||
| models.Q(latitude__isnull=False, longitude__isnull=False)
|
||||
)
|
||||
|
||||
|
||||
# Spatial filtering
|
||||
if bounds:
|
||||
queryset = queryset.filter(
|
||||
models.Q(point__within=bounds.to_polygon()) |
|
||||
models.Q(
|
||||
models.Q(point__within=bounds.to_polygon())
|
||||
| models.Q(
|
||||
latitude__gte=bounds.south,
|
||||
latitude__lte=bounds.north,
|
||||
longitude__gte=bounds.west,
|
||||
longitude__lte=bounds.east
|
||||
longitude__lte=bounds.east,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Generic filters
|
||||
if filters:
|
||||
if filters.search_query:
|
||||
@@ -313,8 +393,8 @@ class GenericLocationAdapter(BaseLocationAdapter):
|
||||
queryset = queryset.filter(country=filters.country)
|
||||
if filters.city:
|
||||
queryset = queryset.filter(city=filters.city)
|
||||
|
||||
return queryset.order_by('name')
|
||||
|
||||
return queryset.order_by("name")
|
||||
|
||||
|
||||
class LocationAbstractionLayer:
|
||||
@@ -322,59 +402,78 @@ class LocationAbstractionLayer:
|
||||
Abstraction layer handling different location model types.
|
||||
Implements the adapter pattern to provide unified access to all location types.
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.adapters = {
|
||||
LocationType.PARK: ParkLocationAdapter(),
|
||||
LocationType.RIDE: RideLocationAdapter(),
|
||||
LocationType.COMPANY: CompanyLocationAdapter(),
|
||||
LocationType.GENERIC: GenericLocationAdapter()
|
||||
LocationType.GENERIC: GenericLocationAdapter(),
|
||||
}
|
||||
|
||||
def get_all_locations(self, bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None) -> List[UnifiedLocation]:
|
||||
|
||||
def get_all_locations(
|
||||
self,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None,
|
||||
) -> List[UnifiedLocation]:
|
||||
"""Get locations from all sources within bounds."""
|
||||
all_locations = []
|
||||
|
||||
|
||||
# Determine which location types to include
|
||||
location_types = filters.location_types if filters and filters.location_types else set(LocationType)
|
||||
|
||||
location_types = (
|
||||
filters.location_types
|
||||
if filters and filters.location_types
|
||||
else set(LocationType)
|
||||
)
|
||||
|
||||
for location_type in location_types:
|
||||
adapter = self.adapters[location_type]
|
||||
queryset = adapter.get_queryset(bounds, filters)
|
||||
locations = adapter.bulk_convert(queryset)
|
||||
all_locations.extend(locations)
|
||||
|
||||
|
||||
return all_locations
|
||||
|
||||
def get_locations_by_type(self, location_type: LocationType,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None) -> List[UnifiedLocation]:
|
||||
|
||||
def get_locations_by_type(
|
||||
self,
|
||||
location_type: LocationType,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None,
|
||||
) -> List[UnifiedLocation]:
|
||||
"""Get locations of specific type."""
|
||||
adapter = self.adapters[location_type]
|
||||
queryset = adapter.get_queryset(bounds, filters)
|
||||
return adapter.bulk_convert(queryset)
|
||||
|
||||
def get_location_by_id(self, location_type: LocationType, location_id: int) -> Optional[UnifiedLocation]:
|
||||
|
||||
def get_location_by_id(
|
||||
self, location_type: LocationType, location_id: int
|
||||
) -> Optional[UnifiedLocation]:
|
||||
"""Get single location with full details."""
|
||||
adapter = self.adapters[location_type]
|
||||
|
||||
|
||||
try:
|
||||
if location_type == LocationType.PARK:
|
||||
obj = ParkLocation.objects.select_related('park', 'park__operator').get(park_id=location_id)
|
||||
obj = ParkLocation.objects.select_related("park", "park__operator").get(
|
||||
park_id=location_id
|
||||
)
|
||||
elif location_type == LocationType.RIDE:
|
||||
obj = RideLocation.objects.select_related('ride', 'ride__park').get(ride_id=location_id)
|
||||
obj = RideLocation.objects.select_related("ride", "ride__park").get(
|
||||
ride_id=location_id
|
||||
)
|
||||
elif location_type == LocationType.COMPANY:
|
||||
obj = CompanyHeadquarters.objects.select_related('company').get(company_id=location_id)
|
||||
obj = CompanyHeadquarters.objects.select_related("company").get(
|
||||
company_id=location_id
|
||||
)
|
||||
elif location_type == LocationType.GENERIC:
|
||||
obj = Location.objects.select_related('content_type').get(id=location_id)
|
||||
obj = Location.objects.select_related("content_type").get(
|
||||
id=location_id
|
||||
)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
return adapter.to_unified_location(obj)
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
# Import models after defining adapters to avoid circular imports
|
||||
from django.db import models
|
||||
@@ -8,41 +8,36 @@ search capabilities.
|
||||
|
||||
from django.contrib.gis.geos import Point
|
||||
from django.contrib.gis.measure import Distance
|
||||
from django.db.models import Q, Case, When, F, Value, CharField
|
||||
from django.db.models.functions import Coalesce
|
||||
from typing import Optional, List, Dict, Any, Tuple, Set
|
||||
from django.db.models import Q
|
||||
from typing import Optional, List, Dict, Any, Set
|
||||
from dataclasses import dataclass
|
||||
|
||||
from parks.models import Park
|
||||
from parks.models import Park, Company, ParkLocation
|
||||
from rides.models import Ride
|
||||
from parks.models.companies import Company
|
||||
from parks.models.location import ParkLocation
|
||||
from rides.models.location import RideLocation
|
||||
from parks.models.companies import CompanyHeadquarters
|
||||
|
||||
|
||||
@dataclass
|
||||
class LocationSearchFilters:
|
||||
"""Filters for location-aware search queries."""
|
||||
|
||||
|
||||
# Text search
|
||||
search_query: Optional[str] = None
|
||||
|
||||
|
||||
# Location-based filters
|
||||
location_point: Optional[Point] = None
|
||||
radius_km: Optional[float] = None
|
||||
location_types: Optional[Set[str]] = None # 'park', 'ride', 'company'
|
||||
|
||||
|
||||
# Geographic filters
|
||||
country: Optional[str] = None
|
||||
state: Optional[str] = None
|
||||
city: Optional[str] = None
|
||||
|
||||
|
||||
# Content-specific filters
|
||||
park_status: Optional[List[str]] = None
|
||||
ride_types: Optional[List[str]] = None
|
||||
company_roles: Optional[List[str]] = None
|
||||
|
||||
|
||||
# Result options
|
||||
include_distance: bool = True
|
||||
max_results: int = 100
|
||||
@@ -51,14 +46,14 @@ class LocationSearchFilters:
|
||||
@dataclass
|
||||
class LocationSearchResult:
|
||||
"""Single search result with location data."""
|
||||
|
||||
|
||||
# Core data
|
||||
content_type: str # 'park', 'ride', 'company'
|
||||
object_id: int
|
||||
name: str
|
||||
description: Optional[str] = None
|
||||
url: Optional[str] = None
|
||||
|
||||
|
||||
# Location data
|
||||
latitude: Optional[float] = None
|
||||
longitude: Optional[float] = None
|
||||
@@ -66,114 +61,122 @@ class LocationSearchResult:
|
||||
city: Optional[str] = None
|
||||
state: Optional[str] = None
|
||||
country: Optional[str] = None
|
||||
|
||||
|
||||
# Distance data (if proximity search)
|
||||
distance_km: Optional[float] = None
|
||||
|
||||
|
||||
# Additional metadata
|
||||
status: Optional[str] = None
|
||||
tags: Optional[List[str]] = None
|
||||
rating: Optional[float] = None
|
||||
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
"""Convert to dictionary for JSON serialization."""
|
||||
return {
|
||||
'content_type': self.content_type,
|
||||
'object_id': self.object_id,
|
||||
'name': self.name,
|
||||
'description': self.description,
|
||||
'url': self.url,
|
||||
'location': {
|
||||
'latitude': self.latitude,
|
||||
'longitude': self.longitude,
|
||||
'address': self.address,
|
||||
'city': self.city,
|
||||
'state': self.state,
|
||||
'country': self.country,
|
||||
"content_type": self.content_type,
|
||||
"object_id": self.object_id,
|
||||
"name": self.name,
|
||||
"description": self.description,
|
||||
"url": self.url,
|
||||
"location": {
|
||||
"latitude": self.latitude,
|
||||
"longitude": self.longitude,
|
||||
"address": self.address,
|
||||
"city": self.city,
|
||||
"state": self.state,
|
||||
"country": self.country,
|
||||
},
|
||||
'distance_km': self.distance_km,
|
||||
'status': self.status,
|
||||
'tags': self.tags or [],
|
||||
'rating': self.rating,
|
||||
"distance_km": self.distance_km,
|
||||
"status": self.status,
|
||||
"tags": self.tags or [],
|
||||
"rating": self.rating,
|
||||
}
|
||||
|
||||
|
||||
class LocationSearchService:
|
||||
"""Service for performing location-aware searches across ThrillWiki content."""
|
||||
|
||||
|
||||
def search(self, filters: LocationSearchFilters) -> List[LocationSearchResult]:
|
||||
"""
|
||||
Perform a comprehensive location-aware search.
|
||||
|
||||
|
||||
Args:
|
||||
filters: Search filters and options
|
||||
|
||||
|
||||
Returns:
|
||||
List of search results with location data
|
||||
"""
|
||||
results = []
|
||||
|
||||
|
||||
# Search each content type based on filters
|
||||
if not filters.location_types or 'park' in filters.location_types:
|
||||
if not filters.location_types or "park" in filters.location_types:
|
||||
results.extend(self._search_parks(filters))
|
||||
|
||||
if not filters.location_types or 'ride' in filters.location_types:
|
||||
|
||||
if not filters.location_types or "ride" in filters.location_types:
|
||||
results.extend(self._search_rides(filters))
|
||||
|
||||
if not filters.location_types or 'company' in filters.location_types:
|
||||
|
||||
if not filters.location_types or "company" in filters.location_types:
|
||||
results.extend(self._search_companies(filters))
|
||||
|
||||
|
||||
# Sort by distance if proximity search, otherwise by relevance
|
||||
if filters.location_point and filters.include_distance:
|
||||
results.sort(key=lambda x: x.distance_km or float('inf'))
|
||||
results.sort(key=lambda x: x.distance_km or float("inf"))
|
||||
else:
|
||||
results.sort(key=lambda x: x.name.lower())
|
||||
|
||||
|
||||
# Apply max results limit
|
||||
return results[:filters.max_results]
|
||||
|
||||
def _search_parks(self, filters: LocationSearchFilters) -> List[LocationSearchResult]:
|
||||
return results[: filters.max_results]
|
||||
|
||||
def _search_parks(
|
||||
self, filters: LocationSearchFilters
|
||||
) -> List[LocationSearchResult]:
|
||||
"""Search parks with location data."""
|
||||
queryset = Park.objects.select_related('location', 'operator').all()
|
||||
|
||||
queryset = Park.objects.select_related("location", "operator").all()
|
||||
|
||||
# Apply location filters
|
||||
queryset = self._apply_location_filters(queryset, filters, 'location__point')
|
||||
|
||||
queryset = self._apply_location_filters(queryset, filters, "location__point")
|
||||
|
||||
# Apply text search
|
||||
if filters.search_query:
|
||||
query = Q(name__icontains=filters.search_query) | \
|
||||
Q(description__icontains=filters.search_query) | \
|
||||
Q(location__city__icontains=filters.search_query) | \
|
||||
Q(location__state__icontains=filters.search_query) | \
|
||||
Q(location__country__icontains=filters.search_query)
|
||||
query = (
|
||||
Q(name__icontains=filters.search_query)
|
||||
| Q(description__icontains=filters.search_query)
|
||||
| Q(location__city__icontains=filters.search_query)
|
||||
| Q(location__state__icontains=filters.search_query)
|
||||
| Q(location__country__icontains=filters.search_query)
|
||||
)
|
||||
queryset = queryset.filter(query)
|
||||
|
||||
|
||||
# Apply park-specific filters
|
||||
if filters.park_status:
|
||||
queryset = queryset.filter(status__in=filters.park_status)
|
||||
|
||||
|
||||
# Add distance annotation if proximity search
|
||||
if filters.location_point and filters.include_distance:
|
||||
queryset = queryset.annotate(
|
||||
distance=Distance('location__point', filters.location_point)
|
||||
).order_by('distance')
|
||||
|
||||
distance=Distance("location__point", filters.location_point)
|
||||
).order_by("distance")
|
||||
|
||||
# Convert to search results
|
||||
results = []
|
||||
for park in queryset:
|
||||
result = LocationSearchResult(
|
||||
content_type='park',
|
||||
content_type="park",
|
||||
object_id=park.id,
|
||||
name=park.name,
|
||||
description=park.description,
|
||||
url=park.get_absolute_url() if hasattr(park, 'get_absolute_url') else None,
|
||||
url=(
|
||||
park.get_absolute_url()
|
||||
if hasattr(park, "get_absolute_url")
|
||||
else None
|
||||
),
|
||||
status=park.get_status_display(),
|
||||
rating=float(park.average_rating) if park.average_rating else None,
|
||||
tags=['park', park.status.lower()]
|
||||
rating=(float(park.average_rating) if park.average_rating else None),
|
||||
tags=["park", park.status.lower()],
|
||||
)
|
||||
|
||||
|
||||
# Add location data
|
||||
if hasattr(park, 'location') and park.location:
|
||||
if hasattr(park, "location") and park.location:
|
||||
location = park.location
|
||||
result.latitude = location.latitude
|
||||
result.longitude = location.longitude
|
||||
@@ -181,67 +184,90 @@ class LocationSearchService:
|
||||
result.city = location.city
|
||||
result.state = location.state
|
||||
result.country = location.country
|
||||
|
||||
|
||||
# Add distance if proximity search
|
||||
if filters.location_point and filters.include_distance and hasattr(park, 'distance'):
|
||||
if (
|
||||
filters.location_point
|
||||
and filters.include_distance
|
||||
and hasattr(park, "distance")
|
||||
):
|
||||
result.distance_km = float(park.distance.km)
|
||||
|
||||
|
||||
results.append(result)
|
||||
|
||||
|
||||
return results
|
||||
|
||||
def _search_rides(self, filters: LocationSearchFilters) -> List[LocationSearchResult]:
|
||||
|
||||
def _search_rides(
|
||||
self, filters: LocationSearchFilters
|
||||
) -> List[LocationSearchResult]:
|
||||
"""Search rides with location data."""
|
||||
queryset = Ride.objects.select_related('park', 'location').all()
|
||||
|
||||
queryset = Ride.objects.select_related("park", "location").all()
|
||||
|
||||
# Apply location filters
|
||||
queryset = self._apply_location_filters(queryset, filters, 'location__point')
|
||||
|
||||
queryset = self._apply_location_filters(queryset, filters, "location__point")
|
||||
|
||||
# Apply text search
|
||||
if filters.search_query:
|
||||
query = Q(name__icontains=filters.search_query) | \
|
||||
Q(description__icontains=filters.search_query) | \
|
||||
Q(park__name__icontains=filters.search_query) | \
|
||||
Q(location__park_area__icontains=filters.search_query)
|
||||
query = (
|
||||
Q(name__icontains=filters.search_query)
|
||||
| Q(description__icontains=filters.search_query)
|
||||
| Q(park__name__icontains=filters.search_query)
|
||||
| Q(location__park_area__icontains=filters.search_query)
|
||||
)
|
||||
queryset = queryset.filter(query)
|
||||
|
||||
|
||||
# Apply ride-specific filters
|
||||
if filters.ride_types:
|
||||
queryset = queryset.filter(ride_type__in=filters.ride_types)
|
||||
|
||||
|
||||
# Add distance annotation if proximity search
|
||||
if filters.location_point and filters.include_distance:
|
||||
queryset = queryset.annotate(
|
||||
distance=Distance('location__point', filters.location_point)
|
||||
).order_by('distance')
|
||||
|
||||
distance=Distance("location__point", filters.location_point)
|
||||
).order_by("distance")
|
||||
|
||||
# Convert to search results
|
||||
results = []
|
||||
for ride in queryset:
|
||||
result = LocationSearchResult(
|
||||
content_type='ride',
|
||||
content_type="ride",
|
||||
object_id=ride.id,
|
||||
name=ride.name,
|
||||
description=ride.description,
|
||||
url=ride.get_absolute_url() if hasattr(ride, 'get_absolute_url') else None,
|
||||
url=(
|
||||
ride.get_absolute_url()
|
||||
if hasattr(ride, "get_absolute_url")
|
||||
else None
|
||||
),
|
||||
status=ride.status,
|
||||
tags=['ride', ride.ride_type.lower() if ride.ride_type else 'attraction']
|
||||
tags=[
|
||||
"ride",
|
||||
ride.ride_type.lower() if ride.ride_type else "attraction",
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
# Add location data from ride location or park location
|
||||
location = None
|
||||
if hasattr(ride, 'location') and ride.location:
|
||||
if hasattr(ride, "location") and ride.location:
|
||||
location = ride.location
|
||||
result.latitude = location.latitude
|
||||
result.longitude = location.longitude
|
||||
result.address = f"{ride.park.name} - {location.park_area}" if location.park_area else ride.park.name
|
||||
|
||||
result.address = (
|
||||
f"{ride.park.name} - {location.park_area}"
|
||||
if location.park_area
|
||||
else ride.park.name
|
||||
)
|
||||
|
||||
# Add distance if proximity search
|
||||
if filters.location_point and filters.include_distance and hasattr(ride, 'distance'):
|
||||
if (
|
||||
filters.location_point
|
||||
and filters.include_distance
|
||||
and hasattr(ride, "distance")
|
||||
):
|
||||
result.distance_km = float(ride.distance.km)
|
||||
|
||||
|
||||
# Fall back to park location if no specific ride location
|
||||
elif ride.park and hasattr(ride.park, 'location') and ride.park.location:
|
||||
elif ride.park and hasattr(ride.park, "location") and ride.park.location:
|
||||
park_location = ride.park.location
|
||||
result.latitude = park_location.latitude
|
||||
result.longitude = park_location.longitude
|
||||
@@ -249,51 +275,61 @@ class LocationSearchService:
|
||||
result.city = park_location.city
|
||||
result.state = park_location.state
|
||||
result.country = park_location.country
|
||||
|
||||
|
||||
results.append(result)
|
||||
|
||||
|
||||
return results
|
||||
|
||||
def _search_companies(self, filters: LocationSearchFilters) -> List[LocationSearchResult]:
|
||||
|
||||
def _search_companies(
|
||||
self, filters: LocationSearchFilters
|
||||
) -> List[LocationSearchResult]:
|
||||
"""Search companies with headquarters location data."""
|
||||
queryset = Company.objects.select_related('headquarters').all()
|
||||
|
||||
queryset = Company.objects.select_related("headquarters").all()
|
||||
|
||||
# Apply location filters
|
||||
queryset = self._apply_location_filters(queryset, filters, 'headquarters__point')
|
||||
|
||||
queryset = self._apply_location_filters(
|
||||
queryset, filters, "headquarters__point"
|
||||
)
|
||||
|
||||
# Apply text search
|
||||
if filters.search_query:
|
||||
query = Q(name__icontains=filters.search_query) | \
|
||||
Q(description__icontains=filters.search_query) | \
|
||||
Q(headquarters__city__icontains=filters.search_query) | \
|
||||
Q(headquarters__state_province__icontains=filters.search_query) | \
|
||||
Q(headquarters__country__icontains=filters.search_query)
|
||||
query = (
|
||||
Q(name__icontains=filters.search_query)
|
||||
| Q(description__icontains=filters.search_query)
|
||||
| Q(headquarters__city__icontains=filters.search_query)
|
||||
| Q(headquarters__state_province__icontains=filters.search_query)
|
||||
| Q(headquarters__country__icontains=filters.search_query)
|
||||
)
|
||||
queryset = queryset.filter(query)
|
||||
|
||||
|
||||
# Apply company-specific filters
|
||||
if filters.company_roles:
|
||||
queryset = queryset.filter(roles__overlap=filters.company_roles)
|
||||
|
||||
|
||||
# Add distance annotation if proximity search
|
||||
if filters.location_point and filters.include_distance:
|
||||
queryset = queryset.annotate(
|
||||
distance=Distance('headquarters__point', filters.location_point)
|
||||
).order_by('distance')
|
||||
|
||||
distance=Distance("headquarters__point", filters.location_point)
|
||||
).order_by("distance")
|
||||
|
||||
# Convert to search results
|
||||
results = []
|
||||
for company in queryset:
|
||||
result = LocationSearchResult(
|
||||
content_type='company',
|
||||
content_type="company",
|
||||
object_id=company.id,
|
||||
name=company.name,
|
||||
description=company.description,
|
||||
url=company.get_absolute_url() if hasattr(company, 'get_absolute_url') else None,
|
||||
tags=['company'] + (company.roles or [])
|
||||
url=(
|
||||
company.get_absolute_url()
|
||||
if hasattr(company, "get_absolute_url")
|
||||
else None
|
||||
),
|
||||
tags=["company"] + (company.roles or []),
|
||||
)
|
||||
|
||||
|
||||
# Add location data
|
||||
if hasattr(company, 'headquarters') and company.headquarters:
|
||||
if hasattr(company, "headquarters") and company.headquarters:
|
||||
hq = company.headquarters
|
||||
result.latitude = hq.latitude
|
||||
result.longitude = hq.longitude
|
||||
@@ -301,93 +337,129 @@ class LocationSearchService:
|
||||
result.city = hq.city
|
||||
result.state = hq.state_province
|
||||
result.country = hq.country
|
||||
|
||||
|
||||
# Add distance if proximity search
|
||||
if filters.location_point and filters.include_distance and hasattr(company, 'distance'):
|
||||
if (
|
||||
filters.location_point
|
||||
and filters.include_distance
|
||||
and hasattr(company, "distance")
|
||||
):
|
||||
result.distance_km = float(company.distance.km)
|
||||
|
||||
|
||||
results.append(result)
|
||||
|
||||
|
||||
return results
|
||||
|
||||
def _apply_location_filters(self, queryset, filters: LocationSearchFilters, point_field: str):
|
||||
|
||||
def _apply_location_filters(
|
||||
self, queryset, filters: LocationSearchFilters, point_field: str
|
||||
):
|
||||
"""Apply common location filters to a queryset."""
|
||||
|
||||
|
||||
# Proximity filter
|
||||
if filters.location_point and filters.radius_km:
|
||||
distance = Distance(km=filters.radius_km)
|
||||
queryset = queryset.filter(**{
|
||||
f'{point_field}__distance_lte': (filters.location_point, distance)
|
||||
})
|
||||
|
||||
queryset = queryset.filter(
|
||||
**{
|
||||
f"{point_field}__distance_lte": (
|
||||
filters.location_point,
|
||||
distance,
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
# Geographic filters - adjust field names based on model
|
||||
if filters.country:
|
||||
if 'headquarters' in point_field:
|
||||
queryset = queryset.filter(headquarters__country__icontains=filters.country)
|
||||
if "headquarters" in point_field:
|
||||
queryset = queryset.filter(
|
||||
headquarters__country__icontains=filters.country
|
||||
)
|
||||
else:
|
||||
location_field = point_field.split('__')[0]
|
||||
queryset = queryset.filter(**{f'{location_field}__country__icontains': filters.country})
|
||||
|
||||
location_field = point_field.split("__")[0]
|
||||
queryset = queryset.filter(
|
||||
**{f"{location_field}__country__icontains": filters.country}
|
||||
)
|
||||
|
||||
if filters.state:
|
||||
if 'headquarters' in point_field:
|
||||
queryset = queryset.filter(headquarters__state_province__icontains=filters.state)
|
||||
if "headquarters" in point_field:
|
||||
queryset = queryset.filter(
|
||||
headquarters__state_province__icontains=filters.state
|
||||
)
|
||||
else:
|
||||
location_field = point_field.split('__')[0]
|
||||
queryset = queryset.filter(**{f'{location_field}__state__icontains': filters.state})
|
||||
|
||||
location_field = point_field.split("__")[0]
|
||||
queryset = queryset.filter(
|
||||
**{f"{location_field}__state__icontains": filters.state}
|
||||
)
|
||||
|
||||
if filters.city:
|
||||
location_field = point_field.split('__')[0]
|
||||
queryset = queryset.filter(**{f'{location_field}__city__icontains': filters.city})
|
||||
|
||||
location_field = point_field.split("__")[0]
|
||||
queryset = queryset.filter(
|
||||
**{f"{location_field}__city__icontains": filters.city}
|
||||
)
|
||||
|
||||
return queryset
|
||||
|
||||
|
||||
def suggest_locations(self, query: str, limit: int = 10) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Get location suggestions for autocomplete.
|
||||
|
||||
|
||||
Args:
|
||||
query: Search query string
|
||||
limit: Maximum number of suggestions
|
||||
|
||||
|
||||
Returns:
|
||||
List of location suggestions
|
||||
"""
|
||||
suggestions = []
|
||||
|
||||
|
||||
if len(query) < 2:
|
||||
return suggestions
|
||||
|
||||
|
||||
# Get park location suggestions
|
||||
park_locations = ParkLocation.objects.filter(
|
||||
Q(park__name__icontains=query) |
|
||||
Q(city__icontains=query) |
|
||||
Q(state__icontains=query)
|
||||
).select_related('park')[:limit//3]
|
||||
|
||||
Q(park__name__icontains=query)
|
||||
| Q(city__icontains=query)
|
||||
| Q(state__icontains=query)
|
||||
).select_related("park")[: limit // 3]
|
||||
|
||||
for location in park_locations:
|
||||
suggestions.append({
|
||||
'type': 'park',
|
||||
'name': location.park.name,
|
||||
'address': location.formatted_address,
|
||||
'coordinates': location.coordinates,
|
||||
'url': location.park.get_absolute_url() if hasattr(location.park, 'get_absolute_url') else None
|
||||
})
|
||||
|
||||
suggestions.append(
|
||||
{
|
||||
"type": "park",
|
||||
"name": location.park.name,
|
||||
"address": location.formatted_address,
|
||||
"coordinates": location.coordinates,
|
||||
"url": (
|
||||
location.park.get_absolute_url()
|
||||
if hasattr(location.park, "get_absolute_url")
|
||||
else None
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
# Get city suggestions
|
||||
cities = ParkLocation.objects.filter(
|
||||
city__icontains=query
|
||||
).values('city', 'state', 'country').distinct()[:limit//3]
|
||||
|
||||
cities = (
|
||||
ParkLocation.objects.filter(city__icontains=query)
|
||||
.values("city", "state", "country")
|
||||
.distinct()[: limit // 3]
|
||||
)
|
||||
|
||||
for city_data in cities:
|
||||
suggestions.append({
|
||||
'type': 'city',
|
||||
'name': f"{city_data['city']}, {city_data['state']}",
|
||||
'address': f"{city_data['city']}, {city_data['state']}, {city_data['country']}",
|
||||
'coordinates': None
|
||||
})
|
||||
|
||||
suggestions.append(
|
||||
{
|
||||
"type": "city",
|
||||
"name": f"{
|
||||
city_data['city']}, {
|
||||
city_data['state']}",
|
||||
"address": f"{
|
||||
city_data['city']}, {
|
||||
city_data['state']}, {
|
||||
city_data['country']}",
|
||||
"coordinates": None,
|
||||
}
|
||||
)
|
||||
|
||||
return suggestions[:limit]
|
||||
|
||||
|
||||
# Global instance
|
||||
location_search_service = LocationSearchService()
|
||||
location_search_service = LocationSearchService()
|
||||
|
||||
@@ -5,20 +5,18 @@ Caching service for map data to improve performance and reduce database load.
|
||||
import hashlib
|
||||
import json
|
||||
import time
|
||||
from typing import Dict, List, Optional, Any, Union
|
||||
from dataclasses import asdict
|
||||
from typing import Dict, List, Optional, Any
|
||||
|
||||
from django.core.cache import cache
|
||||
from django.conf import settings
|
||||
from django.utils import timezone
|
||||
|
||||
from .data_structures import (
|
||||
UnifiedLocation,
|
||||
ClusterData,
|
||||
GeoBounds,
|
||||
MapFilters,
|
||||
UnifiedLocation,
|
||||
ClusterData,
|
||||
GeoBounds,
|
||||
MapFilters,
|
||||
MapResponse,
|
||||
QueryPerformanceMetrics
|
||||
QueryPerformanceMetrics,
|
||||
)
|
||||
|
||||
|
||||
@@ -26,13 +24,13 @@ class MapCacheService:
|
||||
"""
|
||||
Handles caching of map data with geographic partitioning and intelligent invalidation.
|
||||
"""
|
||||
|
||||
|
||||
# Cache configuration
|
||||
DEFAULT_TTL = 3600 # 1 hour
|
||||
CLUSTER_TTL = 7200 # 2 hours (clusters change less frequently)
|
||||
LOCATION_DETAIL_TTL = 1800 # 30 minutes
|
||||
BOUNDS_CACHE_TTL = 1800 # 30 minutes
|
||||
|
||||
|
||||
# Cache key prefixes
|
||||
CACHE_PREFIX = "thrillwiki_map"
|
||||
LOCATIONS_PREFIX = f"{CACHE_PREFIX}:locations"
|
||||
@@ -40,269 +38,304 @@ class MapCacheService:
|
||||
BOUNDS_PREFIX = f"{CACHE_PREFIX}:bounds"
|
||||
DETAIL_PREFIX = f"{CACHE_PREFIX}:detail"
|
||||
STATS_PREFIX = f"{CACHE_PREFIX}:stats"
|
||||
|
||||
|
||||
# Geographic partitioning settings
|
||||
GEOHASH_PRECISION = 6 # ~1.2km precision for cache partitioning
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.cache_stats = {
|
||||
'hits': 0,
|
||||
'misses': 0,
|
||||
'invalidations': 0,
|
||||
'geohash_partitions': 0
|
||||
"hits": 0,
|
||||
"misses": 0,
|
||||
"invalidations": 0,
|
||||
"geohash_partitions": 0,
|
||||
}
|
||||
|
||||
def get_locations_cache_key(self, bounds: Optional[GeoBounds],
|
||||
filters: Optional[MapFilters],
|
||||
zoom_level: Optional[int] = None) -> str:
|
||||
|
||||
def get_locations_cache_key(
|
||||
self,
|
||||
bounds: Optional[GeoBounds],
|
||||
filters: Optional[MapFilters],
|
||||
zoom_level: Optional[int] = None,
|
||||
) -> str:
|
||||
"""Generate cache key for location queries."""
|
||||
key_parts = [self.LOCATIONS_PREFIX]
|
||||
|
||||
|
||||
if bounds:
|
||||
# Use geohash for spatial locality
|
||||
geohash = self._bounds_to_geohash(bounds)
|
||||
key_parts.append(f"geo:{geohash}")
|
||||
|
||||
|
||||
if filters:
|
||||
# Create deterministic hash of filters
|
||||
filter_hash = self._hash_filters(filters)
|
||||
key_parts.append(f"filters:{filter_hash}")
|
||||
|
||||
|
||||
if zoom_level is not None:
|
||||
key_parts.append(f"zoom:{zoom_level}")
|
||||
|
||||
|
||||
return ":".join(key_parts)
|
||||
|
||||
def get_clusters_cache_key(self, bounds: Optional[GeoBounds],
|
||||
filters: Optional[MapFilters],
|
||||
zoom_level: int) -> str:
|
||||
|
||||
def get_clusters_cache_key(
|
||||
self,
|
||||
bounds: Optional[GeoBounds],
|
||||
filters: Optional[MapFilters],
|
||||
zoom_level: int,
|
||||
) -> str:
|
||||
"""Generate cache key for cluster queries."""
|
||||
key_parts = [self.CLUSTERS_PREFIX, f"zoom:{zoom_level}"]
|
||||
|
||||
|
||||
if bounds:
|
||||
geohash = self._bounds_to_geohash(bounds)
|
||||
key_parts.append(f"geo:{geohash}")
|
||||
|
||||
|
||||
if filters:
|
||||
filter_hash = self._hash_filters(filters)
|
||||
key_parts.append(f"filters:{filter_hash}")
|
||||
|
||||
|
||||
return ":".join(key_parts)
|
||||
|
||||
def get_location_detail_cache_key(self, location_type: str, location_id: int) -> str:
|
||||
|
||||
def get_location_detail_cache_key(
|
||||
self, location_type: str, location_id: int
|
||||
) -> str:
|
||||
"""Generate cache key for individual location details."""
|
||||
return f"{self.DETAIL_PREFIX}:{location_type}:{location_id}"
|
||||
|
||||
def cache_locations(self, cache_key: str, locations: List[UnifiedLocation],
|
||||
ttl: Optional[int] = None) -> None:
|
||||
|
||||
def cache_locations(
|
||||
self,
|
||||
cache_key: str,
|
||||
locations: List[UnifiedLocation],
|
||||
ttl: Optional[int] = None,
|
||||
) -> None:
|
||||
"""Cache location data."""
|
||||
try:
|
||||
# Convert locations to serializable format
|
||||
cache_data = {
|
||||
'locations': [loc.to_dict() for loc in locations],
|
||||
'cached_at': timezone.now().isoformat(),
|
||||
'count': len(locations)
|
||||
"locations": [loc.to_dict() for loc in locations],
|
||||
"cached_at": timezone.now().isoformat(),
|
||||
"count": len(locations),
|
||||
}
|
||||
|
||||
|
||||
cache.set(cache_key, cache_data, ttl or self.DEFAULT_TTL)
|
||||
except Exception as e:
|
||||
# Log error but don't fail the request
|
||||
print(f"Cache write error for key {cache_key}: {e}")
|
||||
|
||||
def cache_clusters(self, cache_key: str, clusters: List[ClusterData],
|
||||
ttl: Optional[int] = None) -> None:
|
||||
|
||||
def cache_clusters(
|
||||
self,
|
||||
cache_key: str,
|
||||
clusters: List[ClusterData],
|
||||
ttl: Optional[int] = None,
|
||||
) -> None:
|
||||
"""Cache cluster data."""
|
||||
try:
|
||||
cache_data = {
|
||||
'clusters': [cluster.to_dict() for cluster in clusters],
|
||||
'cached_at': timezone.now().isoformat(),
|
||||
'count': len(clusters)
|
||||
"clusters": [cluster.to_dict() for cluster in clusters],
|
||||
"cached_at": timezone.now().isoformat(),
|
||||
"count": len(clusters),
|
||||
}
|
||||
|
||||
|
||||
cache.set(cache_key, cache_data, ttl or self.CLUSTER_TTL)
|
||||
except Exception as e:
|
||||
print(f"Cache write error for clusters {cache_key}: {e}")
|
||||
|
||||
def cache_map_response(self, cache_key: str, response: MapResponse,
|
||||
ttl: Optional[int] = None) -> None:
|
||||
|
||||
def cache_map_response(
|
||||
self, cache_key: str, response: MapResponse, ttl: Optional[int] = None
|
||||
) -> None:
|
||||
"""Cache complete map response."""
|
||||
try:
|
||||
cache_data = response.to_dict()
|
||||
cache_data['cached_at'] = timezone.now().isoformat()
|
||||
|
||||
cache_data["cached_at"] = timezone.now().isoformat()
|
||||
|
||||
cache.set(cache_key, cache_data, ttl or self.DEFAULT_TTL)
|
||||
except Exception as e:
|
||||
print(f"Cache write error for response {cache_key}: {e}")
|
||||
|
||||
|
||||
def get_cached_locations(self, cache_key: str) -> Optional[List[UnifiedLocation]]:
|
||||
"""Retrieve cached location data."""
|
||||
try:
|
||||
cache_data = cache.get(cache_key)
|
||||
if not cache_data:
|
||||
self.cache_stats['misses'] += 1
|
||||
self.cache_stats["misses"] += 1
|
||||
return None
|
||||
|
||||
self.cache_stats['hits'] += 1
|
||||
|
||||
|
||||
self.cache_stats["hits"] += 1
|
||||
|
||||
# Convert back to UnifiedLocation objects
|
||||
locations = []
|
||||
for loc_data in cache_data['locations']:
|
||||
for loc_data in cache_data["locations"]:
|
||||
# Reconstruct UnifiedLocation from dictionary
|
||||
locations.append(self._dict_to_unified_location(loc_data))
|
||||
|
||||
|
||||
return locations
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Cache read error for key {cache_key}: {e}")
|
||||
self.cache_stats['misses'] += 1
|
||||
self.cache_stats["misses"] += 1
|
||||
return None
|
||||
|
||||
|
||||
def get_cached_clusters(self, cache_key: str) -> Optional[List[ClusterData]]:
|
||||
"""Retrieve cached cluster data."""
|
||||
try:
|
||||
cache_data = cache.get(cache_key)
|
||||
if not cache_data:
|
||||
self.cache_stats['misses'] += 1
|
||||
self.cache_stats["misses"] += 1
|
||||
return None
|
||||
|
||||
self.cache_stats['hits'] += 1
|
||||
|
||||
|
||||
self.cache_stats["hits"] += 1
|
||||
|
||||
# Convert back to ClusterData objects
|
||||
clusters = []
|
||||
for cluster_data in cache_data['clusters']:
|
||||
for cluster_data in cache_data["clusters"]:
|
||||
clusters.append(self._dict_to_cluster_data(cluster_data))
|
||||
|
||||
|
||||
return clusters
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Cache read error for clusters {cache_key}: {e}")
|
||||
self.cache_stats['misses'] += 1
|
||||
self.cache_stats["misses"] += 1
|
||||
return None
|
||||
|
||||
|
||||
def get_cached_map_response(self, cache_key: str) -> Optional[MapResponse]:
|
||||
"""Retrieve cached map response."""
|
||||
try:
|
||||
cache_data = cache.get(cache_key)
|
||||
if not cache_data:
|
||||
self.cache_stats['misses'] += 1
|
||||
self.cache_stats["misses"] += 1
|
||||
return None
|
||||
|
||||
self.cache_stats['hits'] += 1
|
||||
|
||||
|
||||
self.cache_stats["hits"] += 1
|
||||
|
||||
# Convert back to MapResponse object
|
||||
return self._dict_to_map_response(cache_data['data'])
|
||||
|
||||
return self._dict_to_map_response(cache_data["data"])
|
||||
|
||||
except Exception as e:
|
||||
print(f"Cache read error for response {cache_key}: {e}")
|
||||
self.cache_stats['misses'] += 1
|
||||
self.cache_stats["misses"] += 1
|
||||
return None
|
||||
|
||||
def invalidate_location_cache(self, location_type: str, location_id: Optional[int] = None) -> None:
|
||||
|
||||
def invalidate_location_cache(
|
||||
self, location_type: str, location_id: Optional[int] = None
|
||||
) -> None:
|
||||
"""Invalidate cache for specific location or all locations of a type."""
|
||||
try:
|
||||
if location_id:
|
||||
# Invalidate specific location detail
|
||||
detail_key = self.get_location_detail_cache_key(location_type, location_id)
|
||||
detail_key = self.get_location_detail_cache_key(
|
||||
location_type, location_id
|
||||
)
|
||||
cache.delete(detail_key)
|
||||
|
||||
|
||||
# Invalidate related location and cluster caches
|
||||
# In a production system, you'd want more sophisticated cache tagging
|
||||
cache.delete_many([
|
||||
f"{self.LOCATIONS_PREFIX}:*",
|
||||
f"{self.CLUSTERS_PREFIX}:*"
|
||||
])
|
||||
|
||||
self.cache_stats['invalidations'] += 1
|
||||
|
||||
# In a production system, you'd want more sophisticated cache
|
||||
# tagging
|
||||
cache.delete_many(
|
||||
[f"{self.LOCATIONS_PREFIX}:*", f"{self.CLUSTERS_PREFIX}:*"]
|
||||
)
|
||||
|
||||
self.cache_stats["invalidations"] += 1
|
||||
|
||||
except Exception as e:
|
||||
print(f"Cache invalidation error: {e}")
|
||||
|
||||
|
||||
def invalidate_bounds_cache(self, bounds: GeoBounds) -> None:
|
||||
"""Invalidate cache for specific geographic bounds."""
|
||||
try:
|
||||
geohash = self._bounds_to_geohash(bounds)
|
||||
pattern = f"{self.LOCATIONS_PREFIX}:geo:{geohash}*"
|
||||
|
||||
|
||||
# In production, you'd use cache tagging or Redis SCAN
|
||||
# For now, we'll invalidate broader patterns
|
||||
cache.delete_many([pattern])
|
||||
|
||||
self.cache_stats['invalidations'] += 1
|
||||
|
||||
|
||||
self.cache_stats["invalidations"] += 1
|
||||
|
||||
except Exception as e:
|
||||
print(f"Bounds cache invalidation error: {e}")
|
||||
|
||||
|
||||
def clear_all_map_cache(self) -> None:
|
||||
"""Clear all map-related cache data."""
|
||||
try:
|
||||
cache.delete_many([
|
||||
f"{self.LOCATIONS_PREFIX}:*",
|
||||
f"{self.CLUSTERS_PREFIX}:*",
|
||||
f"{self.BOUNDS_PREFIX}:*",
|
||||
f"{self.DETAIL_PREFIX}:*"
|
||||
])
|
||||
|
||||
self.cache_stats['invalidations'] += 1
|
||||
|
||||
cache.delete_many(
|
||||
[
|
||||
f"{self.LOCATIONS_PREFIX}:*",
|
||||
f"{self.CLUSTERS_PREFIX}:*",
|
||||
f"{self.BOUNDS_PREFIX}:*",
|
||||
f"{self.DETAIL_PREFIX}:*",
|
||||
]
|
||||
)
|
||||
|
||||
self.cache_stats["invalidations"] += 1
|
||||
|
||||
except Exception as e:
|
||||
print(f"Cache clear error: {e}")
|
||||
|
||||
|
||||
def get_cache_stats(self) -> Dict[str, Any]:
|
||||
"""Get cache performance statistics."""
|
||||
total_requests = self.cache_stats['hits'] + self.cache_stats['misses']
|
||||
hit_rate = (self.cache_stats['hits'] / total_requests * 100) if total_requests > 0 else 0
|
||||
|
||||
total_requests = self.cache_stats["hits"] + self.cache_stats["misses"]
|
||||
hit_rate = (
|
||||
(self.cache_stats["hits"] / total_requests * 100)
|
||||
if total_requests > 0
|
||||
else 0
|
||||
)
|
||||
|
||||
return {
|
||||
'hits': self.cache_stats['hits'],
|
||||
'misses': self.cache_stats['misses'],
|
||||
'hit_rate_percent': round(hit_rate, 2),
|
||||
'invalidations': self.cache_stats['invalidations'],
|
||||
'geohash_partitions': self.cache_stats['geohash_partitions']
|
||||
"hits": self.cache_stats["hits"],
|
||||
"misses": self.cache_stats["misses"],
|
||||
"hit_rate_percent": round(hit_rate, 2),
|
||||
"invalidations": self.cache_stats["invalidations"],
|
||||
"geohash_partitions": self.cache_stats["geohash_partitions"],
|
||||
}
|
||||
|
||||
|
||||
def record_performance_metrics(self, metrics: QueryPerformanceMetrics) -> None:
|
||||
"""Record query performance metrics for analysis."""
|
||||
try:
|
||||
stats_key = f"{self.STATS_PREFIX}:performance:{int(time.time() // 300)}" # 5-minute buckets
|
||||
|
||||
current_stats = cache.get(stats_key, {
|
||||
'query_count': 0,
|
||||
'total_time_ms': 0,
|
||||
'cache_hits': 0,
|
||||
'db_queries': 0
|
||||
})
|
||||
|
||||
current_stats['query_count'] += 1
|
||||
current_stats['total_time_ms'] += metrics.query_time_ms
|
||||
current_stats['cache_hits'] += 1 if metrics.cache_hit else 0
|
||||
current_stats['db_queries'] += metrics.db_query_count
|
||||
|
||||
# 5-minute buckets
|
||||
stats_key = f"{
|
||||
self.STATS_PREFIX}:performance:{
|
||||
int(
|
||||
time.time() //
|
||||
300)}"
|
||||
|
||||
current_stats = cache.get(
|
||||
stats_key,
|
||||
{
|
||||
"query_count": 0,
|
||||
"total_time_ms": 0,
|
||||
"cache_hits": 0,
|
||||
"db_queries": 0,
|
||||
},
|
||||
)
|
||||
|
||||
current_stats["query_count"] += 1
|
||||
current_stats["total_time_ms"] += metrics.query_time_ms
|
||||
current_stats["cache_hits"] += 1 if metrics.cache_hit else 0
|
||||
current_stats["db_queries"] += metrics.db_query_count
|
||||
|
||||
cache.set(stats_key, current_stats, 3600) # Keep for 1 hour
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Performance metrics recording error: {e}")
|
||||
|
||||
|
||||
def _bounds_to_geohash(self, bounds: GeoBounds) -> str:
|
||||
"""Convert geographic bounds to geohash for cache partitioning."""
|
||||
# Use center point of bounds for geohash
|
||||
center_lat = (bounds.north + bounds.south) / 2
|
||||
center_lng = (bounds.east + bounds.west) / 2
|
||||
|
||||
|
||||
# Simple geohash implementation (in production, use a library)
|
||||
return self._encode_geohash(center_lat, center_lng, self.GEOHASH_PRECISION)
|
||||
|
||||
|
||||
def _encode_geohash(self, lat: float, lng: float, precision: int) -> str:
|
||||
"""Simple geohash encoding implementation."""
|
||||
# This is a simplified implementation
|
||||
# In production, use the `geohash` library
|
||||
lat_range = [-90.0, 90.0]
|
||||
lng_range = [-180.0, 180.0]
|
||||
|
||||
|
||||
geohash = ""
|
||||
bits = 0
|
||||
bit_count = 0
|
||||
even_bit = True
|
||||
|
||||
|
||||
while len(geohash) < precision:
|
||||
if even_bit:
|
||||
# longitude
|
||||
@@ -322,80 +355,84 @@ class MapCacheService:
|
||||
else:
|
||||
bits = bits << 1
|
||||
lat_range[1] = mid
|
||||
|
||||
|
||||
even_bit = not even_bit
|
||||
bit_count += 1
|
||||
|
||||
|
||||
if bit_count == 5:
|
||||
# Convert 5 bits to base32 character
|
||||
geohash += "0123456789bcdefghjkmnpqrstuvwxyz"[bits]
|
||||
bits = 0
|
||||
bit_count = 0
|
||||
|
||||
|
||||
return geohash
|
||||
|
||||
|
||||
def _hash_filters(self, filters: MapFilters) -> str:
|
||||
"""Create deterministic hash of filters for cache keys."""
|
||||
filter_dict = filters.to_dict()
|
||||
# Sort to ensure consistent ordering
|
||||
filter_str = json.dumps(filter_dict, sort_keys=True)
|
||||
return hashlib.md5(filter_str.encode()).hexdigest()[:8]
|
||||
|
||||
|
||||
def _dict_to_unified_location(self, data: Dict[str, Any]) -> UnifiedLocation:
|
||||
"""Convert dictionary back to UnifiedLocation object."""
|
||||
from .data_structures import LocationType
|
||||
|
||||
|
||||
return UnifiedLocation(
|
||||
id=data['id'],
|
||||
type=LocationType(data['type']),
|
||||
name=data['name'],
|
||||
coordinates=tuple(data['coordinates']),
|
||||
address=data.get('address'),
|
||||
metadata=data.get('metadata', {}),
|
||||
type_data=data.get('type_data', {}),
|
||||
cluster_weight=data.get('cluster_weight', 1),
|
||||
cluster_category=data.get('cluster_category', 'default')
|
||||
id=data["id"],
|
||||
type=LocationType(data["type"]),
|
||||
name=data["name"],
|
||||
coordinates=tuple(data["coordinates"]),
|
||||
address=data.get("address"),
|
||||
metadata=data.get("metadata", {}),
|
||||
type_data=data.get("type_data", {}),
|
||||
cluster_weight=data.get("cluster_weight", 1),
|
||||
cluster_category=data.get("cluster_category", "default"),
|
||||
)
|
||||
|
||||
|
||||
def _dict_to_cluster_data(self, data: Dict[str, Any]) -> ClusterData:
|
||||
"""Convert dictionary back to ClusterData object."""
|
||||
from .data_structures import LocationType
|
||||
|
||||
bounds = GeoBounds(**data['bounds'])
|
||||
types = {LocationType(t) for t in data['types']}
|
||||
|
||||
|
||||
bounds = GeoBounds(**data["bounds"])
|
||||
types = {LocationType(t) for t in data["types"]}
|
||||
|
||||
representative = None
|
||||
if data.get('representative'):
|
||||
representative = self._dict_to_unified_location(data['representative'])
|
||||
|
||||
if data.get("representative"):
|
||||
representative = self._dict_to_unified_location(data["representative"])
|
||||
|
||||
return ClusterData(
|
||||
id=data['id'],
|
||||
coordinates=tuple(data['coordinates']),
|
||||
count=data['count'],
|
||||
id=data["id"],
|
||||
coordinates=tuple(data["coordinates"]),
|
||||
count=data["count"],
|
||||
types=types,
|
||||
bounds=bounds,
|
||||
representative_location=representative
|
||||
representative_location=representative,
|
||||
)
|
||||
|
||||
|
||||
def _dict_to_map_response(self, data: Dict[str, Any]) -> MapResponse:
|
||||
"""Convert dictionary back to MapResponse object."""
|
||||
locations = [self._dict_to_unified_location(loc) for loc in data.get('locations', [])]
|
||||
clusters = [self._dict_to_cluster_data(cluster) for cluster in data.get('clusters', [])]
|
||||
|
||||
locations = [
|
||||
self._dict_to_unified_location(loc) for loc in data.get("locations", [])
|
||||
]
|
||||
clusters = [
|
||||
self._dict_to_cluster_data(cluster) for cluster in data.get("clusters", [])
|
||||
]
|
||||
|
||||
bounds = None
|
||||
if data.get('bounds'):
|
||||
bounds = GeoBounds(**data['bounds'])
|
||||
|
||||
if data.get("bounds"):
|
||||
bounds = GeoBounds(**data["bounds"])
|
||||
|
||||
return MapResponse(
|
||||
locations=locations,
|
||||
clusters=clusters,
|
||||
bounds=bounds,
|
||||
total_count=data.get('total_count', 0),
|
||||
filtered_count=data.get('filtered_count', 0),
|
||||
zoom_level=data.get('zoom_level'),
|
||||
clustered=data.get('clustered', False)
|
||||
total_count=data.get("total_count", 0),
|
||||
filtered_count=data.get("filtered_count", 0),
|
||||
zoom_level=data.get("zoom_level"),
|
||||
clustered=data.get("clustered", False),
|
||||
)
|
||||
|
||||
|
||||
# Global cache service instance
|
||||
map_cache = MapCacheService()
|
||||
map_cache = MapCacheService()
|
||||
|
||||
@@ -5,7 +5,6 @@ Unified Map Service - Main orchestrating service for all map functionality.
|
||||
import time
|
||||
from typing import List, Optional, Dict, Any, Set
|
||||
from django.db import connection
|
||||
from django.utils import timezone
|
||||
|
||||
from .data_structures import (
|
||||
UnifiedLocation,
|
||||
@@ -14,7 +13,7 @@ from .data_structures import (
|
||||
MapFilters,
|
||||
MapResponse,
|
||||
LocationType,
|
||||
QueryPerformanceMetrics
|
||||
QueryPerformanceMetrics,
|
||||
)
|
||||
from .location_adapters import LocationAbstractionLayer
|
||||
from .clustering_service import ClusteringService
|
||||
@@ -26,17 +25,17 @@ class UnifiedMapService:
|
||||
Main service orchestrating map data retrieval, filtering, clustering, and caching.
|
||||
Provides a unified interface for all location types with performance optimization.
|
||||
"""
|
||||
|
||||
|
||||
# Performance thresholds
|
||||
MAX_UNCLUSTERED_POINTS = 500
|
||||
MAX_CLUSTERED_POINTS = 2000
|
||||
DEFAULT_ZOOM_LEVEL = 10
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.location_layer = LocationAbstractionLayer()
|
||||
self.clustering_service = ClusteringService()
|
||||
self.cache_service = MapCacheService()
|
||||
|
||||
|
||||
def get_map_data(
|
||||
self,
|
||||
*,
|
||||
@@ -44,57 +43,65 @@ class UnifiedMapService:
|
||||
filters: Optional[MapFilters] = None,
|
||||
zoom_level: int = DEFAULT_ZOOM_LEVEL,
|
||||
cluster: bool = True,
|
||||
use_cache: bool = True
|
||||
use_cache: bool = True,
|
||||
) -> MapResponse:
|
||||
"""
|
||||
Primary method for retrieving unified map data.
|
||||
|
||||
|
||||
Args:
|
||||
bounds: Geographic bounds to query within
|
||||
filters: Filtering criteria for locations
|
||||
zoom_level: Map zoom level for clustering decisions
|
||||
cluster: Whether to apply clustering
|
||||
use_cache: Whether to use cached data
|
||||
|
||||
|
||||
Returns:
|
||||
MapResponse with locations, clusters, and metadata
|
||||
"""
|
||||
start_time = time.time()
|
||||
initial_query_count = len(connection.queries)
|
||||
cache_hit = False
|
||||
|
||||
|
||||
try:
|
||||
# Generate cache key
|
||||
cache_key = None
|
||||
if use_cache:
|
||||
cache_key = self._generate_cache_key(bounds, filters, zoom_level, cluster)
|
||||
|
||||
cache_key = self._generate_cache_key(
|
||||
bounds, filters, zoom_level, cluster
|
||||
)
|
||||
|
||||
# Try to get from cache first
|
||||
cached_response = self.cache_service.get_cached_map_response(cache_key)
|
||||
if cached_response:
|
||||
cached_response.cache_hit = True
|
||||
cached_response.query_time_ms = int((time.time() - start_time) * 1000)
|
||||
cached_response.query_time_ms = int(
|
||||
(time.time() - start_time) * 1000
|
||||
)
|
||||
return cached_response
|
||||
|
||||
|
||||
# Get locations from database
|
||||
locations = self._get_locations_from_db(bounds, filters)
|
||||
|
||||
|
||||
# Apply smart limiting based on zoom level and density
|
||||
locations = self._apply_smart_limiting(locations, bounds, zoom_level)
|
||||
|
||||
|
||||
# Determine if clustering should be applied
|
||||
should_cluster = cluster and self.clustering_service.should_cluster(zoom_level, len(locations))
|
||||
|
||||
should_cluster = cluster and self.clustering_service.should_cluster(
|
||||
zoom_level, len(locations)
|
||||
)
|
||||
|
||||
# Apply clustering if needed
|
||||
clusters = []
|
||||
if should_cluster:
|
||||
locations, clusters = self.clustering_service.cluster_locations(
|
||||
locations, zoom_level, bounds
|
||||
)
|
||||
|
||||
|
||||
# Calculate response bounds
|
||||
response_bounds = self._calculate_response_bounds(locations, clusters, bounds)
|
||||
|
||||
response_bounds = self._calculate_response_bounds(
|
||||
locations, clusters, bounds
|
||||
)
|
||||
|
||||
# Create response
|
||||
response = MapResponse(
|
||||
locations=locations,
|
||||
@@ -106,22 +113,26 @@ class UnifiedMapService:
|
||||
clustered=should_cluster,
|
||||
cache_hit=cache_hit,
|
||||
query_time_ms=int((time.time() - start_time) * 1000),
|
||||
filters_applied=self._get_applied_filters_list(filters)
|
||||
filters_applied=self._get_applied_filters_list(filters),
|
||||
)
|
||||
|
||||
|
||||
# Cache the response
|
||||
if use_cache and cache_key:
|
||||
self.cache_service.cache_map_response(cache_key, response)
|
||||
|
||||
|
||||
# Record performance metrics
|
||||
self._record_performance_metrics(
|
||||
start_time, initial_query_count, cache_hit, len(locations) + len(clusters),
|
||||
bounds is not None, should_cluster
|
||||
start_time,
|
||||
initial_query_count,
|
||||
cache_hit,
|
||||
len(locations) + len(clusters),
|
||||
bounds is not None,
|
||||
should_cluster,
|
||||
)
|
||||
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
|
||||
except Exception:
|
||||
# Return error response
|
||||
return MapResponse(
|
||||
locations=[],
|
||||
@@ -129,58 +140,67 @@ class UnifiedMapService:
|
||||
total_count=0,
|
||||
filtered_count=0,
|
||||
query_time_ms=int((time.time() - start_time) * 1000),
|
||||
cache_hit=False
|
||||
cache_hit=False,
|
||||
)
|
||||
|
||||
def get_location_details(self, location_type: str, location_id: int) -> Optional[UnifiedLocation]:
|
||||
|
||||
def get_location_details(
|
||||
self, location_type: str, location_id: int
|
||||
) -> Optional[UnifiedLocation]:
|
||||
"""
|
||||
Get detailed information for a specific location.
|
||||
|
||||
|
||||
Args:
|
||||
location_type: Type of location (park, ride, company, generic)
|
||||
location_id: ID of the location
|
||||
|
||||
|
||||
Returns:
|
||||
UnifiedLocation with full details or None if not found
|
||||
"""
|
||||
try:
|
||||
# Check cache first
|
||||
cache_key = self.cache_service.get_location_detail_cache_key(location_type, location_id)
|
||||
cache_key = self.cache_service.get_location_detail_cache_key(
|
||||
location_type, location_id
|
||||
)
|
||||
cached_locations = self.cache_service.get_cached_locations(cache_key)
|
||||
if cached_locations:
|
||||
return cached_locations[0] if cached_locations else None
|
||||
|
||||
|
||||
# Get from database
|
||||
location_type_enum = LocationType(location_type.lower())
|
||||
location = self.location_layer.get_location_by_id(location_type_enum, location_id)
|
||||
|
||||
location = self.location_layer.get_location_by_id(
|
||||
location_type_enum, location_id
|
||||
)
|
||||
|
||||
# Cache the result
|
||||
if location:
|
||||
self.cache_service.cache_locations(cache_key, [location],
|
||||
self.cache_service.LOCATION_DETAIL_TTL)
|
||||
|
||||
self.cache_service.cache_locations(
|
||||
cache_key,
|
||||
[location],
|
||||
self.cache_service.LOCATION_DETAIL_TTL,
|
||||
)
|
||||
|
||||
return location
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error getting location details: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def search_locations(
|
||||
self,
|
||||
query: str,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
location_types: Optional[Set[LocationType]] = None,
|
||||
limit: int = 50
|
||||
limit: int = 50,
|
||||
) -> List[UnifiedLocation]:
|
||||
"""
|
||||
Search locations with text query.
|
||||
|
||||
|
||||
Args:
|
||||
query: Search query string
|
||||
bounds: Optional geographic bounds to search within
|
||||
location_types: Optional set of location types to search
|
||||
limit: Maximum number of results
|
||||
|
||||
|
||||
Returns:
|
||||
List of matching UnifiedLocation objects
|
||||
"""
|
||||
@@ -189,19 +209,19 @@ class UnifiedMapService:
|
||||
filters = MapFilters(
|
||||
search_query=query,
|
||||
location_types=location_types or {LocationType.PARK, LocationType.RIDE},
|
||||
has_coordinates=True
|
||||
has_coordinates=True,
|
||||
)
|
||||
|
||||
|
||||
# Get locations
|
||||
locations = self.location_layer.get_all_locations(bounds, filters)
|
||||
|
||||
|
||||
# Apply limit
|
||||
return locations[:limit]
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error searching locations: {e}")
|
||||
return []
|
||||
|
||||
|
||||
def get_locations_by_bounds(
|
||||
self,
|
||||
north: float,
|
||||
@@ -209,94 +229,97 @@ class UnifiedMapService:
|
||||
east: float,
|
||||
west: float,
|
||||
location_types: Optional[Set[LocationType]] = None,
|
||||
zoom_level: int = DEFAULT_ZOOM_LEVEL
|
||||
zoom_level: int = DEFAULT_ZOOM_LEVEL,
|
||||
) -> MapResponse:
|
||||
"""
|
||||
Get locations within specific geographic bounds.
|
||||
|
||||
|
||||
Args:
|
||||
north, south, east, west: Bounding box coordinates
|
||||
location_types: Optional filter for location types
|
||||
zoom_level: Map zoom level for optimization
|
||||
|
||||
|
||||
Returns:
|
||||
MapResponse with locations in bounds
|
||||
"""
|
||||
try:
|
||||
bounds = GeoBounds(north=north, south=south, east=east, west=west)
|
||||
filters = MapFilters(location_types=location_types) if location_types else None
|
||||
|
||||
return self.get_map_data(bounds=bounds, filters=filters, zoom_level=zoom_level)
|
||||
|
||||
except ValueError as e:
|
||||
filters = (
|
||||
MapFilters(location_types=location_types) if location_types else None
|
||||
)
|
||||
|
||||
return self.get_map_data(
|
||||
bounds=bounds, filters=filters, zoom_level=zoom_level
|
||||
)
|
||||
|
||||
except ValueError:
|
||||
# Invalid bounds
|
||||
return MapResponse(
|
||||
locations=[],
|
||||
clusters=[],
|
||||
total_count=0,
|
||||
filtered_count=0
|
||||
locations=[], clusters=[], total_count=0, filtered_count=0
|
||||
)
|
||||
|
||||
|
||||
def get_clustered_locations(
|
||||
self,
|
||||
zoom_level: int,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
filters: Optional[MapFilters] = None
|
||||
filters: Optional[MapFilters] = None,
|
||||
) -> MapResponse:
|
||||
"""
|
||||
Get clustered location data for map display.
|
||||
|
||||
|
||||
Args:
|
||||
zoom_level: Map zoom level for clustering configuration
|
||||
bounds: Optional geographic bounds
|
||||
filters: Optional filtering criteria
|
||||
|
||||
|
||||
Returns:
|
||||
MapResponse with clustered data
|
||||
"""
|
||||
return self.get_map_data(
|
||||
bounds=bounds,
|
||||
filters=filters,
|
||||
zoom_level=zoom_level,
|
||||
cluster=True
|
||||
bounds=bounds, filters=filters, zoom_level=zoom_level, cluster=True
|
||||
)
|
||||
|
||||
|
||||
def get_locations_by_type(
|
||||
self,
|
||||
location_type: LocationType,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
limit: Optional[int] = None
|
||||
limit: Optional[int] = None,
|
||||
) -> List[UnifiedLocation]:
|
||||
"""
|
||||
Get locations of a specific type.
|
||||
|
||||
|
||||
Args:
|
||||
location_type: Type of locations to retrieve
|
||||
bounds: Optional geographic bounds
|
||||
limit: Optional limit on results
|
||||
|
||||
|
||||
Returns:
|
||||
List of UnifiedLocation objects
|
||||
"""
|
||||
try:
|
||||
filters = MapFilters(location_types={location_type})
|
||||
locations = self.location_layer.get_locations_by_type(location_type, bounds, filters)
|
||||
|
||||
locations = self.location_layer.get_locations_by_type(
|
||||
location_type, bounds, filters
|
||||
)
|
||||
|
||||
if limit:
|
||||
locations = locations[:limit]
|
||||
|
||||
|
||||
return locations
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error getting locations by type: {e}")
|
||||
return []
|
||||
|
||||
def invalidate_cache(self, location_type: Optional[str] = None,
|
||||
location_id: Optional[int] = None,
|
||||
bounds: Optional[GeoBounds] = None) -> None:
|
||||
|
||||
def invalidate_cache(
|
||||
self,
|
||||
location_type: Optional[str] = None,
|
||||
location_id: Optional[int] = None,
|
||||
bounds: Optional[GeoBounds] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Invalidate cached map data.
|
||||
|
||||
|
||||
Args:
|
||||
location_type: Optional specific location type to invalidate
|
||||
location_id: Optional specific location ID to invalidate
|
||||
@@ -308,121 +331,144 @@ class UnifiedMapService:
|
||||
self.cache_service.invalidate_bounds_cache(bounds)
|
||||
else:
|
||||
self.cache_service.clear_all_map_cache()
|
||||
|
||||
|
||||
def get_service_stats(self) -> Dict[str, Any]:
|
||||
"""Get service performance and usage statistics."""
|
||||
cache_stats = self.cache_service.get_cache_stats()
|
||||
|
||||
|
||||
return {
|
||||
'cache_performance': cache_stats,
|
||||
'clustering_available': True,
|
||||
'supported_location_types': [t.value for t in LocationType],
|
||||
'max_unclustered_points': self.MAX_UNCLUSTERED_POINTS,
|
||||
'max_clustered_points': self.MAX_CLUSTERED_POINTS,
|
||||
'service_version': '1.0.0'
|
||||
"cache_performance": cache_stats,
|
||||
"clustering_available": True,
|
||||
"supported_location_types": [t.value for t in LocationType],
|
||||
"max_unclustered_points": self.MAX_UNCLUSTERED_POINTS,
|
||||
"max_clustered_points": self.MAX_CLUSTERED_POINTS,
|
||||
"service_version": "1.0.0",
|
||||
}
|
||||
|
||||
def _get_locations_from_db(self, bounds: Optional[GeoBounds],
|
||||
filters: Optional[MapFilters]) -> List[UnifiedLocation]:
|
||||
|
||||
def _get_locations_from_db(
|
||||
self, bounds: Optional[GeoBounds], filters: Optional[MapFilters]
|
||||
) -> List[UnifiedLocation]:
|
||||
"""Get locations from database using the abstraction layer."""
|
||||
return self.location_layer.get_all_locations(bounds, filters)
|
||||
|
||||
def _apply_smart_limiting(self, locations: List[UnifiedLocation],
|
||||
bounds: Optional[GeoBounds], zoom_level: int) -> List[UnifiedLocation]:
|
||||
|
||||
def _apply_smart_limiting(
|
||||
self,
|
||||
locations: List[UnifiedLocation],
|
||||
bounds: Optional[GeoBounds],
|
||||
zoom_level: int,
|
||||
) -> List[UnifiedLocation]:
|
||||
"""Apply intelligent limiting based on zoom level and density."""
|
||||
if zoom_level < 6: # Very zoomed out - show only major parks
|
||||
major_parks = [
|
||||
loc for loc in locations
|
||||
if (loc.type == LocationType.PARK and
|
||||
loc.cluster_category in ['major_park', 'theme_park'])
|
||||
loc
|
||||
for loc in locations
|
||||
if (
|
||||
loc.type == LocationType.PARK
|
||||
and loc.cluster_category in ["major_park", "theme_park"]
|
||||
)
|
||||
]
|
||||
return major_parks[:200]
|
||||
elif zoom_level < 10: # Regional level
|
||||
return locations[:1000]
|
||||
else: # City level and closer
|
||||
return locations[:self.MAX_CLUSTERED_POINTS]
|
||||
|
||||
def _calculate_response_bounds(self, locations: List[UnifiedLocation],
|
||||
clusters: List[ClusterData],
|
||||
request_bounds: Optional[GeoBounds]) -> Optional[GeoBounds]:
|
||||
return locations[: self.MAX_CLUSTERED_POINTS]
|
||||
|
||||
def _calculate_response_bounds(
|
||||
self,
|
||||
locations: List[UnifiedLocation],
|
||||
clusters: List[ClusterData],
|
||||
request_bounds: Optional[GeoBounds],
|
||||
) -> Optional[GeoBounds]:
|
||||
"""Calculate the actual bounds of the response data."""
|
||||
if request_bounds:
|
||||
return request_bounds
|
||||
|
||||
|
||||
all_coords = []
|
||||
|
||||
|
||||
# Add location coordinates
|
||||
for loc in locations:
|
||||
all_coords.append((loc.latitude, loc.longitude))
|
||||
|
||||
|
||||
# Add cluster coordinates
|
||||
for cluster in clusters:
|
||||
all_coords.append(cluster.coordinates)
|
||||
|
||||
|
||||
if not all_coords:
|
||||
return None
|
||||
|
||||
|
||||
lats, lngs = zip(*all_coords)
|
||||
return GeoBounds(
|
||||
north=max(lats),
|
||||
south=min(lats),
|
||||
east=max(lngs),
|
||||
west=min(lngs)
|
||||
north=max(lats), south=min(lats), east=max(lngs), west=min(lngs)
|
||||
)
|
||||
|
||||
|
||||
def _get_applied_filters_list(self, filters: Optional[MapFilters]) -> List[str]:
|
||||
"""Get list of applied filter types for metadata."""
|
||||
if not filters:
|
||||
return []
|
||||
|
||||
|
||||
applied = []
|
||||
if filters.location_types:
|
||||
applied.append('location_types')
|
||||
applied.append("location_types")
|
||||
if filters.search_query:
|
||||
applied.append('search_query')
|
||||
applied.append("search_query")
|
||||
if filters.park_status:
|
||||
applied.append('park_status')
|
||||
applied.append("park_status")
|
||||
if filters.ride_types:
|
||||
applied.append('ride_types')
|
||||
applied.append("ride_types")
|
||||
if filters.company_roles:
|
||||
applied.append('company_roles')
|
||||
applied.append("company_roles")
|
||||
if filters.min_rating:
|
||||
applied.append('min_rating')
|
||||
applied.append("min_rating")
|
||||
if filters.country:
|
||||
applied.append('country')
|
||||
applied.append("country")
|
||||
if filters.state:
|
||||
applied.append('state')
|
||||
applied.append("state")
|
||||
if filters.city:
|
||||
applied.append('city')
|
||||
|
||||
applied.append("city")
|
||||
|
||||
return applied
|
||||
|
||||
def _generate_cache_key(self, bounds: Optional[GeoBounds], filters: Optional[MapFilters],
|
||||
zoom_level: int, cluster: bool) -> str:
|
||||
|
||||
def _generate_cache_key(
|
||||
self,
|
||||
bounds: Optional[GeoBounds],
|
||||
filters: Optional[MapFilters],
|
||||
zoom_level: int,
|
||||
cluster: bool,
|
||||
) -> str:
|
||||
"""Generate cache key for the request."""
|
||||
if cluster:
|
||||
return self.cache_service.get_clusters_cache_key(bounds, filters, zoom_level)
|
||||
return self.cache_service.get_clusters_cache_key(
|
||||
bounds, filters, zoom_level
|
||||
)
|
||||
else:
|
||||
return self.cache_service.get_locations_cache_key(bounds, filters, zoom_level)
|
||||
|
||||
def _record_performance_metrics(self, start_time: float, initial_query_count: int,
|
||||
cache_hit: bool, result_count: int, bounds_used: bool,
|
||||
clustering_used: bool) -> None:
|
||||
return self.cache_service.get_locations_cache_key(
|
||||
bounds, filters, zoom_level
|
||||
)
|
||||
|
||||
def _record_performance_metrics(
|
||||
self,
|
||||
start_time: float,
|
||||
initial_query_count: int,
|
||||
cache_hit: bool,
|
||||
result_count: int,
|
||||
bounds_used: bool,
|
||||
clustering_used: bool,
|
||||
) -> None:
|
||||
"""Record performance metrics for monitoring."""
|
||||
query_time_ms = int((time.time() - start_time) * 1000)
|
||||
db_query_count = len(connection.queries) - initial_query_count
|
||||
|
||||
|
||||
metrics = QueryPerformanceMetrics(
|
||||
query_time_ms=query_time_ms,
|
||||
db_query_count=db_query_count,
|
||||
cache_hit=cache_hit,
|
||||
result_count=result_count,
|
||||
bounds_used=bounds_used,
|
||||
clustering_used=clustering_used
|
||||
clustering_used=clustering_used,
|
||||
)
|
||||
|
||||
|
||||
self.cache_service.record_performance_metrics(metrics)
|
||||
|
||||
|
||||
# Global service instance
|
||||
unified_map_service = UnifiedMapService()
|
||||
unified_map_service = UnifiedMapService()
|
||||
|
||||
@@ -11,7 +11,7 @@ from django.db import connection
|
||||
from django.conf import settings
|
||||
from django.utils import timezone
|
||||
|
||||
logger = logging.getLogger('performance')
|
||||
logger = logging.getLogger("performance")
|
||||
|
||||
|
||||
@contextmanager
|
||||
@@ -19,63 +19,69 @@ def monitor_performance(operation_name: str, **tags):
|
||||
"""Context manager for monitoring operation performance"""
|
||||
start_time = time.time()
|
||||
initial_queries = len(connection.queries)
|
||||
|
||||
|
||||
# Create performance context
|
||||
performance_context = {
|
||||
'operation': operation_name,
|
||||
'start_time': start_time,
|
||||
'timestamp': timezone.now().isoformat(),
|
||||
**tags
|
||||
"operation": operation_name,
|
||||
"start_time": start_time,
|
||||
"timestamp": timezone.now().isoformat(),
|
||||
**tags,
|
||||
}
|
||||
|
||||
|
||||
try:
|
||||
yield performance_context
|
||||
except Exception as e:
|
||||
performance_context['error'] = str(e)
|
||||
performance_context['status'] = 'error'
|
||||
performance_context["error"] = str(e)
|
||||
performance_context["status"] = "error"
|
||||
raise
|
||||
else:
|
||||
performance_context['status'] = 'success'
|
||||
performance_context["status"] = "success"
|
||||
finally:
|
||||
end_time = time.time()
|
||||
duration = end_time - start_time
|
||||
total_queries = len(connection.queries) - initial_queries
|
||||
|
||||
|
||||
# Update performance context with final metrics
|
||||
performance_context.update({
|
||||
'duration_seconds': duration,
|
||||
'duration_ms': round(duration * 1000, 2),
|
||||
'query_count': total_queries,
|
||||
'end_time': end_time,
|
||||
})
|
||||
|
||||
performance_context.update(
|
||||
{
|
||||
"duration_seconds": duration,
|
||||
"duration_ms": round(duration * 1000, 2),
|
||||
"query_count": total_queries,
|
||||
"end_time": end_time,
|
||||
}
|
||||
)
|
||||
|
||||
# Log performance data
|
||||
log_level = logging.WARNING if duration > 2.0 or total_queries > 10 else logging.INFO
|
||||
log_level = (
|
||||
logging.WARNING if duration > 2.0 or total_queries > 10 else logging.INFO
|
||||
)
|
||||
logger.log(
|
||||
log_level,
|
||||
f"Performance: {operation_name} completed in {duration:.3f}s with {total_queries} queries",
|
||||
extra=performance_context
|
||||
f"Performance: {operation_name} completed in {
|
||||
duration:.3f}s with {total_queries} queries",
|
||||
extra=performance_context,
|
||||
)
|
||||
|
||||
|
||||
# Log slow operations with additional detail
|
||||
if duration > 2.0:
|
||||
logger.warning(
|
||||
f"Slow operation detected: {operation_name} took {duration:.3f}s",
|
||||
f"Slow operation detected: {operation_name} took {
|
||||
duration:.3f}s",
|
||||
extra={
|
||||
'slow_operation': True,
|
||||
'threshold_exceeded': 'duration',
|
||||
**performance_context
|
||||
}
|
||||
"slow_operation": True,
|
||||
"threshold_exceeded": "duration",
|
||||
**performance_context,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
if total_queries > 10:
|
||||
logger.warning(
|
||||
f"High query count: {operation_name} executed {total_queries} queries",
|
||||
extra={
|
||||
'high_query_count': True,
|
||||
'threshold_exceeded': 'query_count',
|
||||
**performance_context
|
||||
}
|
||||
"high_query_count": True,
|
||||
"threshold_exceeded": "query_count",
|
||||
**performance_context,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@@ -85,52 +91,56 @@ def track_queries(operation_name: str, warn_threshold: int = 10):
|
||||
if not settings.DEBUG:
|
||||
yield
|
||||
return
|
||||
|
||||
|
||||
initial_queries = len(connection.queries)
|
||||
start_time = time.time()
|
||||
|
||||
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
end_time = time.time()
|
||||
total_queries = len(connection.queries) - initial_queries
|
||||
execution_time = end_time - start_time
|
||||
|
||||
|
||||
query_details = []
|
||||
if hasattr(connection, 'queries') and total_queries > 0:
|
||||
if hasattr(connection, "queries") and total_queries > 0:
|
||||
recent_queries = connection.queries[-total_queries:]
|
||||
query_details = [
|
||||
{
|
||||
'sql': query['sql'][:200] + '...' if len(query['sql']) > 200 else query['sql'],
|
||||
'time': float(query['time'])
|
||||
"sql": (
|
||||
query["sql"][:200] + "..."
|
||||
if len(query["sql"]) > 200
|
||||
else query["sql"]
|
||||
),
|
||||
"time": float(query["time"]),
|
||||
}
|
||||
for query in recent_queries
|
||||
]
|
||||
|
||||
|
||||
performance_data = {
|
||||
'operation': operation_name,
|
||||
'query_count': total_queries,
|
||||
'execution_time': execution_time,
|
||||
'queries': query_details if settings.DEBUG else []
|
||||
"operation": operation_name,
|
||||
"query_count": total_queries,
|
||||
"execution_time": execution_time,
|
||||
"queries": query_details if settings.DEBUG else [],
|
||||
}
|
||||
|
||||
|
||||
if total_queries > warn_threshold or execution_time > 1.0:
|
||||
logger.warning(
|
||||
f"Performance concern in {operation_name}: "
|
||||
f"{total_queries} queries, {execution_time:.2f}s",
|
||||
extra=performance_data
|
||||
extra=performance_data,
|
||||
)
|
||||
else:
|
||||
logger.debug(
|
||||
f"Query tracking for {operation_name}: "
|
||||
f"{total_queries} queries, {execution_time:.2f}s",
|
||||
extra=performance_data
|
||||
extra=performance_data,
|
||||
)
|
||||
|
||||
|
||||
class PerformanceProfiler:
|
||||
"""Advanced performance profiling with detailed metrics"""
|
||||
|
||||
|
||||
def __init__(self, name: str):
|
||||
self.name = name
|
||||
self.start_time = None
|
||||
@@ -138,100 +148,110 @@ class PerformanceProfiler:
|
||||
self.checkpoints = []
|
||||
self.initial_queries = 0
|
||||
self.memory_usage = {}
|
||||
|
||||
|
||||
def start(self):
|
||||
"""Start profiling"""
|
||||
self.start_time = time.time()
|
||||
self.initial_queries = len(connection.queries)
|
||||
|
||||
|
||||
# Track memory usage if psutil is available
|
||||
try:
|
||||
import psutil
|
||||
|
||||
process = psutil.Process()
|
||||
self.memory_usage['start'] = process.memory_info().rss
|
||||
self.memory_usage["start"] = process.memory_info().rss
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
logger.debug(f"Started profiling: {self.name}")
|
||||
|
||||
|
||||
def checkpoint(self, name: str):
|
||||
"""Add a checkpoint"""
|
||||
if self.start_time is None:
|
||||
logger.warning(f"Checkpoint '{name}' called before profiling started")
|
||||
return
|
||||
|
||||
|
||||
current_time = time.time()
|
||||
elapsed = current_time - self.start_time
|
||||
queries_since_start = len(connection.queries) - self.initial_queries
|
||||
|
||||
|
||||
checkpoint = {
|
||||
'name': name,
|
||||
'timestamp': current_time,
|
||||
'elapsed_seconds': elapsed,
|
||||
'queries_since_start': queries_since_start,
|
||||
"name": name,
|
||||
"timestamp": current_time,
|
||||
"elapsed_seconds": elapsed,
|
||||
"queries_since_start": queries_since_start,
|
||||
}
|
||||
|
||||
|
||||
# Memory usage if available
|
||||
try:
|
||||
import psutil
|
||||
|
||||
process = psutil.Process()
|
||||
checkpoint['memory_rss'] = process.memory_info().rss
|
||||
checkpoint["memory_rss"] = process.memory_info().rss
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
self.checkpoints.append(checkpoint)
|
||||
logger.debug(f"Checkpoint '{name}' at {elapsed:.3f}s")
|
||||
|
||||
|
||||
def stop(self):
|
||||
"""Stop profiling and log results"""
|
||||
if self.start_time is None:
|
||||
logger.warning("Profiling stopped before it was started")
|
||||
return
|
||||
|
||||
|
||||
self.end_time = time.time()
|
||||
total_duration = self.end_time - self.start_time
|
||||
total_queries = len(connection.queries) - self.initial_queries
|
||||
|
||||
|
||||
# Final memory usage
|
||||
try:
|
||||
import psutil
|
||||
|
||||
process = psutil.Process()
|
||||
self.memory_usage['end'] = process.memory_info().rss
|
||||
self.memory_usage["end"] = process.memory_info().rss
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
# Create detailed profiling report
|
||||
report = {
|
||||
'profiler_name': self.name,
|
||||
'total_duration': total_duration,
|
||||
'total_queries': total_queries,
|
||||
'checkpoints': self.checkpoints,
|
||||
'memory_usage': self.memory_usage,
|
||||
'queries_per_second': total_queries / total_duration if total_duration > 0 else 0,
|
||||
"profiler_name": self.name,
|
||||
"total_duration": total_duration,
|
||||
"total_queries": total_queries,
|
||||
"checkpoints": self.checkpoints,
|
||||
"memory_usage": self.memory_usage,
|
||||
"queries_per_second": (
|
||||
total_queries / total_duration if total_duration > 0 else 0
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
# Calculate checkpoint intervals
|
||||
if len(self.checkpoints) > 1:
|
||||
intervals = []
|
||||
for i in range(1, len(self.checkpoints)):
|
||||
prev = self.checkpoints[i-1]
|
||||
prev = self.checkpoints[i - 1]
|
||||
curr = self.checkpoints[i]
|
||||
intervals.append({
|
||||
'from': prev['name'],
|
||||
'to': curr['name'],
|
||||
'duration': curr['elapsed_seconds'] - prev['elapsed_seconds'],
|
||||
'queries': curr['queries_since_start'] - prev['queries_since_start'],
|
||||
})
|
||||
report['checkpoint_intervals'] = intervals
|
||||
|
||||
intervals.append(
|
||||
{
|
||||
"from": prev["name"],
|
||||
"to": curr["name"],
|
||||
"duration": curr["elapsed_seconds"] - prev["elapsed_seconds"],
|
||||
"queries": curr["queries_since_start"]
|
||||
- prev["queries_since_start"],
|
||||
}
|
||||
)
|
||||
report["checkpoint_intervals"] = intervals
|
||||
|
||||
# Log the complete report
|
||||
log_level = logging.WARNING if total_duration > 1.0 else logging.INFO
|
||||
logger.log(
|
||||
log_level,
|
||||
f"Profiling complete: {self.name} took {total_duration:.3f}s with {total_queries} queries",
|
||||
extra=report
|
||||
f"Profiling complete: {
|
||||
self.name} took {
|
||||
total_duration:.3f}s with {total_queries} queries",
|
||||
extra=report,
|
||||
)
|
||||
|
||||
|
||||
return report
|
||||
|
||||
|
||||
@@ -240,7 +260,7 @@ def profile_operation(name: str):
|
||||
"""Context manager for detailed operation profiling"""
|
||||
profiler = PerformanceProfiler(name)
|
||||
profiler.start()
|
||||
|
||||
|
||||
try:
|
||||
yield profiler
|
||||
finally:
|
||||
@@ -249,60 +269,72 @@ def profile_operation(name: str):
|
||||
|
||||
class DatabaseQueryAnalyzer:
|
||||
"""Analyze database query patterns and performance"""
|
||||
|
||||
|
||||
@staticmethod
|
||||
def analyze_queries(queries: List[Dict]) -> Dict[str, Any]:
|
||||
"""Analyze a list of queries for patterns and issues"""
|
||||
if not queries:
|
||||
return {}
|
||||
|
||||
total_time = sum(float(q.get('time', 0)) for q in queries)
|
||||
|
||||
total_time = sum(float(q.get("time", 0)) for q in queries)
|
||||
query_count = len(queries)
|
||||
|
||||
|
||||
# Group queries by type
|
||||
query_types = {}
|
||||
for query in queries:
|
||||
sql = query.get('sql', '').strip().upper()
|
||||
query_type = sql.split()[0] if sql else 'UNKNOWN'
|
||||
sql = query.get("sql", "").strip().upper()
|
||||
query_type = sql.split()[0] if sql else "UNKNOWN"
|
||||
query_types[query_type] = query_types.get(query_type, 0) + 1
|
||||
|
||||
|
||||
# Find slow queries (top 10% by time)
|
||||
sorted_queries = sorted(queries, key=lambda q: float(q.get('time', 0)), reverse=True)
|
||||
sorted_queries = sorted(
|
||||
queries, key=lambda q: float(q.get("time", 0)), reverse=True
|
||||
)
|
||||
slow_query_count = max(1, query_count // 10)
|
||||
slow_queries = sorted_queries[:slow_query_count]
|
||||
|
||||
|
||||
# Detect duplicate queries
|
||||
query_signatures = {}
|
||||
for query in queries:
|
||||
# Simplified signature - remove literals and normalize whitespace
|
||||
sql = query.get('sql', '')
|
||||
signature = ' '.join(sql.split()) # Normalize whitespace
|
||||
sql = query.get("sql", "")
|
||||
signature = " ".join(sql.split()) # Normalize whitespace
|
||||
query_signatures[signature] = query_signatures.get(signature, 0) + 1
|
||||
|
||||
duplicates = {sig: count for sig, count in query_signatures.items() if count > 1}
|
||||
|
||||
|
||||
duplicates = {
|
||||
sig: count for sig, count in query_signatures.items() if count > 1
|
||||
}
|
||||
|
||||
analysis = {
|
||||
'total_queries': query_count,
|
||||
'total_time': total_time,
|
||||
'average_time': total_time / query_count if query_count > 0 else 0,
|
||||
'query_types': query_types,
|
||||
'slow_queries': [
|
||||
"total_queries": query_count,
|
||||
"total_time": total_time,
|
||||
"average_time": total_time / query_count if query_count > 0 else 0,
|
||||
"query_types": query_types,
|
||||
"slow_queries": [
|
||||
{
|
||||
'sql': q.get('sql', '')[:200] + '...' if len(q.get('sql', '')) > 200 else q.get('sql', ''),
|
||||
'time': float(q.get('time', 0))
|
||||
"sql": (
|
||||
q.get("sql", "")[:200] + "..."
|
||||
if len(q.get("sql", "")) > 200
|
||||
else q.get("sql", "")
|
||||
),
|
||||
"time": float(q.get("time", 0)),
|
||||
}
|
||||
for q in slow_queries
|
||||
],
|
||||
'duplicate_query_count': len(duplicates),
|
||||
'duplicate_queries': duplicates if len(duplicates) <= 10 else dict(list(duplicates.items())[:10]),
|
||||
"duplicate_query_count": len(duplicates),
|
||||
"duplicate_queries": (
|
||||
duplicates
|
||||
if len(duplicates) <= 10
|
||||
else dict(list(duplicates.items())[:10])
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
return analysis
|
||||
|
||||
|
||||
@classmethod
|
||||
def analyze_current_queries(cls) -> Dict[str, Any]:
|
||||
"""Analyze the current request's queries"""
|
||||
if hasattr(connection, 'queries'):
|
||||
if hasattr(connection, "queries"):
|
||||
return cls.analyze_queries(connection.queries)
|
||||
return {}
|
||||
|
||||
@@ -310,57 +342,62 @@ class DatabaseQueryAnalyzer:
|
||||
# Performance monitoring decorators
|
||||
def monitor_function_performance(operation_name: Optional[str] = None):
|
||||
"""Decorator to monitor function performance"""
|
||||
|
||||
def decorator(func):
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
name = operation_name or f"{func.__module__}.{func.__name__}"
|
||||
with monitor_performance(name, function=func.__name__, module=func.__module__):
|
||||
with monitor_performance(
|
||||
name, function=func.__name__, module=func.__module__
|
||||
):
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def track_database_queries(warn_threshold: int = 10):
|
||||
"""Decorator to track database queries for a function"""
|
||||
|
||||
def decorator(func):
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
operation_name = f"{func.__module__}.{func.__name__}"
|
||||
with track_queries(operation_name, warn_threshold):
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
# Performance metrics collection
|
||||
class PerformanceMetrics:
|
||||
"""Collect and aggregate performance metrics"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.metrics = []
|
||||
|
||||
|
||||
def record_metric(self, name: str, value: float, tags: Optional[Dict] = None):
|
||||
"""Record a performance metric"""
|
||||
metric = {
|
||||
'name': name,
|
||||
'value': value,
|
||||
'timestamp': timezone.now().isoformat(),
|
||||
'tags': tags or {}
|
||||
"name": name,
|
||||
"value": value,
|
||||
"timestamp": timezone.now().isoformat(),
|
||||
"tags": tags or {},
|
||||
}
|
||||
self.metrics.append(metric)
|
||||
|
||||
|
||||
# Log the metric
|
||||
logger.info(
|
||||
f"Performance metric: {name} = {value}",
|
||||
extra=metric
|
||||
)
|
||||
|
||||
logger.info(f"Performance metric: {name} = {value}", extra=metric)
|
||||
|
||||
def get_metrics(self, name: Optional[str] = None) -> List[Dict]:
|
||||
"""Get recorded metrics, optionally filtered by name"""
|
||||
if name:
|
||||
return [m for m in self.metrics if m['name'] == name]
|
||||
return [m for m in self.metrics if m["name"] == name]
|
||||
return self.metrics.copy()
|
||||
|
||||
|
||||
def clear_metrics(self):
|
||||
"""Clear all recorded metrics"""
|
||||
self.metrics.clear()
|
||||
|
||||
Reference in New Issue
Block a user