feat: complete monorepo structure with frontend and shared resources

- Add complete backend/ directory with full Django application
- Add frontend/ directory with Vite + TypeScript setup ready for Next.js
- Add comprehensive shared/ directory with:
  - Complete documentation and memory-bank archives
  - Media files and avatars (letters, park/ride images)
  - Deployment scripts and automation tools
  - Shared types and utilities
- Add architecture/ directory with migration guides
- Configure pnpm workspace for monorepo development
- Update .gitignore to exclude .django_tailwind_cli/ build artifacts
- Preserve all historical documentation in shared/docs/memory-bank/
- Set up proper structure for full-stack development with shared resources
This commit is contained in:
pacnpal
2025-08-23 18:40:07 -04:00
parent b0e0678590
commit d504d41de2
762 changed files with 142636 additions and 0 deletions

View File

View File

@@ -0,0 +1,30 @@
from django.contrib import admin
from django.utils.html import format_html
from .models import SlugHistory
@admin.register(SlugHistory)
class SlugHistoryAdmin(admin.ModelAdmin):
list_display = ["content_object_link", "old_slug", "created_at"]
list_filter = ["content_type", "created_at"]
search_fields = ["old_slug", "object_id"]
readonly_fields = ["content_type", "object_id", "old_slug", "created_at"]
date_hierarchy = "created_at"
ordering = ["-created_at"]
@admin.display(description="Object")
def content_object_link(self, obj):
"""Create a link to the related object's admin page"""
try:
url = obj.content_object.get_absolute_url()
return format_html('<a href="{}">{}</a>', url, str(obj.content_object))
except (AttributeError, ValueError):
return str(obj.content_object)
def has_add_permission(self, request):
"""Disable manual creation of slug history records"""
return False
def has_change_permission(self, request, obj=None):
"""Disable editing of slug history records"""
return False

View File

@@ -0,0 +1,60 @@
from django.db import models
from django.contrib.contenttypes.fields import GenericForeignKey
from django.contrib.contenttypes.models import ContentType
from django.utils import timezone
from django.db.models import Count
class PageView(models.Model):
content_type = models.ForeignKey(
ContentType, on_delete=models.CASCADE, related_name="page_views"
)
object_id = models.PositiveIntegerField()
content_object = GenericForeignKey("content_type", "object_id")
timestamp = models.DateTimeField(auto_now_add=True, db_index=True)
ip_address = models.GenericIPAddressField()
user_agent = models.CharField(max_length=512, blank=True)
class Meta:
indexes = [
models.Index(fields=["timestamp"]),
models.Index(fields=["content_type", "object_id"]),
]
@classmethod
def get_trending_items(cls, model_class, hours=24, limit=10):
"""Get trending items of a specific model class based on views in last X hours.
Args:
model_class: The model class to get trending items for (e.g., Park, Ride)
hours (int): Number of hours to look back for views (default: 24)
limit (int): Maximum number of items to return (default: 10)
Returns:
QuerySet: The trending items ordered by view count
"""
content_type = ContentType.objects.get_for_model(model_class)
cutoff = timezone.now() - timezone.timedelta(hours=hours)
# Query through the ContentType relationship
item_ids = (
cls.objects.filter(content_type=content_type, timestamp__gte=cutoff)
.values("object_id")
.annotate(view_count=Count("id"))
.filter(view_count__gt=0)
.order_by("-view_count")
.values_list("object_id", flat=True)[:limit]
)
# Get the actual items in the correct order
if item_ids:
# Convert the list to a string of comma-separated values
id_list = list(item_ids)
# Use Case/When to preserve the ordering
from django.db.models import Case, When
preserved = Case(*[When(pk=pk, then=pos) for pos, pk in enumerate(id_list)])
return model_class.objects.filter(pk__in=id_list).order_by(preserved)
return model_class.objects.none()

View File

@@ -0,0 +1 @@
# Core API infrastructure for ThrillWiki

View File

@@ -0,0 +1,205 @@
"""
Custom exception handling for ThrillWiki API.
Provides standardized error responses following Django styleguide patterns.
"""
from typing import Any, Dict, Optional
from django.http import Http404
from django.core.exceptions import (
PermissionDenied,
ValidationError as DjangoValidationError,
)
from rest_framework import status
from rest_framework.response import Response
from rest_framework.views import exception_handler
from rest_framework.exceptions import (
ValidationError as DRFValidationError,
NotFound,
PermissionDenied as DRFPermissionDenied,
)
from ..exceptions import ThrillWikiException
from ..logging import get_logger, log_exception
logger = get_logger(__name__)
def custom_exception_handler(
exc: Exception, context: Dict[str, Any]
) -> Optional[Response]:
"""
Custom exception handler for DRF that provides standardized error responses.
Returns:
Response with standardized error format or None to fallback to default handler
"""
# Call REST framework's default exception handler first
response = exception_handler(exc, context)
if response is not None:
# Standardize the error response format
custom_response_data = {
"status": "error",
"error": {
"code": _get_error_code(exc),
"message": _get_error_message(exc, response.data),
"details": _get_error_details(exc, response.data),
},
"data": None,
}
# Add request context for debugging
if hasattr(context.get("request"), "user"):
custom_response_data["error"]["request_user"] = str(context["request"].user)
# Log the error for monitoring
log_exception(
logger,
exc,
context={"response_status": response.status_code},
request=context.get("request"),
)
response.data = custom_response_data
# Handle ThrillWiki custom exceptions
elif isinstance(exc, ThrillWikiException):
custom_response_data = {
"status": "error",
"error": exc.to_dict(),
"data": None,
}
log_exception(
logger,
exc,
context={"response_status": exc.status_code},
request=context.get("request"),
)
response = Response(custom_response_data, status=exc.status_code)
# Handle specific Django exceptions that DRF doesn't catch
elif isinstance(exc, DjangoValidationError):
custom_response_data = {
"status": "error",
"error": {
"code": "VALIDATION_ERROR",
"message": "Validation failed",
"details": _format_django_validation_errors(exc),
},
"data": None,
}
log_exception(
logger,
exc,
context={"response_status": status.HTTP_400_BAD_REQUEST},
request=context.get("request"),
)
response = Response(custom_response_data, status=status.HTTP_400_BAD_REQUEST)
elif isinstance(exc, Http404):
custom_response_data = {
"status": "error",
"error": {
"code": "NOT_FOUND",
"message": "Resource not found",
"details": str(exc) if str(exc) else None,
},
"data": None,
}
log_exception(
logger,
exc,
context={"response_status": status.HTTP_404_NOT_FOUND},
request=context.get("request"),
)
response = Response(custom_response_data, status=status.HTTP_404_NOT_FOUND)
elif isinstance(exc, PermissionDenied):
custom_response_data = {
"status": "error",
"error": {
"code": "PERMISSION_DENIED",
"message": "Permission denied",
"details": str(exc) if str(exc) else None,
},
"data": None,
}
log_exception(
logger,
exc,
context={"response_status": status.HTTP_403_FORBIDDEN},
request=context.get("request"),
)
response = Response(custom_response_data, status=status.HTTP_403_FORBIDDEN)
return response
def _get_error_code(exc: Exception) -> str:
"""Extract or determine error code from exception."""
if hasattr(exc, "default_code"):
return exc.default_code.upper()
if isinstance(exc, DRFValidationError):
return "VALIDATION_ERROR"
elif isinstance(exc, NotFound):
return "NOT_FOUND"
elif isinstance(exc, DRFPermissionDenied):
return "PERMISSION_DENIED"
return exc.__class__.__name__.upper()
def _get_error_message(exc: Exception, response_data: Any) -> str:
"""Extract user-friendly error message."""
if isinstance(response_data, dict):
# Handle DRF validation errors
if "detail" in response_data:
return str(response_data["detail"])
elif "non_field_errors" in response_data:
errors = response_data["non_field_errors"]
return errors[0] if isinstance(errors, list) and errors else str(errors)
elif isinstance(response_data, dict) and len(response_data) == 1:
key, value = next(iter(response_data.items()))
if isinstance(value, list) and value:
return f"{key}: {value[0]}"
return f"{key}: {value}"
# Fallback to exception message
return str(exc) if str(exc) else "An error occurred"
def _get_error_details(exc: Exception, response_data: Any) -> Optional[Dict[str, Any]]:
"""Extract detailed error information for debugging."""
if isinstance(response_data, dict) and len(response_data) > 1:
return response_data
if hasattr(exc, "detail") and isinstance(exc.detail, dict):
return exc.detail
return None
def _format_django_validation_errors(
exc: DjangoValidationError,
) -> Dict[str, Any]:
"""Format Django ValidationError for API response."""
if hasattr(exc, "error_dict"):
# Field-specific errors
return {
field: [str(error) for error in errors]
for field, errors in exc.error_dict.items()
}
elif hasattr(exc, "error_list"):
# Non-field errors
return {"non_field_errors": [str(error) for error in exc.error_list]}
return {"non_field_errors": [str(exc)]}
# Removed _log_api_error - using centralized logging instead

View File

@@ -0,0 +1,260 @@
"""
Common mixins for API views following Django styleguide patterns.
"""
from typing import Dict, Any, Optional
from rest_framework.request import Request
from rest_framework.response import Response
from rest_framework import status
class ApiMixin:
"""
Base mixin for API views providing standardized response formatting.
"""
def create_response(
self,
*,
data: Any = None,
message: Optional[str] = None,
status_code: int = status.HTTP_200_OK,
pagination: Optional[Dict[str, Any]] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> Response:
"""
Create standardized API response.
Args:
data: Response data
message: Optional success message
status_code: HTTP status code
pagination: Pagination information
metadata: Additional metadata
Returns:
Standardized Response object
"""
response_data = {
"status": "success" if status_code < 400 else "error",
"data": data,
}
if message:
response_data["message"] = message
if pagination:
response_data["pagination"] = pagination
if metadata:
response_data["metadata"] = metadata
return Response(response_data, status=status_code)
def create_error_response(
self,
*,
message: str,
status_code: int = status.HTTP_400_BAD_REQUEST,
error_code: Optional[str] = None,
details: Optional[Dict[str, Any]] = None,
) -> Response:
"""
Create standardized error response.
Args:
message: Error message
status_code: HTTP status code
error_code: Optional error code
details: Additional error details
Returns:
Standardized error Response object
"""
error_data = {
"code": error_code or "GENERIC_ERROR",
"message": message,
}
if details:
error_data["details"] = details
response_data = {
"status": "error",
"error": error_data,
"data": None,
}
return Response(response_data, status=status_code)
class CreateApiMixin(ApiMixin):
"""
Mixin for create API endpoints with standardized input/output handling.
"""
def create(self, request: Request, *args, **kwargs) -> Response:
"""Handle POST requests for creating resources."""
serializer = self.get_input_serializer(data=request.data)
serializer.is_valid(raise_exception=True)
# Create the object using the service layer
obj = self.perform_create(**serializer.validated_data)
# Serialize the output
output_serializer = self.get_output_serializer(obj)
return self.create_response(
data=output_serializer.data,
status_code=status.HTTP_201_CREATED,
message="Resource created successfully",
)
def perform_create(self, **validated_data):
"""
Override this method to implement object creation logic.
Should use service layer methods.
"""
raise NotImplementedError("Subclasses must implement perform_create")
def get_input_serializer(self, *args, **kwargs):
"""Get the input serializer for validation."""
return self.InputSerializer(*args, **kwargs)
def get_output_serializer(self, *args, **kwargs):
"""Get the output serializer for response."""
return self.OutputSerializer(*args, **kwargs)
class UpdateApiMixin(ApiMixin):
"""
Mixin for update API endpoints with standardized input/output handling.
"""
def update(self, request: Request, *args, **kwargs) -> Response:
"""Handle PUT/PATCH requests for updating resources."""
instance = self.get_object()
serializer = self.get_input_serializer(
data=request.data, partial=kwargs.get("partial", False)
)
serializer.is_valid(raise_exception=True)
# Update the object using the service layer
updated_obj = self.perform_update(instance, **serializer.validated_data)
# Serialize the output
output_serializer = self.get_output_serializer(updated_obj)
return self.create_response(
data=output_serializer.data,
message="Resource updated successfully",
)
def perform_update(self, instance, **validated_data):
"""
Override this method to implement object update logic.
Should use service layer methods.
"""
raise NotImplementedError("Subclasses must implement perform_update")
def get_input_serializer(self, *args, **kwargs):
"""Get the input serializer for validation."""
return self.InputSerializer(*args, **kwargs)
def get_output_serializer(self, *args, **kwargs):
"""Get the output serializer for response."""
return self.OutputSerializer(*args, **kwargs)
class ListApiMixin(ApiMixin):
"""
Mixin for list API endpoints with pagination and filtering.
"""
def list(self, request: Request, *args, **kwargs) -> Response:
"""Handle GET requests for listing resources."""
# Use selector to get filtered queryset
queryset = self.get_queryset()
# Apply pagination
page = self.paginate_queryset(queryset)
if page is not None:
serializer = self.get_output_serializer(page, many=True)
return self.get_paginated_response(serializer.data)
# No pagination
serializer = self.get_output_serializer(queryset, many=True)
return self.create_response(data=serializer.data)
def get_queryset(self):
"""
Override this method to use selector patterns.
Should call selector functions, not access model managers directly.
"""
raise NotImplementedError(
"Subclasses must implement get_queryset using selectors"
)
def get_output_serializer(self, *args, **kwargs):
"""Get the output serializer for response."""
return self.OutputSerializer(*args, **kwargs)
class RetrieveApiMixin(ApiMixin):
"""
Mixin for retrieve API endpoints.
"""
def retrieve(self, request: Request, *args, **kwargs) -> Response:
"""Handle GET requests for retrieving a single resource."""
instance = self.get_object()
serializer = self.get_output_serializer(instance)
return self.create_response(data=serializer.data)
def get_object(self):
"""
Override this method to use selector patterns.
Should call selector functions for optimized queries.
"""
raise NotImplementedError(
"Subclasses must implement get_object using selectors"
)
def get_output_serializer(self, *args, **kwargs):
"""Get the output serializer for response."""
return self.OutputSerializer(*args, **kwargs)
class DestroyApiMixin(ApiMixin):
"""
Mixin for delete API endpoints.
"""
def destroy(self, request: Request, *args, **kwargs) -> Response:
"""Handle DELETE requests for destroying resources."""
instance = self.get_object()
# Delete using service layer
self.perform_destroy(instance)
return self.create_response(
status_code=status.HTTP_204_NO_CONTENT,
message="Resource deleted successfully",
)
def perform_destroy(self, instance):
"""
Override this method to implement object deletion logic.
Should use service layer methods.
"""
raise NotImplementedError("Subclasses must implement perform_destroy")
def get_object(self):
"""
Override this method to use selector patterns.
Should call selector functions for optimized queries.
"""
raise NotImplementedError(
"Subclasses must implement get_object using selectors"
)

View File

@@ -0,0 +1,6 @@
from django.apps import AppConfig
class CoreConfig(AppConfig):
default_auto_field = "django.db.models.BigAutoField"
name = "apps.core"

View File

@@ -0,0 +1 @@
# Decorators module

View File

@@ -0,0 +1,409 @@
"""
Advanced caching decorators for API views and functions.
"""
import hashlib
import json
import time
from functools import wraps
from typing import Optional, List, Callable
from django.utils.decorators import method_decorator
from django.views.decorators.vary import vary_on_headers
from apps.core.services.enhanced_cache_service import EnhancedCacheService
import logging
logger = logging.getLogger(__name__)
def cache_api_response(
timeout=1800, vary_on=None, key_prefix="api", cache_backend="api"
):
"""
Advanced decorator for caching API responses with flexible configuration
Args:
timeout: Cache timeout in seconds
vary_on: List of request attributes to vary cache on
key_prefix: Prefix for cache keys
cache_backend: Cache backend to use
"""
def decorator(view_func):
@wraps(view_func)
def wrapper(self, request, *args, **kwargs):
# Only cache GET requests
if request.method != "GET":
return view_func(self, request, *args, **kwargs)
# Generate cache key based on view, user, and parameters
cache_key_parts = [
key_prefix,
view_func.__name__,
(
str(request.user.id)
if request.user.is_authenticated
else "anonymous"
),
str(hash(frozenset(request.GET.items()))),
]
# Add URL parameters to cache key
if args:
cache_key_parts.append(str(hash(args)))
if kwargs:
cache_key_parts.append(str(hash(frozenset(kwargs.items()))))
# Add custom vary_on fields
if vary_on:
for field in vary_on:
value = getattr(request, field, "")
cache_key_parts.append(str(value))
cache_key = ":".join(cache_key_parts)
# Try to get from cache
cache_service = EnhancedCacheService()
cached_response = getattr(cache_service, cache_backend + "_cache").get(
cache_key
)
if cached_response:
logger.debug(
f"Cache hit for API view {view_func.__name__}",
extra={
"cache_key": cache_key,
"view": view_func.__name__,
"cache_hit": True,
},
)
return cached_response
# Execute view and cache result
start_time = time.time()
response = view_func(self, request, *args, **kwargs)
execution_time = time.time() - start_time
# Only cache successful responses
if hasattr(response, "status_code") and response.status_code == 200:
getattr(cache_service, cache_backend + "_cache").set(
cache_key, response, timeout
)
logger.debug(
f"Cached API response for view {view_func.__name__}",
extra={
"cache_key": cache_key,
"view": view_func.__name__,
"execution_time": execution_time,
"cache_timeout": timeout,
"cache_miss": True,
},
)
else:
logger.debug(
f"Not caching response for view {
view_func.__name__} (status: {
getattr(
response,
'status_code',
'unknown')})"
)
return response
return wrapper
return decorator
def cache_queryset_result(
cache_key_template: str, timeout: int = 3600, cache_backend="default"
):
"""
Decorator for caching expensive queryset operations
Args:
cache_key_template: Template for cache key (can use format placeholders)
timeout: Cache timeout in seconds
cache_backend: Cache backend to use
"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Generate cache key from template and arguments
try:
cache_key = cache_key_template.format(*args, **kwargs)
except (KeyError, IndexError):
# Fallback to simpler key generation
cache_key = f"{cache_key_template}:{
hash(
str(args) +
str(kwargs))}"
cache_service = EnhancedCacheService()
cached_result = getattr(cache_service, cache_backend + "_cache").get(
cache_key
)
if cached_result is not None:
logger.debug(
f"Cache hit for queryset operation: {
func.__name__}"
)
return cached_result
# Execute function and cache result
start_time = time.time()
result = func(*args, **kwargs)
execution_time = time.time() - start_time
getattr(cache_service, cache_backend + "_cache").set(
cache_key, result, timeout
)
logger.debug(
f"Cached queryset result for {func.__name__}",
extra={
"cache_key": cache_key,
"function": func.__name__,
"execution_time": execution_time,
"cache_timeout": timeout,
},
)
return result
return wrapper
return decorator
def invalidate_cache_on_save(model_name: str, cache_patterns: List[str] = None):
"""
Decorator to invalidate cache when model instances are saved
Args:
model_name: Name of the model
cache_patterns: List of cache key patterns to invalidate
"""
def decorator(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
result = func(self, *args, **kwargs)
# Invalidate related cache entries
cache_service = EnhancedCacheService()
# Standard model cache invalidation
instance_id = getattr(self, "id", None)
cache_service.invalidate_model_cache(model_name, instance_id)
# Custom pattern invalidation
if cache_patterns:
for pattern in cache_patterns:
if instance_id:
pattern = pattern.format(model=model_name, id=instance_id)
cache_service.invalidate_pattern(pattern)
logger.info(
f"Invalidated cache for {model_name} after save",
extra={
"model": model_name,
"instance_id": instance_id,
"patterns": cache_patterns,
},
)
return result
return wrapper
return decorator
class CachedAPIViewMixin:
"""Mixin to add caching capabilities to API views"""
cache_timeout = 1800 # 30 minutes default
cache_vary_on = ["version"]
cache_key_prefix = "api"
cache_backend = "api"
@method_decorator(vary_on_headers("User-Agent", "Accept-Language"))
def dispatch(self, request, *args, **kwargs):
"""Add caching to the dispatch method"""
if request.method == "GET" and getattr(self, "enable_caching", True):
return self._cached_dispatch(request, *args, **kwargs)
return super().dispatch(request, *args, **kwargs)
def _cached_dispatch(self, request, *args, **kwargs):
"""Handle cached dispatch for GET requests"""
cache_key = self._generate_cache_key(request, *args, **kwargs)
cache_service = EnhancedCacheService()
cached_response = getattr(cache_service, self.cache_backend + "_cache").get(
cache_key
)
if cached_response:
logger.debug(f"Cache hit for view {self.__class__.__name__}")
return cached_response
# Execute view
response = super().dispatch(request, *args, **kwargs)
# Cache successful responses
if hasattr(response, "status_code") and response.status_code == 200:
getattr(cache_service, self.cache_backend + "_cache").set(
cache_key, response, self.cache_timeout
)
logger.debug(f"Cached response for view {self.__class__.__name__}")
return response
def _generate_cache_key(self, request, *args, **kwargs):
"""Generate cache key for the request"""
key_parts = [
self.cache_key_prefix,
self.__class__.__name__,
request.method,
(str(request.user.id) if request.user.is_authenticated else "anonymous"),
str(hash(frozenset(request.GET.items()))),
]
if args:
key_parts.append(str(hash(args)))
if kwargs:
key_parts.append(str(hash(frozenset(kwargs.items()))))
# Add vary_on fields
for field in self.cache_vary_on:
value = getattr(request, field, "")
key_parts.append(str(value))
return ":".join(key_parts)
def smart_cache(
timeout: int = 3600,
key_func: Optional[Callable] = None,
invalidate_on: Optional[List[str]] = None,
cache_backend: str = "default",
):
"""
Smart caching decorator that adapts to function arguments
Args:
timeout: Cache timeout in seconds
key_func: Custom function to generate cache key
invalidate_on: List of signals to invalidate cache on
cache_backend: Cache backend to use
"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Generate cache key
if key_func:
cache_key = key_func(*args, **kwargs)
else:
# Default key generation
key_data = {
"func": f"{func.__module__}.{func.__name__}",
"args": str(args),
"kwargs": json.dumps(kwargs, sort_keys=True, default=str),
}
key_string = json.dumps(key_data, sort_keys=True)
cache_key = f"smart_cache:{
hashlib.md5(
key_string.encode()).hexdigest()}"
# Try to get from cache
cache_service = EnhancedCacheService()
cached_result = getattr(cache_service, cache_backend + "_cache").get(
cache_key
)
if cached_result is not None:
logger.debug(f"Smart cache hit for {func.__name__}")
return cached_result
# Execute function
start_time = time.time()
result = func(*args, **kwargs)
execution_time = time.time() - start_time
# Cache result
getattr(cache_service, cache_backend + "_cache").set(
cache_key, result, timeout
)
logger.debug(
f"Smart cached result for {func.__name__}",
extra={
"cache_key": cache_key,
"execution_time": execution_time,
"function": func.__name__,
},
)
return result
# Add cache invalidation if specified
if invalidate_on:
wrapper._cache_invalidate_on = invalidate_on
wrapper._cache_backend = cache_backend
return wrapper
return decorator
def conditional_cache(condition_func: Callable, **cache_kwargs):
"""
Cache decorator that only caches when condition is met
Args:
condition_func: Function that returns True if caching should be applied
**cache_kwargs: Arguments passed to smart_cache
"""
def decorator(func):
cached_func = smart_cache(**cache_kwargs)(func)
@wraps(func)
def wrapper(*args, **kwargs):
if condition_func(*args, **kwargs):
return cached_func(*args, **kwargs)
else:
return func(*args, **kwargs)
return wrapper
return decorator
# Utility functions for cache key generation
def generate_user_cache_key(user, suffix: str = ""):
"""Generate cache key based on user"""
user_id = user.id if user.is_authenticated else "anonymous"
return f"user:{user_id}:{suffix}" if suffix else f"user:{user_id}"
def generate_model_cache_key(model_instance, suffix: str = ""):
"""Generate cache key based on model instance"""
model_name = model_instance._meta.model_name
instance_id = model_instance.id
return (
f"{model_name}:{instance_id}:{suffix}"
if suffix
else f"{model_name}:{instance_id}"
)
def generate_queryset_cache_key(queryset, params: dict = None):
"""Generate cache key for queryset with parameters"""
model_name = queryset.model._meta.model_name
params_str = json.dumps(params or {}, sort_keys=True, default=str)
params_hash = hashlib.md5(params_str.encode()).hexdigest()
return f"queryset:{model_name}:{params_hash}"

View File

@@ -0,0 +1,224 @@
"""
Custom exception classes for ThrillWiki.
Provides domain-specific exceptions with proper error codes and messages.
"""
from typing import Optional, Dict, Any
class ThrillWikiException(Exception):
"""Base exception for all ThrillWiki-specific errors."""
default_message = "An error occurred"
error_code = "THRILLWIKI_ERROR"
status_code = 500
def __init__(
self,
message: Optional[str] = None,
error_code: Optional[str] = None,
details: Optional[Dict[str, Any]] = None,
):
self.message = message or self.default_message
self.error_code = error_code or self.error_code
self.details = details or {}
super().__init__(self.message)
def to_dict(self) -> Dict[str, Any]:
"""Convert exception to dictionary for API responses."""
return {
"error_code": self.error_code,
"message": self.message,
"details": self.details,
}
class ValidationException(ThrillWikiException):
"""Raised when data validation fails."""
default_message = "Validation failed"
error_code = "VALIDATION_ERROR"
status_code = 400
class NotFoundError(ThrillWikiException):
"""Raised when a requested resource is not found."""
default_message = "Resource not found"
error_code = "NOT_FOUND"
status_code = 404
class PermissionDeniedError(ThrillWikiException):
"""Raised when user lacks permission for an operation."""
default_message = "Permission denied"
error_code = "PERMISSION_DENIED"
status_code = 403
class BusinessLogicError(ThrillWikiException):
"""Raised when business logic constraints are violated."""
default_message = "Business logic violation"
error_code = "BUSINESS_LOGIC_ERROR"
status_code = 400
class ExternalServiceError(ThrillWikiException):
"""Raised when external service calls fail."""
default_message = "External service error"
error_code = "EXTERNAL_SERVICE_ERROR"
status_code = 502
# Domain-specific exceptions
class ParkError(ThrillWikiException):
"""Base exception for park-related errors."""
error_code = "PARK_ERROR"
class ParkNotFoundError(NotFoundError):
"""Raised when a park is not found."""
default_message = "Park not found"
error_code = "PARK_NOT_FOUND"
def __init__(self, park_slug: Optional[str] = None, **kwargs):
if park_slug:
kwargs["details"] = {"park_slug": park_slug}
kwargs["message"] = f"Park with slug '{park_slug}' not found"
super().__init__(**kwargs)
class ParkOperationError(BusinessLogicError):
"""Raised when park operation constraints are violated."""
default_message = "Invalid park operation"
error_code = "PARK_OPERATION_ERROR"
class RideError(ThrillWikiException):
"""Base exception for ride-related errors."""
error_code = "RIDE_ERROR"
class RideNotFoundError(NotFoundError):
"""Raised when a ride is not found."""
default_message = "Ride not found"
error_code = "RIDE_NOT_FOUND"
def __init__(self, ride_slug: Optional[str] = None, **kwargs):
if ride_slug:
kwargs["details"] = {"ride_slug": ride_slug}
kwargs["message"] = f"Ride with slug '{ride_slug}' not found"
super().__init__(**kwargs)
class RideOperationError(BusinessLogicError):
"""Raised when ride operation constraints are violated."""
default_message = "Invalid ride operation"
error_code = "RIDE_OPERATION_ERROR"
class LocationError(ThrillWikiException):
"""Base exception for location-related errors."""
error_code = "LOCATION_ERROR"
class InvalidCoordinatesError(ValidationException):
"""Raised when geographic coordinates are invalid."""
default_message = "Invalid geographic coordinates"
error_code = "INVALID_COORDINATES"
def __init__(
self,
latitude: Optional[float] = None,
longitude: Optional[float] = None,
**kwargs,
):
if latitude is not None or longitude is not None:
kwargs["details"] = {"latitude": latitude, "longitude": longitude}
super().__init__(**kwargs)
class GeolocationError(ExternalServiceError):
"""Raised when geolocation services fail."""
default_message = "Geolocation service unavailable"
error_code = "GEOLOCATION_ERROR"
class ReviewError(ThrillWikiException):
"""Base exception for review-related errors."""
error_code = "REVIEW_ERROR"
class ReviewModerationError(BusinessLogicError):
"""Raised when review moderation constraints are violated."""
default_message = "Review moderation error"
error_code = "REVIEW_MODERATION_ERROR"
class DuplicateReviewError(BusinessLogicError):
"""Raised when user tries to create duplicate reviews."""
default_message = "User has already reviewed this item"
error_code = "DUPLICATE_REVIEW"
class AccountError(ThrillWikiException):
"""Base exception for account-related errors."""
error_code = "ACCOUNT_ERROR"
class InsufficientPermissionsError(PermissionDeniedError):
"""Raised when user lacks required permissions."""
default_message = "Insufficient permissions"
error_code = "INSUFFICIENT_PERMISSIONS"
def __init__(self, required_permission: Optional[str] = None, **kwargs):
if required_permission:
kwargs["details"] = {"required_permission": required_permission}
kwargs["message"] = f"Permission '{required_permission}' required"
super().__init__(**kwargs)
class EmailError(ExternalServiceError):
"""Raised when email operations fail."""
default_message = "Email service error"
error_code = "EMAIL_ERROR"
class CacheError(ThrillWikiException):
"""Raised when cache operations fail."""
default_message = "Cache operation failed"
error_code = "CACHE_ERROR"
status_code = 500
class RoadTripError(ExternalServiceError):
"""Raised when road trip planning fails."""
default_message = "Road trip planning error"
error_code = "ROADTRIP_ERROR"
def __init__(self, service_name: Optional[str] = None, **kwargs):
if service_name:
kwargs["details"] = {"service": service_name}
super().__init__(**kwargs)

View File

@@ -0,0 +1,43 @@
"""Core forms and form components."""
from django.conf import settings
from django.core.exceptions import PermissionDenied
from django.utils.translation import gettext_lazy as _
from autocomplete import Autocomplete
class BaseAutocomplete(Autocomplete):
"""Base autocomplete class for consistent autocomplete behavior across the project.
This class extends django-htmx-autocomplete's base Autocomplete class to provide:
- Project-wide defaults for autocomplete behavior
- Translation strings
- Authentication enforcement
- Sensible search configuration
"""
# Search configuration
minimum_search_length = 2 # More responsive than default 3
max_results = 10 # Reasonable limit for performance
# UI text configuration using gettext for i18n
no_result_text = _("No matches found")
narrow_search_text = _(
"Showing %(page_size)s of %(total)s matches. Please refine your search."
)
type_at_least_n_characters = _("Type at least %(n)s characters...")
# Project-wide component settings
placeholder = _("Search...")
@staticmethod
def auth_check(request):
"""Enforce authentication by default.
This can be overridden in subclasses if public access is needed.
Configure AUTOCOMPLETE_BLOCK_UNAUTHENTICATED in settings to disable.
"""
block_unauth = getattr(settings, "AUTOCOMPLETE_BLOCK_UNAUTHENTICATED", True)
if block_unauth and not request.user.is_authenticated:
raise PermissionDenied(_("Authentication required"))

View File

View File

@@ -0,0 +1,168 @@
from django import forms
from django.utils.translation import gettext_lazy as _
class LocationSearchForm(forms.Form):
"""
A comprehensive search form that includes text search, location-based
search, and content type filtering for a unified search experience.
"""
# Text search query
q = forms.CharField(
required=False,
label=_("Search Query"),
widget=forms.TextInput(
attrs={
"placeholder": _("Search parks, rides, companies..."),
"class": (
"w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm "
"focus:ring-blue-500 focus:border-blue-500 dark:bg-gray-700 "
"dark:border-gray-600 dark:text-white"
),
}
),
)
# Location-based search
location = forms.CharField(
required=False,
label=_("Near Location"),
widget=forms.TextInput(
attrs={
"placeholder": _("City, address, or coordinates..."),
"id": "location-input",
"class": (
"w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm "
"focus:ring-blue-500 focus:border-blue-500 dark:bg-gray-700 "
"dark:border-gray-600 dark:text-white"
),
}
),
)
# Hidden fields for coordinates
lat = forms.FloatField(
required=False, widget=forms.HiddenInput(attrs={"id": "lat-input"})
)
lng = forms.FloatField(
required=False, widget=forms.HiddenInput(attrs={"id": "lng-input"})
)
# Search radius
radius_km = forms.ChoiceField(
required=False,
label=_("Search Radius"),
choices=[
("", _("Any distance")),
("5", _("5 km")),
("10", _("10 km")),
("25", _("25 km")),
("50", _("50 km")),
("100", _("100 km")),
("200", _("200 km")),
],
widget=forms.Select(
attrs={
"class": (
"w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm "
"focus:ring-blue-500 focus:border-blue-500 dark:bg-gray-700 "
"dark:border-gray-600 dark:text-white"
)
}
),
)
# Content type filters
search_parks = forms.BooleanField(
required=False,
initial=True,
label=_("Search Parks"),
widget=forms.CheckboxInput(
attrs={
"class": (
"rounded border-gray-300 text-blue-600 focus:ring-blue-500 "
"dark:border-gray-600 dark:bg-gray-700"
)
}
),
)
search_rides = forms.BooleanField(
required=False,
label=_("Search Rides"),
widget=forms.CheckboxInput(
attrs={
"class": (
"rounded border-gray-300 text-blue-600 focus:ring-blue-500 "
"dark:border-gray-600 dark:bg-gray-700"
)
}
),
)
search_companies = forms.BooleanField(
required=False,
label=_("Search Companies"),
widget=forms.CheckboxInput(
attrs={
"class": (
"rounded border-gray-300 text-blue-600 focus:ring-blue-500 "
"dark:border-gray-600 dark:bg-gray-700"
)
}
),
)
# Geographic filters
country = forms.CharField(
required=False,
widget=forms.TextInput(
attrs={
"placeholder": _("Country"),
"class": (
"w-full px-3 py-2 text-sm border border-gray-300 rounded-md "
"shadow-sm focus:ring-blue-500 focus:border-blue-500 "
"dark:bg-gray-700 dark:border-gray-600 dark:text-white"
),
}
),
)
state = forms.CharField(
required=False,
widget=forms.TextInput(
attrs={
"placeholder": _("State/Region"),
"class": (
"w-full px-3 py-2 text-sm border border-gray-300 rounded-md "
"shadow-sm focus:ring-blue-500 focus:border-blue-500 "
"dark:bg-gray-700 dark:border-gray-600 dark:text-white"
),
}
),
)
city = forms.CharField(
required=False,
widget=forms.TextInput(
attrs={
"placeholder": _("City"),
"class": (
"w-full px-3 py-2 text-sm border border-gray-300 rounded-md "
"shadow-sm focus:ring-blue-500 focus:border-blue-500 "
"dark:bg-gray-700 dark:border-gray-600 dark:text-white"
),
}
),
)
def clean(self):
cleaned_data = super().clean()
# If lat/lng are provided, ensure location field is populated for
# display
lat = cleaned_data.get("lat")
lng = cleaned_data.get("lng")
location = cleaned_data.get("location")
if lat and lng and not location:
cleaned_data["location"] = f"{lat}, {lng}"
return cleaned_data

View File

@@ -0,0 +1 @@
# Health checks module

View File

@@ -0,0 +1,325 @@
"""
Custom health checks for ThrillWiki application.
"""
import time
import logging
from django.core.cache import cache
from django.db import connection
from health_check.backends import BaseHealthCheckBackend
logger = logging.getLogger(__name__)
class CacheHealthCheck(BaseHealthCheckBackend):
"""Check Redis cache connectivity and performance"""
critical_service = True
def check_status(self):
try:
# Test cache write/read performance
test_key = "health_check_test"
test_value = "test_value_" + str(int(time.time()))
start_time = time.time()
cache.set(test_key, test_value, timeout=30)
cached_value = cache.get(test_key)
cache_time = time.time() - start_time
if cached_value != test_value:
self.add_error("Cache read/write test failed - values don't match")
return
# Check cache performance
if cache_time > 0.1: # Warn if cache operations take more than 100ms
self.add_error(
f"Cache performance degraded: {
cache_time:.3f}s for read/write operation"
)
return
# Clean up test key
cache.delete(test_key)
# Additional Redis-specific checks if using django-redis
try:
from django_redis import get_redis_connection
redis_client = get_redis_connection("default")
info = redis_client.info()
# Check memory usage
used_memory = info.get("used_memory", 0)
max_memory = info.get("maxmemory", 0)
if max_memory > 0:
memory_usage_percent = (used_memory / max_memory) * 100
if memory_usage_percent > 90:
self.add_error(
f"Redis memory usage critical: {
memory_usage_percent:.1f}%"
)
elif memory_usage_percent > 80:
logger.warning(
f"Redis memory usage high: {
memory_usage_percent:.1f}%"
)
except ImportError:
# django-redis not available, skip additional checks
pass
except Exception as e:
logger.warning(f"Could not get Redis info: {e}")
except Exception as e:
self.add_error(f"Cache service unavailable: {e}")
class DatabasePerformanceCheck(BaseHealthCheckBackend):
"""Check database performance and connectivity"""
critical_service = False
def check_status(self):
try:
start_time = time.time()
# Test basic connectivity
with connection.cursor() as cursor:
cursor.execute("SELECT 1")
result = cursor.fetchone()
if result[0] != 1:
self.add_error("Database connectivity test failed")
return
basic_query_time = time.time() - start_time
# Test a more complex query (if it takes too long, there might be
# performance issues)
start_time = time.time()
with connection.cursor() as cursor:
cursor.execute("SELECT COUNT(*) FROM django_content_type")
cursor.fetchone()
complex_query_time = time.time() - start_time
# Performance thresholds
if basic_query_time > 1.0:
self.add_error(
f"Database responding slowly: basic query took {
basic_query_time:.2f}s"
)
elif basic_query_time > 0.5:
logger.warning(
f"Database performance degraded: basic query took {
basic_query_time:.2f}s"
)
if complex_query_time > 2.0:
self.add_error(
f"Database performance critical: complex query took {
complex_query_time:.2f}s"
)
elif complex_query_time > 1.0:
logger.warning(
f"Database performance slow: complex query took {
complex_query_time:.2f}s"
)
# Check database version and settings if possible
try:
with connection.cursor() as cursor:
cursor.execute("SELECT version()")
version = cursor.fetchone()[0]
logger.debug(f"Database version: {version}")
except Exception as e:
logger.debug(f"Could not get database version: {e}")
except Exception as e:
self.add_error(f"Database performance check failed: {e}")
class ApplicationHealthCheck(BaseHealthCheckBackend):
"""Check application-specific health indicators"""
critical_service = False
def check_status(self):
try:
# Check if we can import critical modules
critical_modules = [
"parks.models",
"rides.models",
"accounts.models",
"core.services",
]
for module_name in critical_modules:
try:
__import__(module_name)
except ImportError as e:
self.add_error(
f"Critical module import failed: {module_name} - {e}"
)
# Check if we can access critical models
try:
from parks.models import Park
from apps.rides.models import Ride
from django.contrib.auth import get_user_model
User = get_user_model()
# Test that we can query these models (just count, don't load
# data)
park_count = Park.objects.count()
ride_count = Ride.objects.count()
user_count = User.objects.count()
logger.debug(
f"Model counts - Parks: {park_count}, Rides: {ride_count}, Users: {user_count}"
)
except Exception as e:
self.add_error(f"Model access check failed: {e}")
# Check media and static file configuration
from django.conf import settings
import os
if not os.path.exists(settings.MEDIA_ROOT):
self.add_error(
f"Media directory does not exist: {
settings.MEDIA_ROOT}"
)
if not os.path.exists(settings.STATIC_ROOT) and not settings.DEBUG:
self.add_error(
f"Static directory does not exist: {settings.STATIC_ROOT}"
)
except Exception as e:
self.add_error(f"Application health check failed: {e}")
class ExternalServiceHealthCheck(BaseHealthCheckBackend):
"""Check external services and dependencies"""
critical_service = False
def check_status(self):
# Check email service if configured
try:
from django.core.mail import get_connection
from django.conf import settings
if (
hasattr(settings, "EMAIL_BACKEND")
and "console" not in settings.EMAIL_BACKEND
):
# Only check if not using console backend
connection = get_connection()
if hasattr(connection, "open"):
try:
connection.open()
connection.close()
except Exception as e:
logger.warning(f"Email service check failed: {e}")
# Don't fail the health check for email issues in
# development
except Exception as e:
logger.debug(f"Email service check error: {e}")
# Check if Sentry is configured and working
try:
import sentry_sdk
if sentry_sdk.Hub.current.client:
# Sentry is configured
try:
# Test that we can capture a test message (this won't
# actually send to Sentry)
with sentry_sdk.push_scope() as scope:
scope.set_tag("health_check", True)
# Don't actually send a message, just verify the SDK is
# working
logger.debug("Sentry SDK is operational")
except Exception as e:
logger.warning(f"Sentry SDK check failed: {e}")
except ImportError:
logger.debug("Sentry SDK not installed")
except Exception as e:
logger.debug(f"Sentry check error: {e}")
# Check Redis connection if configured
try:
from django.core.cache import caches
from django.conf import settings
cache_config = settings.CACHES.get("default", {})
if "redis" in cache_config.get("BACKEND", "").lower():
# Redis is configured, test basic connectivity
redis_cache = caches["default"]
redis_cache.set("health_check_redis", "test", 10)
value = redis_cache.get("health_check_redis")
if value != "test":
self.add_error("Redis cache connectivity test failed")
else:
redis_cache.delete("health_check_redis")
except Exception as e:
logger.warning(f"Redis connectivity check failed: {e}")
class DiskSpaceHealthCheck(BaseHealthCheckBackend):
"""Check available disk space"""
critical_service = False
def check_status(self):
try:
import shutil
from django.conf import settings
# Check disk space for media directory
media_usage = shutil.disk_usage(settings.MEDIA_ROOT)
media_free_percent = (media_usage.free / media_usage.total) * 100
# Check disk space for logs directory if it exists
logs_dir = getattr(settings, "BASE_DIR", "/tmp") / "logs"
if logs_dir.exists():
logs_usage = shutil.disk_usage(logs_dir)
logs_free_percent = (logs_usage.free / logs_usage.total) * 100
else:
logs_free_percent = media_free_percent # Use same as media
# Alert thresholds
if media_free_percent < 10:
self.add_error(
f"Critical disk space: {
media_free_percent:.1f}% free in media directory"
)
elif media_free_percent < 20:
logger.warning(
f"Low disk space: {
media_free_percent:.1f}% free in media directory"
)
if logs_free_percent < 10:
self.add_error(
f"Critical disk space: {
logs_free_percent:.1f}% free in logs directory"
)
elif logs_free_percent < 20:
logger.warning(
f"Low disk space: {
logs_free_percent:.1f}% free in logs directory"
)
except Exception as e:
logger.warning(f"Disk space check failed: {e}")
# Don't fail health check for disk space issues in development

View File

@@ -0,0 +1,108 @@
from django.db import models
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes.fields import GenericForeignKey
from django.conf import settings
from typing import Any, Dict, Optional
from django.db.models import QuerySet
class DiffMixin:
"""Mixin to add diffing capabilities to models"""
def get_prev_record(self) -> Optional[Any]:
"""Get the previous record for this instance"""
try:
return (
type(self)
.objects.filter(
pgh_created_at__lt=self.pgh_created_at,
pgh_obj_id=self.pgh_obj_id,
)
.order_by("-pgh_created_at")
.first()
)
except (AttributeError, TypeError):
return None
def diff_against_previous(self) -> Dict:
"""Compare this record against the previous one"""
prev_record = self.get_prev_record()
if not prev_record:
return {}
skip_fields = {
"pgh_id",
"pgh_created_at",
"pgh_label",
"pgh_obj_id",
"pgh_context_id",
"_state",
"created_at",
"updated_at",
}
changes = {}
for field, value in self.__dict__.items():
# Skip internal fields and those we don't want to track
if field.startswith("_") or field in skip_fields or field.endswith("_id"):
continue
try:
old_value = getattr(prev_record, field)
new_value = value
if old_value != new_value:
changes[field] = {
"old": (str(old_value) if old_value is not None else "None"),
"new": (str(new_value) if new_value is not None else "None"),
}
except AttributeError:
continue
return changes
class TrackedModel(models.Model):
"""Abstract base class for models that need history tracking"""
created_at = models.DateTimeField(auto_now_add=True)
updated_at = models.DateTimeField(auto_now=True)
class Meta:
abstract = True
def get_history(self) -> QuerySet:
"""Get all history records for this instance in chronological order"""
event_model = self.events.model # pghistory provides this automatically
if event_model:
return event_model.objects.filter(pgh_obj_id=self.pk).order_by(
"-pgh_created_at"
)
return self.__class__.objects.none()
class HistoricalSlug(models.Model):
"""Track historical slugs for models"""
content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE)
object_id = models.PositiveIntegerField()
content_object = GenericForeignKey("content_type", "object_id")
slug = models.SlugField(max_length=255)
created_at = models.DateTimeField(auto_now_add=True)
user = models.ForeignKey(
settings.AUTH_USER_MODEL,
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name="historical_slugs",
)
class Meta:
app_label = "core"
unique_together = ("content_type", "slug")
indexes = [
models.Index(fields=["content_type", "object_id"]),
models.Index(fields=["slug"]),
]
def __str__(self) -> str:
return f"{self.content_type} - {self.object_id} - {self.slug}"

View File

@@ -0,0 +1,261 @@
"""
Centralized logging configuration for ThrillWiki.
Provides structured logging with proper formatting and context.
"""
import logging
import sys
from typing import Dict, Any, Optional
from django.conf import settings
from django.utils import timezone
class ThrillWikiFormatter(logging.Formatter):
"""Custom formatter for ThrillWiki logs with structured output."""
def format(self, record):
# Add timestamp if not present
if not hasattr(record, "timestamp"):
record.timestamp = timezone.now().isoformat()
# Add request context if available
if hasattr(record, "request"):
record.request_id = getattr(record.request, "id", "unknown")
record.user_id = (
getattr(record.request.user, "id", "anonymous")
if hasattr(record.request, "user")
else "unknown"
)
record.path = getattr(record.request, "path", "unknown")
record.method = getattr(record.request, "method", "unknown")
# Structure the log message
if hasattr(record, "extra_data"):
record.structured_data = record.extra_data
return super().format(record)
def get_logger(name: str) -> logging.Logger:
"""
Get a configured logger for ThrillWiki components.
Args:
name: Logger name (usually __name__)
Returns:
Configured logger instance
"""
logger = logging.getLogger(name)
# Only configure if not already configured
if not logger.handlers:
handler = logging.StreamHandler(sys.stdout)
formatter = ThrillWikiFormatter(
fmt="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO if settings.DEBUG else logging.WARNING)
return logger
def log_exception(
logger: logging.Logger,
exception: Exception,
*,
context: Optional[Dict[str, Any]] = None,
request=None,
level: int = logging.ERROR,
) -> None:
"""
Log an exception with structured context.
Args:
logger: Logger instance
exception: Exception to log
context: Additional context data
request: Django request object
level: Log level
"""
log_data = {
"exception_type": exception.__class__.__name__,
"exception_message": str(exception),
"context": context or {},
}
if request:
log_data.update(
{
"request_path": getattr(request, "path", "unknown"),
"request_method": getattr(request, "method", "unknown"),
"user_id": (
getattr(request.user, "id", "anonymous")
if hasattr(request, "user")
else "unknown"
),
}
)
logger.log(
level,
f"Exception occurred: {exception}",
extra={"extra_data": log_data},
exc_info=True,
)
def log_business_event(
logger: logging.Logger,
event_type: str,
*,
message: str,
context: Optional[Dict[str, Any]] = None,
request=None,
level: int = logging.INFO,
) -> None:
"""
Log a business event with structured context.
Args:
logger: Logger instance
event_type: Type of business event
message: Event message
context: Additional context data
request: Django request object
level: Log level
"""
log_data = {"event_type": event_type, "context": context or {}}
if request:
log_data.update(
{
"request_path": getattr(request, "path", "unknown"),
"request_method": getattr(request, "method", "unknown"),
"user_id": (
getattr(request.user, "id", "anonymous")
if hasattr(request, "user")
else "unknown"
),
}
)
logger.log(level, message, extra={"extra_data": log_data})
def log_performance_metric(
logger: logging.Logger,
operation: str,
*,
duration_ms: float,
context: Optional[Dict[str, Any]] = None,
level: int = logging.INFO,
) -> None:
"""
Log a performance metric.
Args:
logger: Logger instance
operation: Operation name
duration_ms: Duration in milliseconds
context: Additional context data
level: Log level
"""
log_data = {
"metric_type": "performance",
"operation": operation,
"duration_ms": duration_ms,
"context": context or {},
}
message = f"Performance: {operation} took {duration_ms:.2f}ms"
logger.log(level, message, extra={"extra_data": log_data})
def log_api_request(
logger: logging.Logger,
request,
*,
response_status: Optional[int] = None,
duration_ms: Optional[float] = None,
level: int = logging.INFO,
) -> None:
"""
Log an API request with context.
Args:
logger: Logger instance
request: Django request object
response_status: HTTP response status code
duration_ms: Request duration in milliseconds
level: Log level
"""
log_data = {
"request_type": "api",
"path": getattr(request, "path", "unknown"),
"method": getattr(request, "method", "unknown"),
"user_id": (
getattr(request.user, "id", "anonymous")
if hasattr(request, "user")
else "unknown"
),
"response_status": response_status,
"duration_ms": duration_ms,
}
message = f"API Request: {request.method} {request.path}"
if response_status:
message += f" -> {response_status}"
if duration_ms:
message += f" ({duration_ms:.2f}ms)"
logger.log(level, message, extra={"extra_data": log_data})
def log_security_event(
logger: logging.Logger,
event_type: str,
*,
message: str,
severity: str = "medium",
context: Optional[Dict[str, Any]] = None,
request=None,
) -> None:
"""
Log a security-related event.
Args:
logger: Logger instance
event_type: Type of security event
message: Event message
severity: Event severity (low, medium, high, critical)
context: Additional context data
request: Django request object
"""
log_data = {
"security_event": True,
"event_type": event_type,
"severity": severity,
"context": context or {},
}
if request:
log_data.update(
{
"request_path": getattr(request, "path", "unknown"),
"request_method": getattr(request, "method", "unknown"),
"user_id": (
getattr(request.user, "id", "anonymous")
if hasattr(request, "user")
else "unknown"
),
"remote_addr": request.META.get("REMOTE_ADDR", "unknown"),
"user_agent": request.META.get("HTTP_USER_AGENT", "unknown"),
}
)
# Use WARNING for medium/high, ERROR for critical
level = logging.ERROR if severity in ["high", "critical"] else logging.WARNING
logger.log(level, f"SECURITY: {message}", extra={"extra_data": log_data})

View File

@@ -0,0 +1 @@
# Django management commands

View File

@@ -0,0 +1 @@
# Django management commands

View File

@@ -0,0 +1,101 @@
"""
Django management command to run the development server.
This command automatically sets up the development environment and starts
the server, replacing the need for the dev_server.sh script.
"""
import subprocess
import sys
from django.core.management.base import BaseCommand
from django.core.management import execute_from_command_line
class Command(BaseCommand):
help = "Run the development server with automatic setup"
def add_arguments(self, parser):
parser.add_argument(
"--port",
type=str,
default="8000",
help="Port to run the server on (default: 8000)",
)
parser.add_argument(
"--host",
type=str,
default="0.0.0.0",
help="Host to bind the server to (default: 0.0.0.0)",
)
parser.add_argument(
"--skip-setup",
action="store_true",
help="Skip the development setup and go straight to running the server",
)
parser.add_argument(
"--use-runserver-plus",
action="store_true",
help="Use runserver_plus if available (from django-extensions)",
)
def handle(self, *args, **options):
"""Run the development setup and start the server."""
if not options["skip_setup"]:
self.stdout.write(
self.style.SUCCESS(
"🚀 Setting up and starting ThrillWiki Development Server..."
)
)
# Run the setup_dev command first
execute_from_command_line(["manage.py", "setup_dev"])
else:
self.stdout.write(
self.style.SUCCESS("🚀 Starting ThrillWiki Development Server...")
)
# Determine which server command to use
server_command = self.get_server_command(options)
# Start the server
self.stdout.write("")
self.stdout.write(
self.style.SUCCESS(
f'🌟 Starting Django development server on http://{options["host"]}:{options["port"]}'
)
)
self.stdout.write("Press Ctrl+C to stop the server")
self.stdout.write("")
try:
if options["use_runserver_plus"] or self.has_runserver_plus():
execute_from_command_line(
[
"manage.py",
"runserver_plus",
f'{options["host"]}:{options["port"]}',
]
)
else:
execute_from_command_line(
["manage.py", "runserver", f'{options["host"]}:{options["port"]}']
)
except KeyboardInterrupt:
self.stdout.write("")
self.stdout.write(self.style.SUCCESS("👋 Development server stopped"))
def get_server_command(self, options):
"""Determine which server command to use."""
if options["use_runserver_plus"] or self.has_runserver_plus():
return "runserver_plus"
return "runserver"
def has_runserver_plus(self):
"""Check if runserver_plus is available (django-extensions)."""
try:
import django_extensions
return True
except ImportError:
return False

View File

@@ -0,0 +1,226 @@
"""
Django management command to set up the development environment.
This command performs all the setup tasks that the dev_server.sh script does,
allowing the project to run without requiring the shell script.
"""
import os
import subprocess
import sys
from pathlib import Path
from django.core.management.base import BaseCommand
from django.core.management import execute_from_command_line
from django.conf import settings
class Command(BaseCommand):
help = "Set up the development environment"
def add_arguments(self, parser):
parser.add_argument(
"--skip-migrations",
action="store_true",
help="Skip running database migrations",
)
parser.add_argument(
"--skip-static",
action="store_true",
help="Skip collecting static files",
)
parser.add_argument(
"--skip-tailwind",
action="store_true",
help="Skip building Tailwind CSS",
)
parser.add_argument(
"--skip-superuser",
action="store_true",
help="Skip creating development superuser",
)
def handle(self, *args, **options):
"""Run the development setup process."""
self.stdout.write(
self.style.SUCCESS("🚀 Setting up ThrillWiki Development Environment...")
)
# Create necessary directories
self.create_directories()
# Run database migrations if needed
if not options["skip_migrations"]:
self.run_migrations()
# Seed sample data
self.seed_sample_data()
# Create superuser if it doesn't exist
if not options["skip_superuser"]:
self.create_superuser()
# Collect static files
if not options["skip_static"]:
self.collect_static()
# Build Tailwind CSS
if not options["skip_tailwind"]:
self.build_tailwind()
# Run system checks
self.run_system_checks()
# Display environment info
self.display_environment_info()
self.stdout.write(
self.style.SUCCESS("✅ Development environment setup complete!")
)
def create_directories(self):
"""Create necessary directories."""
self.stdout.write("📁 Creating necessary directories...")
directories = ["logs", "profiles", "media", "staticfiles", "static/css"]
for directory in directories:
dir_path = Path(settings.BASE_DIR) / directory
dir_path.mkdir(parents=True, exist_ok=True)
self.stdout.write(self.style.SUCCESS("✅ Directories created"))
def run_migrations(self):
"""Run database migrations if needed."""
self.stdout.write("🗄️ Checking database migrations...")
try:
# Check if migrations are up to date
result = subprocess.run(
[sys.executable, "manage.py", "migrate", "--check"],
capture_output=True,
text=True,
)
if result.returncode == 0:
self.stdout.write(
self.style.SUCCESS("✅ Database migrations are up to date")
)
else:
self.stdout.write("🔄 Running database migrations...")
subprocess.run(
[sys.executable, "manage.py", "migrate", "--noinput"], check=True
)
self.stdout.write(
self.style.SUCCESS("✅ Database migrations completed")
)
except subprocess.CalledProcessError as e:
self.stdout.write(
self.style.WARNING(f"⚠️ Migration error (continuing): {e}")
)
def seed_sample_data(self):
"""Seed sample data to the database."""
self.stdout.write("🌱 Seeding sample data...")
try:
subprocess.run(
[sys.executable, "manage.py", "seed_sample_data"], check=True
)
self.stdout.write(self.style.SUCCESS("✅ Sample data seeded"))
except subprocess.CalledProcessError:
self.stdout.write(
self.style.WARNING("⚠️ Could not seed sample data (continuing)")
)
def create_superuser(self):
"""Create development superuser if it doesn't exist."""
self.stdout.write("👤 Checking for superuser...")
try:
from django.contrib.auth import get_user_model
User = get_user_model()
if User.objects.filter(is_superuser=True).exists():
self.stdout.write(self.style.SUCCESS("✅ Superuser already exists"))
else:
self.stdout.write("👤 Creating development superuser (admin/admin)...")
if not User.objects.filter(username="admin").exists():
User.objects.create_superuser("admin", "admin@example.com", "admin")
self.stdout.write(
self.style.SUCCESS("✅ Created superuser: admin/admin")
)
else:
self.stdout.write(
self.style.SUCCESS("✅ Admin user already exists")
)
except Exception as e:
self.stdout.write(self.style.WARNING(f"⚠️ Could not create superuser: {e}"))
def collect_static(self):
"""Collect static files for development."""
self.stdout.write("📦 Collecting static files...")
try:
subprocess.run(
[sys.executable, "manage.py", "collectstatic", "--noinput", "--clear"],
check=True,
)
self.stdout.write(self.style.SUCCESS("✅ Static files collected"))
except subprocess.CalledProcessError as e:
self.stdout.write(
self.style.WARNING(f"⚠️ Could not collect static files: {e}")
)
def build_tailwind(self):
"""Build Tailwind CSS if npm is available."""
self.stdout.write("🎨 Building Tailwind CSS...")
try:
# Check if npm is available
subprocess.run(["npm", "--version"], capture_output=True, check=True)
# Build Tailwind CSS
subprocess.run(
[sys.executable, "manage.py", "tailwind", "build"], check=True
)
self.stdout.write(self.style.SUCCESS("✅ Tailwind CSS built"))
except (subprocess.CalledProcessError, FileNotFoundError):
self.stdout.write(
self.style.WARNING(
"⚠️ npm not found or Tailwind build failed, skipping"
)
)
def run_system_checks(self):
"""Run Django system checks."""
self.stdout.write("🔍 Running system checks...")
try:
subprocess.run([sys.executable, "manage.py", "check"], check=True)
self.stdout.write(self.style.SUCCESS("✅ System checks passed"))
except subprocess.CalledProcessError:
self.stdout.write(
self.style.WARNING("❌ System checks failed, but continuing...")
)
def display_environment_info(self):
"""Display development environment information."""
self.stdout.write("")
self.stdout.write(self.style.SUCCESS("🌍 Development Environment:"))
self.stdout.write(f" - Settings Module: {settings.SETTINGS_MODULE}")
self.stdout.write(f" - Debug Mode: {settings.DEBUG}")
self.stdout.write(" - Database: PostgreSQL with PostGIS")
self.stdout.write(" - Cache: Local memory cache")
self.stdout.write(" - Admin URL: http://localhost:8000/admin/")
self.stdout.write(" - Admin User: admin / admin")
self.stdout.write(" - Silk Profiler: http://localhost:8000/silk/")
self.stdout.write(" - Debug Toolbar: Available on debug pages")
self.stdout.write(" - API Documentation: http://localhost:8000/api/docs/")
self.stdout.write("")
self.stdout.write("🌟 Ready to start development server with:")
self.stdout.write(" python manage.py runserver")
self.stdout.write("")

View File

@@ -0,0 +1,35 @@
from django.core.management.base import BaseCommand
from django.core.cache import cache
from apps.parks.models import Park
from apps.rides.models import Ride
from apps.core.analytics import PageView
class Command(BaseCommand):
help = "Updates trending parks and rides cache based on views in the last 24 hours"
def handle(self, *args, **kwargs):
"""
Updates the trending parks and rides in the cache.
This command is designed to be run every hour via cron to keep the trending
items up to date. It looks at page views from the last 24 hours and caches
the top 10 most viewed parks and rides.
The cached data is used by the home page to display trending items without
having to query the database on every request.
"""
# Get top 10 trending parks and rides from the last 24 hours
trending_parks = PageView.get_trending_items(Park, hours=24, limit=10)
trending_rides = PageView.get_trending_items(Ride, hours=24, limit=10)
# Cache the results for 1 hour
cache.set("trending_parks", trending_parks, 3600) # 3600 seconds = 1 hour
cache.set("trending_rides", trending_rides, 3600)
self.stdout.write(
self.style.SUCCESS(
"Successfully updated trending parks and rides. "
"Cached 10 items each for parks and rides based on views in the last 24 hours."
)
)

View File

@@ -0,0 +1,273 @@
"""
Custom managers and QuerySets for optimized database patterns.
Following Django styleguide best practices for database access.
"""
from typing import Optional, List, Union
from django.db import models
from django.db.models import Q, Count, Avg, Max
from django.contrib.gis.geos import Point
from django.contrib.gis.measure import Distance
from django.utils import timezone
from datetime import timedelta
class BaseQuerySet(models.QuerySet):
"""Base QuerySet with common optimizations and patterns."""
def active(self):
"""Filter for active/enabled records."""
if hasattr(self.model, "is_active"):
return self.filter(is_active=True)
return self
def published(self):
"""Filter for published records."""
if hasattr(self.model, "is_published"):
return self.filter(is_published=True)
return self
def recent(self, *, days: int = 30):
"""Filter for recently created records."""
cutoff_date = timezone.now() - timedelta(days=days)
return self.filter(created_at__gte=cutoff_date)
def search(self, *, query: str, fields: Optional[List[str]] = None):
"""
Full-text search across specified fields.
Args:
query: Search query string
fields: List of field names to search (defaults to name, description)
"""
if not query:
return self
if fields is None:
fields = ["name", "description"] if hasattr(self.model, "name") else []
q_objects = Q()
for field in fields:
if hasattr(self.model, field):
q_objects |= Q(**{f"{field}__icontains": query})
return self.filter(q_objects) if q_objects else self
def with_stats(self):
"""Add basic statistics annotations."""
return self
def optimized_for_list(self):
"""Optimize queryset for list display."""
return self.select_related().prefetch_related()
def optimized_for_detail(self):
"""Optimize queryset for detail display."""
return self.select_related().prefetch_related()
class BaseManager(models.Manager):
"""Base manager with common patterns."""
def get_queryset(self):
return BaseQuerySet(self.model, using=self._db)
def active(self):
return self.get_queryset().active()
def published(self):
return self.get_queryset().published()
def recent(self, *, days: int = 30):
return self.get_queryset().recent(days=days)
def search(self, *, query: str, fields: Optional[List[str]] = None):
return self.get_queryset().search(query=query, fields=fields)
class LocationQuerySet(BaseQuerySet):
"""QuerySet for location-based models with geographic functionality."""
def near_point(self, *, point: Point, distance_km: float = 50):
"""Filter locations near a geographic point."""
if hasattr(self.model, "point"):
return (
self.filter(point__distance_lte=(point, Distance(km=distance_km)))
.distance(point)
.order_by("distance")
)
return self
def within_bounds(self, *, north: float, south: float, east: float, west: float):
"""Filter locations within geographic bounds."""
if hasattr(self.model, "point"):
return self.filter(
point__latitude__gte=south,
point__latitude__lte=north,
point__longitude__gte=west,
point__longitude__lte=east,
)
return self
def by_country(self, *, country: str):
"""Filter by country."""
if hasattr(self.model, "country"):
return self.filter(country__iexact=country)
return self
def by_region(self, *, state: str):
"""Filter by state/region."""
if hasattr(self.model, "state"):
return self.filter(state__iexact=state)
return self
def by_city(self, *, city: str):
"""Filter by city."""
if hasattr(self.model, "city"):
return self.filter(city__iexact=city)
return self
class LocationManager(BaseManager):
"""Manager for location-based models."""
def get_queryset(self):
return LocationQuerySet(self.model, using=self._db)
def near_point(self, *, point: Point, distance_km: float = 50):
return self.get_queryset().near_point(point=point, distance_km=distance_km)
def within_bounds(self, *, north: float, south: float, east: float, west: float):
return self.get_queryset().within_bounds(
north=north, south=south, east=east, west=west
)
class ReviewableQuerySet(BaseQuerySet):
"""QuerySet for models that can be reviewed."""
def with_review_stats(self):
"""Add review statistics annotations."""
return self.annotate(
review_count=Count("reviews", filter=Q(reviews__is_published=True)),
average_rating=Avg("reviews__rating", filter=Q(reviews__is_published=True)),
latest_review_date=Max(
"reviews__created_at", filter=Q(reviews__is_published=True)
),
)
def highly_rated(self, *, min_rating: float = 8.0):
"""Filter for highly rated items."""
return self.with_review_stats().filter(average_rating__gte=min_rating)
def recently_reviewed(self, *, days: int = 30):
"""Filter for items with recent reviews."""
cutoff_date = timezone.now() - timedelta(days=days)
return self.filter(
reviews__created_at__gte=cutoff_date, reviews__is_published=True
).distinct()
class ReviewableManager(BaseManager):
"""Manager for reviewable models."""
def get_queryset(self):
return ReviewableQuerySet(self.model, using=self._db)
def with_review_stats(self):
return self.get_queryset().with_review_stats()
def highly_rated(self, *, min_rating: float = 8.0):
return self.get_queryset().highly_rated(min_rating=min_rating)
class HierarchicalQuerySet(BaseQuerySet):
"""QuerySet for hierarchical models (with parent/child relationships)."""
def root_level(self):
"""Filter for root-level items (no parent)."""
if hasattr(self.model, "parent"):
return self.filter(parent__isnull=True)
return self
def children_of(self, *, parent_id: int):
"""Get children of a specific parent."""
if hasattr(self.model, "parent"):
return self.filter(parent_id=parent_id)
return self
def with_children_count(self):
"""Add count of children."""
if hasattr(self.model, "children"):
return self.annotate(children_count=Count("children"))
return self
class HierarchicalManager(BaseManager):
"""Manager for hierarchical models."""
def get_queryset(self):
return HierarchicalQuerySet(self.model, using=self._db)
def root_level(self):
return self.get_queryset().root_level()
class TimestampedQuerySet(BaseQuerySet):
"""QuerySet for models with created_at/updated_at timestamps."""
def created_between(self, *, start_date, end_date):
"""Filter by creation date range."""
return self.filter(created_at__date__range=[start_date, end_date])
def updated_since(self, *, since_date):
"""Filter for records updated since a date."""
return self.filter(updated_at__gte=since_date)
def by_creation_date(self, *, descending: bool = True):
"""Order by creation date."""
order = "-created_at" if descending else "created_at"
return self.order_by(order)
class TimestampedManager(BaseManager):
"""Manager for timestamped models."""
def get_queryset(self):
return TimestampedQuerySet(self.model, using=self._db)
def created_between(self, *, start_date, end_date):
return self.get_queryset().created_between(
start_date=start_date, end_date=end_date
)
class StatusQuerySet(BaseQuerySet):
"""QuerySet for models with status fields."""
def with_status(self, *, status: Union[str, List[str]]):
"""Filter by status."""
if isinstance(status, list):
return self.filter(status__in=status)
return self.filter(status=status)
def operating(self):
"""Filter for operating/active status."""
return self.filter(status="OPERATING")
def closed(self):
"""Filter for closed status."""
return self.filter(status__in=["CLOSED_TEMP", "CLOSED_PERM"])
class StatusManager(BaseManager):
"""Manager for status-based models."""
def get_queryset(self):
return StatusQuerySet(self.model, using=self._db)
def operating(self):
return self.get_queryset().operating()
def closed(self):
return self.get_queryset().closed()

View File

@@ -0,0 +1,22 @@
# Core middleware modules
# Import middleware classes from the analytics module
from .analytics import PageViewMiddleware, PgHistoryContextMiddleware
# Import middleware classes from the performance_middleware.py module
from .performance_middleware import (
PerformanceMiddleware,
QueryCountMiddleware,
DatabaseConnectionMiddleware,
CachePerformanceMiddleware,
)
# Make all middleware classes available at the package level
__all__ = [
"PageViewMiddleware",
"PgHistoryContextMiddleware",
"PerformanceMiddleware",
"QueryCountMiddleware",
"DatabaseConnectionMiddleware",
"CachePerformanceMiddleware",
]

View File

@@ -0,0 +1,84 @@
"""
Analytics and tracking middleware for Django application.
"""
import pghistory
from django.contrib.auth.models import AnonymousUser
from django.core.handlers.wsgi import WSGIRequest
from django.utils.deprecation import MiddlewareMixin
from django.contrib.contenttypes.models import ContentType
from django.views.generic.detail import DetailView
from apps.core.analytics import PageView
class RequestContextProvider(pghistory.context):
"""Custom context provider for pghistory that extracts information from the request."""
def __call__(self, request: WSGIRequest) -> dict:
return {
"user": (
str(request.user)
if request.user and not isinstance(request.user, AnonymousUser)
else None
),
"ip": request.META.get("REMOTE_ADDR"),
"user_agent": request.META.get("HTTP_USER_AGENT"),
"session_key": (
request.session.session_key if hasattr(request, "session") else None
),
}
# Initialize the context provider
request_context = RequestContextProvider()
class PgHistoryContextMiddleware:
"""
Middleware that ensures request object is available to pghistory context.
"""
def __init__(self, get_response):
self.get_response = get_response
def __call__(self, request):
response = self.get_response(request)
return response
class PageViewMiddleware(MiddlewareMixin):
"""Middleware to track page views for DetailView-based pages."""
def process_view(self, request, view_func, view_args, view_kwargs):
# Only track GET requests
if request.method != "GET":
return None
# Get view class if it exists
view_class = getattr(view_func, "view_class", None)
if not view_class or not issubclass(view_class, DetailView):
return None
# Get the object if it's a detail view
try:
view_instance = view_class()
view_instance.request = request
view_instance.args = view_args
view_instance.kwargs = view_kwargs
obj = view_instance.get_object()
except (AttributeError, Exception):
return None
# Record the page view
try:
PageView.objects.create(
content_type=ContentType.objects.get_for_model(obj.__class__),
object_id=obj.pk,
ip_address=request.META.get("REMOTE_ADDR", ""),
user_agent=request.META.get("HTTP_USER_AGENT", "")[:512],
)
except Exception:
# Fail silently to not interrupt the request
pass
return None

View File

@@ -0,0 +1,317 @@
"""
Performance monitoring middleware for tracking request metrics.
"""
import time
import logging
from django.db import connection
from django.utils.deprecation import MiddlewareMixin
from django.conf import settings
performance_logger = logging.getLogger("performance")
logger = logging.getLogger(__name__)
class PerformanceMiddleware(MiddlewareMixin):
"""Middleware to collect performance metrics for each request"""
def process_request(self, request):
"""Initialize performance tracking for the request"""
request._performance_start_time = time.time()
request._performance_initial_queries = (
len(connection.queries) if hasattr(connection, "queries") else 0
)
return None
def process_response(self, request, response):
"""Log performance metrics after response is ready"""
# Skip performance tracking for certain paths
skip_paths = [
"/health/",
"/admin/jsi18n/",
"/static/",
"/media/",
"/__debug__/",
]
if any(request.path.startswith(path) for path in skip_paths):
return response
# Calculate metrics
end_time = time.time()
start_time = getattr(request, "_performance_start_time", end_time)
duration = end_time - start_time
initial_queries = getattr(request, "_performance_initial_queries", 0)
total_queries = (
len(connection.queries) - initial_queries
if hasattr(connection, "queries")
else 0
)
# Get content length
content_length = 0
if hasattr(response, "content"):
content_length = len(response.content)
elif hasattr(response, "streaming_content"):
# For streaming responses, we can't easily measure content length
content_length = -1
# Build performance data
performance_data = {
"path": request.path,
"method": request.method,
"status_code": response.status_code,
"duration_ms": round(duration * 1000, 2),
"duration_seconds": round(duration, 3),
"query_count": total_queries,
"content_length_bytes": content_length,
"user_id": (
getattr(request.user, "id", None)
if hasattr(request, "user") and request.user.is_authenticated
else None
),
"user_agent": request.META.get("HTTP_USER_AGENT", "")[
:100
], # Truncate user agent
"remote_addr": self._get_client_ip(request),
}
# Add query details in debug mode
if settings.DEBUG and hasattr(connection, "queries") and total_queries > 0:
recent_queries = connection.queries[-total_queries:]
performance_data["queries"] = [
{
"sql": (
query["sql"][:200] + "..."
if len(query["sql"]) > 200
else query["sql"]
),
"time": float(query["time"]),
}
for query in recent_queries[-10:] # Last 10 queries only
]
# Identify slow queries
slow_queries = [q for q in recent_queries if float(q["time"]) > 0.1]
if slow_queries:
performance_data["slow_query_count"] = len(slow_queries)
performance_data["slowest_query_time"] = max(
float(q["time"]) for q in slow_queries
)
# Determine log level based on performance
log_level = self._get_log_level(duration, total_queries, response.status_code)
# Log the performance data
performance_logger.log(
log_level,
f"Request performance: {request.method} {request.path} - "
f"{duration:.3f}s, {total_queries} queries, {response.status_code}",
extra=performance_data,
)
# Add performance headers for debugging (only in debug mode)
if settings.DEBUG:
response["X-Response-Time"] = f"{duration * 1000:.2f}ms"
response["X-Query-Count"] = str(total_queries)
if total_queries > 0 and hasattr(connection, "queries"):
total_query_time = sum(
float(q["time"]) for q in connection.queries[-total_queries:]
)
response["X-Query-Time"] = f"{total_query_time * 1000:.2f}ms"
return response
def process_exception(self, request, exception):
"""Log performance data even when an exception occurs"""
end_time = time.time()
start_time = getattr(request, "_performance_start_time", end_time)
duration = end_time - start_time
initial_queries = getattr(request, "_performance_initial_queries", 0)
total_queries = (
len(connection.queries) - initial_queries
if hasattr(connection, "queries")
else 0
)
performance_data = {
"path": request.path,
"method": request.method,
"status_code": 500, # Exception occurred
"duration_ms": round(duration * 1000, 2),
"query_count": total_queries,
"exception": str(exception),
"exception_type": type(exception).__name__,
"user_id": (
getattr(request.user, "id", None)
if hasattr(request, "user") and request.user.is_authenticated
else None
),
}
performance_logger.error(
f"Request exception: {
request.method} {
request.path} - "
f"{
duration:.3f}s, {total_queries} queries, {
type(exception).__name__}: {exception}",
extra=performance_data,
)
return None # Don't handle the exception, just log it
def _get_client_ip(self, request):
"""Extract client IP address from request"""
x_forwarded_for = request.META.get("HTTP_X_FORWARDED_FOR")
if x_forwarded_for:
ip = x_forwarded_for.split(",")[0].strip()
else:
ip = request.META.get("REMOTE_ADDR", "")
return ip
def _get_log_level(self, duration, query_count, status_code):
"""Determine appropriate log level based on performance metrics"""
# Error responses
if status_code >= 500:
return logging.ERROR
elif status_code >= 400:
return logging.WARNING
# Performance-based log levels
if duration > 5.0: # Very slow requests
return logging.ERROR
elif duration > 2.0 or query_count > 20: # Slow requests or high query count
return logging.WARNING
elif duration > 1.0 or query_count > 10: # Moderately slow
return logging.INFO
else:
return logging.DEBUG
class QueryCountMiddleware(MiddlewareMixin):
"""Middleware to track and limit query counts per request"""
def __init__(self, get_response):
self.get_response = get_response
self.query_limit = getattr(settings, "MAX_QUERIES_PER_REQUEST", 50)
super().__init__(get_response)
def process_request(self, request):
"""Initialize query tracking"""
request._query_count_start = (
len(connection.queries) if hasattr(connection, "queries") else 0
)
return None
def process_response(self, request, response):
"""Check query count and warn if excessive"""
if not hasattr(connection, "queries"):
return response
start_count = getattr(request, "_query_count_start", 0)
current_count = len(connection.queries)
request_query_count = current_count - start_count
if request_query_count > self.query_limit:
logger.warning(
f"Excessive query count: {
request.path} executed {request_query_count} queries "
f"(limit: {
self.query_limit})",
extra={
"path": request.path,
"method": request.method,
"query_count": request_query_count,
"query_limit": self.query_limit,
"excessive_queries": True,
},
)
return response
class DatabaseConnectionMiddleware(MiddlewareMixin):
"""Middleware to monitor database connection health"""
def process_request(self, request):
"""Check database connection at start of request"""
try:
# Simple connection test
from django.db import connection
with connection.cursor() as cursor:
cursor.execute("SELECT 1")
cursor.fetchone()
except Exception as e:
logger.error(
f"Database connection failed at request start: {e}",
extra={
"path": request.path,
"method": request.method,
"database_error": str(e),
},
)
# Don't block the request, let Django handle the database error
return None
def process_response(self, request, response):
"""Close database connections properly"""
try:
from django.db import connection
connection.close()
except Exception as e:
logger.warning(f"Error closing database connection: {e}")
return response
class CachePerformanceMiddleware(MiddlewareMixin):
"""Middleware to monitor cache performance"""
def process_request(self, request):
"""Initialize cache performance tracking"""
request._cache_hits = 0
request._cache_misses = 0
request._cache_start_time = time.time()
return None
def process_response(self, request, response):
"""Log cache performance metrics"""
cache_duration = time.time() - getattr(
request, "_cache_start_time", time.time()
)
cache_hits = getattr(request, "_cache_hits", 0)
cache_misses = getattr(request, "_cache_misses", 0)
if cache_hits + cache_misses > 0:
hit_rate = (cache_hits / (cache_hits + cache_misses)) * 100
cache_data = {
"path": request.path,
"cache_hits": cache_hits,
"cache_misses": cache_misses,
"cache_hit_rate": round(hit_rate, 2),
"cache_operations": cache_hits + cache_misses,
# milliseconds
"cache_duration": round(cache_duration * 1000, 2),
}
# Log cache performance
if hit_rate < 50 and cache_hits + cache_misses > 5:
logger.warning(
f"Low cache hit rate for {request.path}: {hit_rate:.1f}%",
extra=cache_data,
)
else:
logger.debug(
f"Cache performance for {
request.path}: {
hit_rate:.1f}% hit rate",
extra=cache_data,
)
return response

View File

@@ -0,0 +1,54 @@
# Generated by Django 5.1.4 on 2025-08-13 21:35
import django.db.models.deletion
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
("contenttypes", "0002_remove_content_type_name"),
]
operations = [
migrations.CreateModel(
name="SlugHistory",
fields=[
(
"id",
models.BigAutoField(
auto_created=True,
primary_key=True,
serialize=False,
verbose_name="ID",
),
),
("object_id", models.CharField(max_length=50)),
("old_slug", models.SlugField(max_length=200)),
("created_at", models.DateTimeField(auto_now_add=True)),
(
"content_type",
models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
to="contenttypes.contenttype",
),
),
],
options={
"verbose_name_plural": "Slug histories",
"ordering": ["-created_at"],
"indexes": [
models.Index(
fields=["content_type", "object_id"],
name="core_slughi_content_8bbf56_idx",
),
models.Index(
fields=["old_slug"],
name="core_slughi_old_slu_aaef7f_idx",
),
],
},
),
]

View File

@@ -0,0 +1,102 @@
# Generated by Django 5.1.4 on 2025-08-14 14:50
import django.db.models.deletion
from django.conf import settings
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
("contenttypes", "0002_remove_content_type_name"),
("core", "0001_initial"),
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name="HistoricalSlug",
fields=[
(
"id",
models.BigAutoField(
auto_created=True,
primary_key=True,
serialize=False,
verbose_name="ID",
),
),
("object_id", models.PositiveIntegerField()),
("slug", models.SlugField(max_length=255)),
("created_at", models.DateTimeField(auto_now_add=True)),
(
"content_type",
models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
to="contenttypes.contenttype",
),
),
(
"user",
models.ForeignKey(
blank=True,
null=True,
on_delete=django.db.models.deletion.SET_NULL,
related_name="historical_slugs",
to=settings.AUTH_USER_MODEL,
),
),
],
options={
"indexes": [
models.Index(
fields=["content_type", "object_id"],
name="core_histor_content_b4c470_idx",
),
models.Index(fields=["slug"], name="core_histor_slug_8fd7b3_idx"),
],
"unique_together": {("content_type", "slug")},
},
),
migrations.CreateModel(
name="PageView",
fields=[
(
"id",
models.BigAutoField(
auto_created=True,
primary_key=True,
serialize=False,
verbose_name="ID",
),
),
("object_id", models.PositiveIntegerField()),
(
"timestamp",
models.DateTimeField(auto_now_add=True, db_index=True),
),
("ip_address", models.GenericIPAddressField()),
("user_agent", models.CharField(blank=True, max_length=512)),
(
"content_type",
models.ForeignKey(
on_delete=django.db.models.deletion.CASCADE,
related_name="page_views",
to="contenttypes.contenttype",
),
),
],
options={
"indexes": [
models.Index(
fields=["timestamp"],
name="core_pagevi_timesta_757ebb_idx",
),
models.Index(
fields=["content_type", "object_id"],
name="core_pagevi_content_eda7ad_idx",
),
],
},
),
]

View File

View File

@@ -0,0 +1,19 @@
from django.views.generic.list import MultipleObjectMixin
class HTMXFilterableMixin(MultipleObjectMixin):
"""
A mixin that provides filtering capabilities for HTMX requests.
"""
filter_class = None
def get_queryset(self):
queryset = super().get_queryset()
self.filterset = self.filter_class(self.request.GET, queryset=queryset)
return self.filterset.qs
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context["filter"] = self.filterset
return context

113
backend/apps/core/models.py Normal file
View File

@@ -0,0 +1,113 @@
from django.db import models
from django.contrib.contenttypes.fields import GenericForeignKey
from django.contrib.contenttypes.models import ContentType
from django.utils.text import slugify
from apps.core.history import TrackedModel
class SlugHistory(models.Model):
"""
Model for tracking slug changes across all models that use slugs.
Uses generic relations to work with any model.
"""
content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE)
object_id = models.CharField(
max_length=50
) # Using CharField to work with our custom IDs
content_object = GenericForeignKey("content_type", "object_id")
old_slug = models.SlugField(max_length=200)
created_at = models.DateTimeField(auto_now_add=True)
class Meta:
indexes = [
models.Index(fields=["content_type", "object_id"]),
models.Index(fields=["old_slug"]),
]
verbose_name_plural = "Slug histories"
ordering = ["-created_at"]
def __str__(self):
return f"Old slug '{self.old_slug}' for {self.content_object}"
class SluggedModel(TrackedModel):
"""
Abstract base model that provides slug functionality with history tracking.
"""
name = models.CharField(max_length=200)
slug = models.SlugField(max_length=200, unique=True)
class Meta:
abstract = True
def save(self, *args, **kwargs):
# Get the current instance from DB if it exists
if self.pk:
try:
old_instance = self.__class__.objects.get(pk=self.pk)
# If slug has changed, save the old one to history
if old_instance.slug != self.slug:
SlugHistory.objects.create(
content_type=ContentType.objects.get_for_model(self),
object_id=getattr(self, self.get_id_field_name()),
old_slug=old_instance.slug,
)
except self.__class__.DoesNotExist:
pass
# Generate slug if not set
if not self.slug:
self.slug = slugify(self.name)
super().save(*args, **kwargs)
def get_id_field_name(self):
"""
Returns the name of the read-only ID field for this model.
Should be overridden by subclasses.
"""
raise NotImplementedError(
"Subclasses of SluggedModel must implement get_id_field_name()"
)
@classmethod
def get_by_slug(cls, slug):
"""
Get an object by its current or historical slug.
Returns (object, is_old_slug) tuple.
"""
try:
# Try to get by current slug first
return cls.objects.get(slug=slug), False
except cls.DoesNotExist:
# Check pghistory first
history_model = cls.get_history_model()
history_entry = (
history_model.objects.filter(slug=slug)
.order_by("-pgh_created_at")
.first()
)
if history_entry:
return cls.objects.get(id=history_entry.pgh_obj_id), True
# Try to find in manual slug history as fallback
history = (
SlugHistory.objects.filter(
content_type=ContentType.objects.get_for_model(cls),
old_slug=slug,
)
.order_by("-created_at")
.first()
)
if history:
return (
cls.objects.get(**{cls.get_id_field_name(): history.object_id}),
True,
)
raise cls.DoesNotExist(f"{cls.__name__} with slug '{slug}' does not exist")

View File

@@ -0,0 +1,322 @@
"""
Selectors for core functionality including map services and analytics.
Following Django styleguide pattern for separating data access from business logic.
"""
from typing import Optional, Dict, Any, List
from django.db.models import QuerySet, Q, Count
from django.contrib.gis.geos import Point, Polygon
from django.contrib.gis.measure import Distance
from django.utils import timezone
from datetime import timedelta
from .analytics import PageView
from apps.parks.models import Park
from apps.rides.models import Ride
def unified_locations_for_map(
*,
bounds: Optional[Polygon] = None,
location_types: Optional[List[str]] = None,
filters: Optional[Dict[str, Any]] = None,
) -> Dict[str, QuerySet]:
"""
Get unified location data for map display across all location types.
Args:
bounds: Geographic boundary polygon
location_types: List of location types to include ('park', 'ride')
filters: Additional filter parameters
Returns:
Dictionary containing querysets for each location type
"""
results = {}
# Default to all location types if none specified
if not location_types:
location_types = ["park", "ride"]
# Parks
if "park" in location_types:
park_queryset = (
Park.objects.select_related("operator")
.prefetch_related("location")
.annotate(ride_count_calculated=Count("rides"))
)
if bounds:
park_queryset = park_queryset.filter(location__coordinates__within=bounds)
if filters:
if "status" in filters:
park_queryset = park_queryset.filter(status=filters["status"])
if "operator" in filters:
park_queryset = park_queryset.filter(operator=filters["operator"])
results["parks"] = park_queryset.order_by("name")
# Rides
if "ride" in location_types:
ride_queryset = Ride.objects.select_related(
"park", "manufacturer"
).prefetch_related("park__location", "location")
if bounds:
ride_queryset = ride_queryset.filter(
Q(location__coordinates__within=bounds)
| Q(park__location__coordinates__within=bounds)
)
if filters:
if "category" in filters:
ride_queryset = ride_queryset.filter(category=filters["category"])
if "manufacturer" in filters:
ride_queryset = ride_queryset.filter(
manufacturer=filters["manufacturer"]
)
if "park" in filters:
ride_queryset = ride_queryset.filter(park=filters["park"])
results["rides"] = ride_queryset.order_by("park__name", "name")
return results
def locations_near_point(
*,
point: Point,
distance_km: float = 50,
location_types: Optional[List[str]] = None,
limit: int = 20,
) -> Dict[str, QuerySet]:
"""
Get locations near a specific geographic point across all types.
Args:
point: Geographic point (longitude, latitude)
distance_km: Maximum distance in kilometers
location_types: List of location types to include
limit: Maximum number of results per type
Returns:
Dictionary containing nearby locations by type
"""
results = {}
if not location_types:
location_types = ["park", "ride"]
# Parks near point
if "park" in location_types:
results["parks"] = (
Park.objects.filter(
location__coordinates__distance_lte=(
point,
Distance(km=distance_km),
)
)
.select_related("operator")
.prefetch_related("location")
.distance(point)
.order_by("distance")[:limit]
)
# Rides near point
if "ride" in location_types:
results["rides"] = (
Ride.objects.filter(
Q(
location__coordinates__distance_lte=(
point,
Distance(km=distance_km),
)
)
| Q(
park__location__coordinates__distance_lte=(
point,
Distance(km=distance_km),
)
)
)
.select_related("park", "manufacturer")
.prefetch_related("park__location")
.distance(point)
.order_by("distance")[:limit]
)
return results
def search_all_locations(*, query: str, limit: int = 20) -> Dict[str, QuerySet]:
"""
Search across all location types for a query string.
Args:
query: Search string
limit: Maximum results per type
Returns:
Dictionary containing search results by type
"""
results = {}
# Search parks
results["parks"] = (
Park.objects.filter(
Q(name__icontains=query)
| Q(description__icontains=query)
| Q(location__city__icontains=query)
| Q(location__region__icontains=query)
)
.select_related("operator")
.prefetch_related("location")
.order_by("name")[:limit]
)
# Search rides
results["rides"] = (
Ride.objects.filter(
Q(name__icontains=query)
| Q(description__icontains=query)
| Q(park__name__icontains=query)
| Q(manufacturer__name__icontains=query)
)
.select_related("park", "manufacturer")
.prefetch_related("park__location")
.order_by("park__name", "name")[:limit]
)
return results
def page_views_for_analytics(
*,
start_date: Optional[timezone.datetime] = None,
end_date: Optional[timezone.datetime] = None,
path_pattern: Optional[str] = None,
) -> QuerySet[PageView]:
"""
Get page views for analytics with optional filtering.
Args:
start_date: Start date for filtering
end_date: End date for filtering
path_pattern: URL path pattern to filter by
Returns:
QuerySet of page views
"""
queryset = PageView.objects.all()
if start_date:
queryset = queryset.filter(timestamp__gte=start_date)
if end_date:
queryset = queryset.filter(timestamp__lte=end_date)
if path_pattern:
queryset = queryset.filter(path__icontains=path_pattern)
return queryset.order_by("-timestamp")
def popular_pages_summary(*, days: int = 30) -> Dict[str, Any]:
"""
Get summary of most popular pages in the last N days.
Args:
days: Number of days to analyze
Returns:
Dictionary containing popular pages statistics
"""
cutoff_date = timezone.now() - timedelta(days=days)
# Most viewed pages
popular_pages = (
PageView.objects.filter(timestamp__gte=cutoff_date)
.values("path")
.annotate(view_count=Count("id"))
.order_by("-view_count")[:10]
)
# Total page views
total_views = PageView.objects.filter(timestamp__gte=cutoff_date).count()
# Unique visitors (based on IP)
unique_visitors = (
PageView.objects.filter(timestamp__gte=cutoff_date)
.values("ip_address")
.distinct()
.count()
)
return {
"popular_pages": list(popular_pages),
"total_views": total_views,
"unique_visitors": unique_visitors,
"period_days": days,
}
def geographic_distribution_summary() -> Dict[str, Any]:
"""
Get geographic distribution statistics for all locations.
Returns:
Dictionary containing geographic statistics
"""
# Parks by country
parks_by_country = (
Park.objects.filter(location__country__isnull=False)
.values("location__country")
.annotate(count=Count("id"))
.order_by("-count")
)
# Rides by country (through park location)
rides_by_country = (
Ride.objects.filter(park__location__country__isnull=False)
.values("park__location__country")
.annotate(count=Count("id"))
.order_by("-count")
)
return {
"parks_by_country": list(parks_by_country),
"rides_by_country": list(rides_by_country),
}
def system_health_metrics() -> Dict[str, Any]:
"""
Get system health and activity metrics.
Returns:
Dictionary containing system health statistics
"""
now = timezone.now()
last_24h = now - timedelta(hours=24)
last_7d = now - timedelta(days=7)
return {
"total_parks": Park.objects.count(),
"operating_parks": Park.objects.filter(status="OPERATING").count(),
"total_rides": Ride.objects.count(),
"page_views_24h": PageView.objects.filter(timestamp__gte=last_24h).count(),
"page_views_7d": PageView.objects.filter(timestamp__gte=last_7d).count(),
"data_freshness": {
"latest_park_update": (
Park.objects.order_by("-updated_at").first().updated_at
if Park.objects.exists()
else None
),
"latest_ride_update": (
Ride.objects.order_by("-updated_at").first().updated_at
if Ride.objects.exists()
else None
),
},
}

View File

@@ -0,0 +1,27 @@
"""
Core services for ThrillWiki unified map functionality.
"""
from .map_service import UnifiedMapService
from .clustering_service import ClusteringService
from .map_cache_service import MapCacheService
from .data_structures import (
UnifiedLocation,
LocationType,
GeoBounds,
MapFilters,
MapResponse,
ClusterData,
)
__all__ = [
"UnifiedMapService",
"ClusteringService",
"MapCacheService",
"UnifiedLocation",
"LocationType",
"GeoBounds",
"MapFilters",
"MapResponse",
"ClusterData",
]

View File

@@ -0,0 +1,365 @@
"""
Clustering service for map locations to improve performance and user experience.
"""
import math
from typing import List, Tuple, Dict, Any, Optional
from dataclasses import dataclass
from collections import defaultdict
from .data_structures import (
UnifiedLocation,
ClusterData,
GeoBounds,
LocationType,
)
@dataclass
class ClusterPoint:
"""Internal representation of a point for clustering."""
location: UnifiedLocation
x: float # Projected x coordinate
y: float # Projected y coordinate
class ClusteringService:
"""
Handles location clustering for map display using a simple grid-based approach
with zoom-level dependent clustering radius.
"""
# Clustering configuration
DEFAULT_RADIUS = 40 # pixels
MIN_POINTS_TO_CLUSTER = 2
MAX_ZOOM_FOR_CLUSTERING = 15
MIN_ZOOM_FOR_CLUSTERING = 3
# Zoom level configurations
ZOOM_CONFIGS = {
3: {"radius": 80, "min_points": 5}, # World level
4: {"radius": 70, "min_points": 4}, # Continent level
5: {"radius": 60, "min_points": 3}, # Country level
6: {"radius": 50, "min_points": 3}, # Large region level
7: {"radius": 45, "min_points": 2}, # Region level
8: {"radius": 40, "min_points": 2}, # State level
9: {"radius": 35, "min_points": 2}, # Metro area level
10: {"radius": 30, "min_points": 2}, # City level
11: {"radius": 25, "min_points": 2}, # District level
12: {"radius": 20, "min_points": 2}, # Neighborhood level
13: {"radius": 15, "min_points": 2}, # Block level
14: {"radius": 10, "min_points": 2}, # Street level
15: {"radius": 5, "min_points": 2}, # Building level
}
def __init__(self):
self.cluster_id_counter = 0
def should_cluster(self, zoom_level: int, point_count: int) -> bool:
"""Determine if clustering should be applied based on zoom level and point count."""
if zoom_level > self.MAX_ZOOM_FOR_CLUSTERING:
return False
if zoom_level < self.MIN_ZOOM_FOR_CLUSTERING:
return True
config = self.ZOOM_CONFIGS.get(
zoom_level, {"min_points": self.MIN_POINTS_TO_CLUSTER}
)
return point_count >= config["min_points"]
def cluster_locations(
self,
locations: List[UnifiedLocation],
zoom_level: int,
bounds: Optional[GeoBounds] = None,
) -> Tuple[List[UnifiedLocation], List[ClusterData]]:
"""
Cluster locations based on zoom level and density.
Returns (unclustered_locations, clusters).
"""
if not locations or not self.should_cluster(zoom_level, len(locations)):
return locations, []
# Convert locations to projected coordinates for clustering
cluster_points = self._project_locations(locations, bounds)
# Get clustering configuration for zoom level
config = self.ZOOM_CONFIGS.get(
zoom_level,
{
"radius": self.DEFAULT_RADIUS,
"min_points": self.MIN_POINTS_TO_CLUSTER,
},
)
# Perform clustering
clustered_groups = self._cluster_points(
cluster_points, config["radius"], config["min_points"]
)
# Separate individual locations from clusters
unclustered_locations = []
clusters = []
for group in clustered_groups:
if len(group) < config["min_points"]:
# Add individual locations
unclustered_locations.extend([cp.location for cp in group])
else:
# Create cluster
cluster = self._create_cluster(group)
clusters.append(cluster)
return unclustered_locations, clusters
def _project_locations(
self,
locations: List[UnifiedLocation],
bounds: Optional[GeoBounds] = None,
) -> List[ClusterPoint]:
"""Convert lat/lng coordinates to projected x/y for clustering calculations."""
cluster_points = []
# Use bounds or calculate from locations
if not bounds:
lats = [loc.latitude for loc in locations]
lngs = [loc.longitude for loc in locations]
bounds = GeoBounds(
north=max(lats),
south=min(lats),
east=max(lngs),
west=min(lngs),
)
# Simple equirectangular projection (good enough for clustering)
center_lat = (bounds.north + bounds.south) / 2
lat_scale = 111320 # meters per degree latitude
lng_scale = 111320 * math.cos(
math.radians(center_lat)
) # meters per degree longitude
for location in locations:
# Convert to meters relative to bounds center
x = (location.longitude - (bounds.west + bounds.east) / 2) * lng_scale
y = (location.latitude - (bounds.north + bounds.south) / 2) * lat_scale
cluster_points.append(ClusterPoint(location=location, x=x, y=y))
return cluster_points
def _cluster_points(
self, points: List[ClusterPoint], radius_pixels: int, min_points: int
) -> List[List[ClusterPoint]]:
"""
Cluster points using a simple distance-based approach.
Radius is in pixels, converted to meters based on zoom level.
"""
# Convert pixel radius to meters (rough approximation)
# At zoom level 10, 1 pixel ≈ 150 meters
radius_meters = radius_pixels * 150
clustered = [False] * len(points)
clusters = []
for i, point in enumerate(points):
if clustered[i]:
continue
# Find all points within radius
cluster_group = [point]
clustered[i] = True
for j, other_point in enumerate(points):
if i == j or clustered[j]:
continue
distance = self._calculate_distance(point, other_point)
if distance <= radius_meters:
cluster_group.append(other_point)
clustered[j] = True
clusters.append(cluster_group)
return clusters
def _calculate_distance(self, point1: ClusterPoint, point2: ClusterPoint) -> float:
"""Calculate Euclidean distance between two projected points in meters."""
dx = point1.x - point2.x
dy = point1.y - point2.y
return math.sqrt(dx * dx + dy * dy)
def _create_cluster(self, cluster_points: List[ClusterPoint]) -> ClusterData:
"""Create a ClusterData object from a group of points."""
locations = [cp.location for cp in cluster_points]
# Calculate cluster center (average position)
avg_lat = sum(loc.latitude for loc in locations) / len(locations)
avg_lng = sum(loc.longitude for loc in locations) / len(locations)
# Calculate cluster bounds
lats = [loc.latitude for loc in locations]
lngs = [loc.longitude for loc in locations]
cluster_bounds = GeoBounds(
north=max(lats), south=min(lats), east=max(lngs), west=min(lngs)
)
# Collect location types in cluster
types = set(loc.type for loc in locations)
# Select representative location (highest weight)
representative = self._select_representative_location(locations)
# Generate cluster ID
self.cluster_id_counter += 1
cluster_id = f"cluster_{self.cluster_id_counter}"
return ClusterData(
id=cluster_id,
coordinates=(avg_lat, avg_lng),
count=len(locations),
types=types,
bounds=cluster_bounds,
representative_location=representative,
)
def _select_representative_location(
self, locations: List[UnifiedLocation]
) -> Optional[UnifiedLocation]:
"""Select the most representative location for a cluster."""
if not locations:
return None
# Prioritize by: 1) Parks over rides/companies, 2) Higher weight, 3)
# Better rating
parks = [loc for loc in locations if loc.type == LocationType.PARK]
if parks:
return max(
parks,
key=lambda x: (
x.cluster_weight,
x.metadata.get("rating", 0) or 0,
),
)
rides = [loc for loc in locations if loc.type == LocationType.RIDE]
if rides:
return max(
rides,
key=lambda x: (
x.cluster_weight,
x.metadata.get("rating", 0) or 0,
),
)
companies = [loc for loc in locations if loc.type == LocationType.COMPANY]
if companies:
return max(companies, key=lambda x: x.cluster_weight)
# Fall back to highest weight location
return max(locations, key=lambda x: x.cluster_weight)
def get_cluster_breakdown(self, clusters: List[ClusterData]) -> Dict[str, Any]:
"""Get statistics about clustering results."""
if not clusters:
return {
"total_clusters": 0,
"total_points_clustered": 0,
"average_cluster_size": 0,
"type_distribution": {},
"category_distribution": {},
}
total_points = sum(cluster.count for cluster in clusters)
type_counts = defaultdict(int)
category_counts = defaultdict(int)
for cluster in clusters:
for location_type in cluster.types:
type_counts[location_type.value] += cluster.count
if cluster.representative_location:
category_counts[cluster.representative_location.cluster_category] += 1
return {
"total_clusters": len(clusters),
"total_points_clustered": total_points,
"average_cluster_size": total_points / len(clusters),
"largest_cluster_size": max(cluster.count for cluster in clusters),
"smallest_cluster_size": min(cluster.count for cluster in clusters),
"type_distribution": dict(type_counts),
"category_distribution": dict(category_counts),
}
def expand_cluster(
self, cluster: ClusterData, zoom_level: int
) -> List[UnifiedLocation]:
"""
Expand a cluster to show individual locations (for drill-down functionality).
This would typically require re-querying the database with the cluster bounds.
"""
# This is a placeholder - in practice, this would re-query the database
# with the cluster bounds and higher detail level
return []
class SmartClusteringRules:
"""
Advanced clustering rules that consider location types and importance.
"""
@staticmethod
def should_cluster_together(loc1: UnifiedLocation, loc2: UnifiedLocation) -> bool:
"""Determine if two locations should be clustered together."""
# Same park rides should cluster together more readily
if loc1.type == LocationType.RIDE and loc2.type == LocationType.RIDE:
park1_id = loc1.metadata.get("park_id")
park2_id = loc2.metadata.get("park_id")
if park1_id and park2_id and park1_id == park2_id:
return True
# Major parks should resist clustering unless very close
if (
loc1.cluster_category == "major_park"
or loc2.cluster_category == "major_park"
):
return False
# Similar types cluster more readily
if loc1.type == loc2.type:
return True
# Different types can cluster but with higher threshold
return False
@staticmethod
def calculate_cluster_priority(
locations: List[UnifiedLocation],
) -> UnifiedLocation:
"""Select the representative location for a cluster based on priority rules."""
# Prioritize by: 1) Parks over rides, 2) Higher weight, 3) Better
# rating
parks = [loc for loc in locations if loc.type == LocationType.PARK]
if parks:
return max(
parks,
key=lambda x: (
x.cluster_weight,
x.metadata.get("rating", 0) or 0,
x.metadata.get("ride_count", 0) or 0,
),
)
rides = [loc for loc in locations if loc.type == LocationType.RIDE]
if rides:
return max(
rides,
key=lambda x: (
x.cluster_weight,
x.metadata.get("rating", 0) or 0,
),
)
# Fall back to highest weight
return max(locations, key=lambda x: x.cluster_weight)

View File

@@ -0,0 +1,253 @@
"""
Data structures for the unified map service.
"""
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Set, Tuple, Any
from django.contrib.gis.geos import Polygon
class LocationType(Enum):
"""Types of locations supported by the map service."""
PARK = "park"
RIDE = "ride"
COMPANY = "company"
GENERIC = "generic"
@dataclass
class GeoBounds:
"""Geographic boundary box for spatial queries."""
north: float
south: float
east: float
west: float
def __post_init__(self):
"""Validate bounds after initialization."""
if self.north < self.south:
raise ValueError("North bound must be greater than south bound")
if self.east < self.west:
raise ValueError("East bound must be greater than west bound")
if not (-90 <= self.south <= 90 and -90 <= self.north <= 90):
raise ValueError("Latitude bounds must be between -90 and 90")
if not (-180 <= self.west <= 180 and -180 <= self.east <= 180):
raise ValueError("Longitude bounds must be between -180 and 180")
def to_polygon(self) -> Polygon:
"""Convert bounds to PostGIS Polygon for database queries."""
return Polygon.from_bbox((self.west, self.south, self.east, self.north))
def expand(self, factor: float = 1.1) -> "GeoBounds":
"""Expand bounds by factor for buffer queries."""
center_lat = (self.north + self.south) / 2
center_lng = (self.east + self.west) / 2
lat_range = (self.north - self.south) * factor / 2
lng_range = (self.east - self.west) * factor / 2
return GeoBounds(
north=min(90, center_lat + lat_range),
south=max(-90, center_lat - lat_range),
east=min(180, center_lng + lng_range),
west=max(-180, center_lng - lng_range),
)
def contains_point(self, lat: float, lng: float) -> bool:
"""Check if a point is within these bounds."""
return self.south <= lat <= self.north and self.west <= lng <= self.east
def to_dict(self) -> Dict[str, float]:
"""Convert to dictionary for JSON serialization."""
return {
"north": self.north,
"south": self.south,
"east": self.east,
"west": self.west,
}
@dataclass
class MapFilters:
"""Filtering options for map queries."""
location_types: Optional[Set[LocationType]] = None
park_status: Optional[Set[str]] = None # OPERATING, CLOSED_TEMP, etc.
ride_types: Optional[Set[str]] = None
company_roles: Optional[Set[str]] = None # OPERATOR, MANUFACTURER, etc.
search_query: Optional[str] = None
min_rating: Optional[float] = None
has_coordinates: bool = True
country: Optional[str] = None
state: Optional[str] = None
city: Optional[str] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for caching and serialization."""
return {
"location_types": (
[t.value for t in self.location_types] if self.location_types else None
),
"park_status": (list(self.park_status) if self.park_status else None),
"ride_types": list(self.ride_types) if self.ride_types else None,
"company_roles": (list(self.company_roles) if self.company_roles else None),
"search_query": self.search_query,
"min_rating": self.min_rating,
"has_coordinates": self.has_coordinates,
"country": self.country,
"state": self.state,
"city": self.city,
}
@dataclass
class UnifiedLocation:
"""Unified location interface for all location types."""
id: str # Composite: f"{type}_{id}"
type: LocationType
name: str
coordinates: Tuple[float, float] # (lat, lng)
address: Optional[str] = None
metadata: Dict[str, Any] = field(default_factory=dict)
type_data: Dict[str, Any] = field(default_factory=dict)
cluster_weight: int = 1
cluster_category: str = "default"
@property
def latitude(self) -> float:
"""Get latitude from coordinates."""
return self.coordinates[0]
@property
def longitude(self) -> float:
"""Get longitude from coordinates."""
return self.coordinates[1]
def to_geojson_feature(self) -> Dict[str, Any]:
"""Convert to GeoJSON feature for mapping libraries."""
return {
"type": "Feature",
"properties": {
"id": self.id,
"type": self.type.value,
"name": self.name,
"address": self.address,
"metadata": self.metadata,
"type_data": self.type_data,
"cluster_weight": self.cluster_weight,
"cluster_category": self.cluster_category,
},
"geometry": {
"type": "Point",
# GeoJSON uses lng, lat
"coordinates": [self.longitude, self.latitude],
},
}
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON responses."""
return {
"id": self.id,
"type": self.type.value,
"name": self.name,
"coordinates": list(self.coordinates),
"address": self.address,
"metadata": self.metadata,
"type_data": self.type_data,
"cluster_weight": self.cluster_weight,
"cluster_category": self.cluster_category,
}
@dataclass
class ClusterData:
"""Represents a cluster of locations for map display."""
id: str
coordinates: Tuple[float, float] # (lat, lng)
count: int
types: Set[LocationType]
bounds: GeoBounds
representative_location: Optional[UnifiedLocation] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON responses."""
return {
"id": self.id,
"coordinates": list(self.coordinates),
"count": self.count,
"types": [t.value for t in self.types],
"bounds": self.bounds.to_dict(),
"representative": (
self.representative_location.to_dict()
if self.representative_location
else None
),
}
@dataclass
class MapResponse:
"""Response structure for map API calls."""
locations: List[UnifiedLocation] = field(default_factory=list)
clusters: List[ClusterData] = field(default_factory=list)
bounds: Optional[GeoBounds] = None
total_count: int = 0
filtered_count: int = 0
zoom_level: Optional[int] = None
clustered: bool = False
cache_hit: bool = False
query_time_ms: Optional[int] = None
filters_applied: List[str] = field(default_factory=list)
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON responses."""
return {
"status": "success",
"data": {
"locations": [loc.to_dict() for loc in self.locations],
"clusters": [cluster.to_dict() for cluster in self.clusters],
"bounds": self.bounds.to_dict() if self.bounds else None,
"total_count": self.total_count,
"filtered_count": self.filtered_count,
"zoom_level": self.zoom_level,
"clustered": self.clustered,
},
"meta": {
"cache_hit": self.cache_hit,
"query_time_ms": self.query_time_ms,
"filters_applied": self.filters_applied,
"pagination": {
"has_more": False, # TODO: Implement pagination
"total_pages": 1,
},
},
}
@dataclass
class QueryPerformanceMetrics:
"""Performance metrics for query optimization."""
query_time_ms: int
db_query_count: int
cache_hit: bool
result_count: int
bounds_used: bool
clustering_used: bool
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for logging."""
return {
"query_time_ms": self.query_time_ms,
"db_query_count": self.db_query_count,
"cache_hit": self.cache_hit,
"result_count": self.result_count,
"bounds_used": self.bounds_used,
"clustering_used": self.clustering_used,
}

View File

@@ -0,0 +1,320 @@
"""
Enhanced caching service with multiple cache backends and strategies.
"""
from typing import Optional, Any, Dict, Callable
from django.core.cache import caches
import hashlib
import json
import logging
import time
from functools import wraps
logger = logging.getLogger(__name__)
# Define GeoBounds for type hinting
class GeoBounds:
def __init__(self, min_lat: float, min_lng: float, max_lat: float, max_lng: float):
self.min_lat = min_lat
self.min_lng = min_lng
self.max_lat = max_lat
self.max_lng = max_lng
class EnhancedCacheService:
"""Comprehensive caching service with multiple cache backends"""
def __init__(self):
self.default_cache = caches["default"]
try:
self.api_cache = caches["api"]
except Exception:
# Fallback to default cache if api cache not configured
self.api_cache = self.default_cache
# L1: Query-level caching
def cache_queryset(
self,
cache_key: str,
queryset_func: Callable,
timeout: int = 3600,
**kwargs,
) -> Any:
"""Cache expensive querysets"""
cached_result = self.default_cache.get(cache_key)
if cached_result is None:
start_time = time.time()
result = queryset_func(**kwargs)
duration = time.time() - start_time
# Log cache miss and function execution time
logger.info(
f"Cache miss for key '{cache_key}', executed in {
duration:.3f}s",
extra={"cache_key": cache_key, "execution_time": duration},
)
self.default_cache.set(cache_key, result, timeout)
return result
logger.debug(f"Cache hit for key '{cache_key}'")
return cached_result
# L2: API response caching
def cache_api_response(
self,
view_name: str,
params: Dict,
response_data: Any,
timeout: int = 1800,
):
"""Cache API responses based on view and parameters"""
cache_key = self._generate_api_cache_key(view_name, params)
self.api_cache.set(cache_key, response_data, timeout)
logger.debug(f"Cached API response for view '{view_name}'")
def get_cached_api_response(self, view_name: str, params: Dict) -> Optional[Any]:
"""Retrieve cached API response"""
cache_key = self._generate_api_cache_key(view_name, params)
result = self.api_cache.get(cache_key)
if result:
logger.debug(f"Cache hit for API view '{view_name}'")
else:
logger.debug(f"Cache miss for API view '{view_name}'")
return result
# L3: Geographic caching (building on existing MapCacheService)
def cache_geographic_data(
self,
bounds: "GeoBounds",
data: Any,
zoom_level: int,
timeout: int = 1800,
):
"""Cache geographic data with spatial keys"""
# Generate spatial cache key based on bounds and zoom level
cache_key = f"geo:{
bounds.min_lat}:{
bounds.min_lng}:{
bounds.max_lat}:{
bounds.max_lng}:z{zoom_level}"
self.default_cache.set(cache_key, data, timeout)
logger.debug(f"Cached geographic data for bounds {bounds}")
def get_cached_geographic_data(
self, bounds: "GeoBounds", zoom_level: int
) -> Optional[Any]:
"""Retrieve cached geographic data"""
cache_key = f"geo:{
bounds.min_lat}:{
bounds.min_lng}:{
bounds.max_lat}:{
bounds.max_lng}:z{zoom_level}"
return self.default_cache.get(cache_key)
# Cache invalidation utilities
def invalidate_pattern(self, pattern: str):
"""Invalidate cache keys matching a pattern (if backend supports it)"""
try:
# For Redis cache backends
if hasattr(self.default_cache, "delete_pattern"):
deleted_count = self.default_cache.delete_pattern(pattern)
logger.info(
f"Invalidated {deleted_count} cache keys matching pattern '{pattern}'"
)
return deleted_count
else:
logger.warning(
f"Cache backend does not support pattern deletion for pattern '{pattern}'"
)
except Exception as e:
logger.error(f"Error invalidating cache pattern '{pattern}': {e}")
def invalidate_model_cache(
self, model_name: str, instance_id: Optional[int] = None
):
"""Invalidate cache keys related to a specific model"""
if instance_id:
pattern = f"*{model_name}:{instance_id}*"
else:
pattern = f"*{model_name}*"
self.invalidate_pattern(pattern)
# Cache warming utilities
def warm_cache(
self,
cache_key: str,
warm_func: Callable,
timeout: int = 3600,
**kwargs,
):
"""Proactively warm cache with data"""
try:
data = warm_func(**kwargs)
self.default_cache.set(cache_key, data, timeout)
logger.info(f"Warmed cache for key '{cache_key}'")
except Exception as e:
logger.error(f"Error warming cache for key '{cache_key}': {e}")
def _generate_api_cache_key(self, view_name: str, params: Dict) -> str:
"""Generate consistent cache keys for API responses"""
# Sort params to ensure consistent key generation
params_str = json.dumps(params, sort_keys=True, default=str)
params_hash = hashlib.md5(params_str.encode()).hexdigest()
return f"api:{view_name}:{params_hash}"
# Cache decorators
def cache_api_response(timeout=1800, vary_on=None, key_prefix=""):
"""Decorator for caching API responses"""
def decorator(view_func):
@wraps(view_func)
def wrapper(self, request, *args, **kwargs):
if request.method != "GET":
return view_func(self, request, *args, **kwargs)
# Generate cache key based on view, user, and parameters
cache_key_parts = [
key_prefix or view_func.__name__,
(
str(request.user.id)
if request.user.is_authenticated
else "anonymous"
),
str(hash(frozenset(request.GET.items()))),
]
if vary_on:
for field in vary_on:
cache_key_parts.append(str(getattr(request, field, "")))
cache_key = ":".join(cache_key_parts)
# Try to get from cache
cache_service = EnhancedCacheService()
cached_response = cache_service.api_cache.get(cache_key)
if cached_response:
logger.debug(f"Cache hit for API view {view_func.__name__}")
return cached_response
# Execute view and cache result
response = view_func(self, request, *args, **kwargs)
if hasattr(response, "status_code") and response.status_code == 200:
cache_service.api_cache.set(cache_key, response, timeout)
logger.debug(
f"Cached API response for view {
view_func.__name__}"
)
return response
return wrapper
return decorator
def cache_queryset_result(cache_key_template: str, timeout: int = 3600):
"""Decorator for caching queryset results"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Generate cache key from template and arguments
cache_key = cache_key_template.format(*args, **kwargs)
cache_service = EnhancedCacheService()
return cache_service.cache_queryset(
cache_key, func, timeout, *args, **kwargs
)
return wrapper
return decorator
# Context manager for cache warming
class CacheWarmer:
"""Context manager for batch cache warming operations"""
def __init__(self):
self.cache_service = EnhancedCacheService()
self.warm_operations = []
def add(
self,
cache_key: str,
warm_func: Callable,
timeout: int = 3600,
**kwargs,
):
"""Add a cache warming operation to the batch"""
self.warm_operations.append(
{
"cache_key": cache_key,
"warm_func": warm_func,
"timeout": timeout,
"kwargs": kwargs,
}
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Execute all cache warming operations"""
logger.info(f"Warming {len(self.warm_operations)} cache entries")
for operation in self.warm_operations:
try:
self.cache_service.warm_cache(**operation)
except Exception as e:
logger.error(
f"Error warming cache for {
operation['cache_key']}: {e}"
)
# Cache statistics and monitoring
class CacheMonitor:
"""Monitor cache performance and statistics"""
def __init__(self):
self.cache_service = EnhancedCacheService()
def get_cache_stats(self) -> Dict[str, Any]:
"""Get cache statistics if available"""
stats = {}
try:
# Redis cache stats
if hasattr(self.cache_service.default_cache, "_cache"):
redis_client = self.cache_service.default_cache._cache.get_client()
info = redis_client.info()
stats["redis"] = {
"used_memory": info.get("used_memory_human"),
"connected_clients": info.get("connected_clients"),
"total_commands_processed": info.get("total_commands_processed"),
"keyspace_hits": info.get("keyspace_hits"),
"keyspace_misses": info.get("keyspace_misses"),
}
# Calculate hit rate
hits = info.get("keyspace_hits", 0)
misses = info.get("keyspace_misses", 0)
if hits + misses > 0:
stats["redis"]["hit_rate"] = hits / (hits + misses) * 100
except Exception as e:
logger.error(f"Error getting cache stats: {e}")
return stats
def log_cache_performance(self):
"""Log cache performance metrics"""
stats = self.get_cache_stats()
if stats:
logger.info("Cache performance statistics", extra=stats)

View File

@@ -0,0 +1,479 @@
"""
Location adapters for converting between domain-specific models and UnifiedLocation.
"""
from django.db import models
from typing import List, Optional
from django.db.models import QuerySet
from django.urls import reverse
from .data_structures import (
UnifiedLocation,
LocationType,
GeoBounds,
MapFilters,
)
from apps.parks.models import ParkLocation, CompanyHeadquarters
from apps.rides.models import RideLocation
from apps.location.models import Location
class BaseLocationAdapter:
"""Base adapter class for location conversions."""
def to_unified_location(self, location_obj) -> Optional[UnifiedLocation]:
"""Convert model instance to UnifiedLocation."""
raise NotImplementedError
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for this location type."""
raise NotImplementedError
def bulk_convert(self, queryset: QuerySet) -> List[UnifiedLocation]:
"""Convert multiple location objects efficiently."""
unified_locations = []
for obj in queryset:
unified_loc = self.to_unified_location(obj)
if unified_loc:
unified_locations.append(unified_loc)
return unified_locations
class ParkLocationAdapter(BaseLocationAdapter):
"""Converts Park/ParkLocation to UnifiedLocation."""
def to_unified_location(
self, park_location: ParkLocation
) -> Optional[UnifiedLocation]:
"""Convert ParkLocation to UnifiedLocation."""
if not park_location.point:
return None
park = park_location.park
return UnifiedLocation(
id=f"park_{park.id}",
type=LocationType.PARK,
name=park.name,
coordinates=(park_location.latitude, park_location.longitude),
address=park_location.formatted_address,
metadata={
"status": getattr(park, "status", "UNKNOWN"),
"rating": (
float(park.average_rating)
if hasattr(park, "average_rating") and park.average_rating
else None
),
"ride_count": getattr(park, "ride_count", 0),
"coaster_count": getattr(park, "coaster_count", 0),
"operator": (
park.operator.name
if hasattr(park, "operator") and park.operator
else None
),
"city": park_location.city,
"state": park_location.state,
"country": park_location.country,
},
type_data={
"slug": park.slug,
"opening_date": (
park.opening_date.isoformat()
if hasattr(park, "opening_date") and park.opening_date
else None
),
"website": getattr(park, "website", ""),
"operating_season": getattr(park, "operating_season", ""),
"highway_exit": park_location.highway_exit,
"parking_notes": park_location.parking_notes,
"best_arrival_time": (
park_location.best_arrival_time.strftime("%H:%M")
if park_location.best_arrival_time
else None
),
"seasonal_notes": park_location.seasonal_notes,
"url": self._get_park_url(park),
},
cluster_weight=self._calculate_park_weight(park),
cluster_category=self._get_park_category(park),
)
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for park locations."""
queryset = ParkLocation.objects.select_related("park", "park__operator").filter(
point__isnull=False
)
# Spatial filtering
if bounds:
queryset = queryset.filter(point__within=bounds.to_polygon())
# Park-specific filters
if filters:
if filters.park_status:
queryset = queryset.filter(park__status__in=filters.park_status)
if filters.search_query:
queryset = queryset.filter(park__name__icontains=filters.search_query)
if filters.country:
queryset = queryset.filter(country=filters.country)
if filters.state:
queryset = queryset.filter(state=filters.state)
if filters.city:
queryset = queryset.filter(city=filters.city)
return queryset.order_by("park__name")
def _calculate_park_weight(self, park) -> int:
"""Calculate clustering weight based on park importance."""
weight = 1
if hasattr(park, "ride_count") and park.ride_count and park.ride_count > 20:
weight += 2
if (
hasattr(park, "coaster_count")
and park.coaster_count
and park.coaster_count > 5
):
weight += 1
if (
hasattr(park, "average_rating")
and park.average_rating
and park.average_rating > 4.0
):
weight += 1
return min(weight, 5) # Cap at 5
def _get_park_category(self, park) -> str:
"""Determine park category for clustering."""
coaster_count = getattr(park, "coaster_count", 0) or 0
ride_count = getattr(park, "ride_count", 0) or 0
if coaster_count >= 10:
return "major_park"
elif ride_count >= 15:
return "theme_park"
else:
return "small_park"
def _get_park_url(self, park) -> str:
"""Get URL for park detail page."""
try:
return reverse("parks:detail", kwargs={"slug": park.slug})
except BaseException:
return f"/parks/{park.slug}/"
class RideLocationAdapter(BaseLocationAdapter):
"""Converts Ride/RideLocation to UnifiedLocation."""
def to_unified_location(
self, ride_location: RideLocation
) -> Optional[UnifiedLocation]:
"""Convert RideLocation to UnifiedLocation."""
if not ride_location.point:
return None
ride = ride_location.ride
return UnifiedLocation(
id=f"ride_{ride.id}",
type=LocationType.RIDE,
name=ride.name,
coordinates=(ride_location.latitude, ride_location.longitude),
address=(
f"{ride_location.park_area}, {ride.park.name}"
if ride_location.park_area
else ride.park.name
),
metadata={
"park_id": ride.park.id,
"park_name": ride.park.name,
"park_area": ride_location.park_area,
"ride_type": getattr(ride, "ride_type", "Unknown"),
"status": getattr(ride, "status", "UNKNOWN"),
"rating": (
float(ride.average_rating)
if hasattr(ride, "average_rating") and ride.average_rating
else None
),
"manufacturer": (
getattr(ride, "manufacturer", {}).get("name")
if hasattr(ride, "manufacturer")
else None
),
},
type_data={
"slug": ride.slug,
"opening_date": (
ride.opening_date.isoformat()
if hasattr(ride, "opening_date") and ride.opening_date
else None
),
"height_requirement": getattr(ride, "height_requirement", ""),
"duration_minutes": getattr(ride, "duration_minutes", None),
"max_speed_mph": getattr(ride, "max_speed_mph", None),
"entrance_notes": ride_location.entrance_notes,
"accessibility_notes": ride_location.accessibility_notes,
"url": self._get_ride_url(ride),
},
cluster_weight=self._calculate_ride_weight(ride),
cluster_category=self._get_ride_category(ride),
)
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for ride locations."""
queryset = RideLocation.objects.select_related(
"ride", "ride__park", "ride__park__operator"
).filter(point__isnull=False)
# Spatial filtering
if bounds:
queryset = queryset.filter(point__within=bounds.to_polygon())
# Ride-specific filters
if filters:
if filters.ride_types:
queryset = queryset.filter(ride__ride_type__in=filters.ride_types)
if filters.search_query:
queryset = queryset.filter(ride__name__icontains=filters.search_query)
return queryset.order_by("ride__name")
def _calculate_ride_weight(self, ride) -> int:
"""Calculate clustering weight based on ride importance."""
weight = 1
ride_type = getattr(ride, "ride_type", "").lower()
if "coaster" in ride_type or "roller" in ride_type:
weight += 1
if (
hasattr(ride, "average_rating")
and ride.average_rating
and ride.average_rating > 4.0
):
weight += 1
return min(weight, 3) # Cap at 3 for rides
def _get_ride_category(self, ride) -> str:
"""Determine ride category for clustering."""
ride_type = getattr(ride, "ride_type", "").lower()
if "coaster" in ride_type or "roller" in ride_type:
return "coaster"
elif "water" in ride_type or "splash" in ride_type:
return "water_ride"
else:
return "other_ride"
def _get_ride_url(self, ride) -> str:
"""Get URL for ride detail page."""
try:
return reverse("rides:detail", kwargs={"slug": ride.slug})
except BaseException:
return f"/rides/{ride.slug}/"
class CompanyLocationAdapter(BaseLocationAdapter):
"""Converts Company/CompanyHeadquarters to UnifiedLocation."""
def to_unified_location(
self, company_headquarters: CompanyHeadquarters
) -> Optional[UnifiedLocation]:
"""Convert CompanyHeadquarters to UnifiedLocation."""
# Note: CompanyHeadquarters doesn't have coordinates, so we need to geocode
# For now, we'll skip companies without coordinates
# TODO: Implement geocoding service integration
return None
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for company locations."""
queryset = CompanyHeadquarters.objects.select_related("company")
# Company-specific filters
if filters:
if filters.company_roles:
queryset = queryset.filter(
company__roles__overlap=filters.company_roles
)
if filters.search_query:
queryset = queryset.filter(
company__name__icontains=filters.search_query
)
if filters.country:
queryset = queryset.filter(country=filters.country)
if filters.city:
queryset = queryset.filter(city=filters.city)
return queryset.order_by("company__name")
class GenericLocationAdapter(BaseLocationAdapter):
"""Converts generic Location model to UnifiedLocation."""
def to_unified_location(self, location: Location) -> Optional[UnifiedLocation]:
"""Convert generic Location to UnifiedLocation."""
if not location.point and not (location.latitude and location.longitude):
return None
# Use point coordinates if available, fall back to lat/lng fields
if location.point:
coordinates = (location.point.y, location.point.x)
else:
coordinates = (float(location.latitude), float(location.longitude))
return UnifiedLocation(
id=f"generic_{location.id}",
type=LocationType.GENERIC,
name=location.name,
coordinates=coordinates,
address=location.get_formatted_address(),
metadata={
"location_type": location.location_type,
"content_type": (
location.content_type.model if location.content_type else None
),
"object_id": location.object_id,
"city": location.city,
"state": location.state,
"country": location.country,
},
type_data={
"created_at": (
location.created_at.isoformat() if location.created_at else None
),
"updated_at": (
location.updated_at.isoformat() if location.updated_at else None
),
},
cluster_weight=1,
cluster_category="generic",
)
def get_queryset(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> QuerySet:
"""Get optimized queryset for generic locations."""
queryset = Location.objects.select_related("content_type").filter(
models.Q(point__isnull=False)
| models.Q(latitude__isnull=False, longitude__isnull=False)
)
# Spatial filtering
if bounds:
queryset = queryset.filter(
models.Q(point__within=bounds.to_polygon())
| models.Q(
latitude__gte=bounds.south,
latitude__lte=bounds.north,
longitude__gte=bounds.west,
longitude__lte=bounds.east,
)
)
# Generic filters
if filters:
if filters.search_query:
queryset = queryset.filter(name__icontains=filters.search_query)
if filters.country:
queryset = queryset.filter(country=filters.country)
if filters.city:
queryset = queryset.filter(city=filters.city)
return queryset.order_by("name")
class LocationAbstractionLayer:
"""
Abstraction layer handling different location model types.
Implements the adapter pattern to provide unified access to all location types.
"""
def __init__(self):
self.adapters = {
LocationType.PARK: ParkLocationAdapter(),
LocationType.RIDE: RideLocationAdapter(),
LocationType.COMPANY: CompanyLocationAdapter(),
LocationType.GENERIC: GenericLocationAdapter(),
}
def get_all_locations(
self,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> List[UnifiedLocation]:
"""Get locations from all sources within bounds."""
all_locations = []
# Determine which location types to include
location_types = (
filters.location_types
if filters and filters.location_types
else set(LocationType)
)
for location_type in location_types:
adapter = self.adapters[location_type]
queryset = adapter.get_queryset(bounds, filters)
locations = adapter.bulk_convert(queryset)
all_locations.extend(locations)
return all_locations
def get_locations_by_type(
self,
location_type: LocationType,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> List[UnifiedLocation]:
"""Get locations of specific type."""
adapter = self.adapters[location_type]
queryset = adapter.get_queryset(bounds, filters)
return adapter.bulk_convert(queryset)
def get_location_by_id(
self, location_type: LocationType, location_id: int
) -> Optional[UnifiedLocation]:
"""Get single location with full details."""
adapter = self.adapters[location_type]
try:
if location_type == LocationType.PARK:
obj = ParkLocation.objects.select_related("park", "park__operator").get(
park_id=location_id
)
elif location_type == LocationType.RIDE:
obj = RideLocation.objects.select_related("ride", "ride__park").get(
ride_id=location_id
)
elif location_type == LocationType.COMPANY:
obj = CompanyHeadquarters.objects.select_related("company").get(
company_id=location_id
)
elif location_type == LocationType.GENERIC:
obj = Location.objects.select_related("content_type").get(
id=location_id
)
else:
return None
return adapter.to_unified_location(obj)
except Exception:
return None
# Import models after defining adapters to avoid circular imports

View File

@@ -0,0 +1,465 @@
"""
Location-aware search service for ThrillWiki.
Integrates PostGIS location data with existing search functionality
to provide proximity-based search, location filtering, and geographic
search capabilities.
"""
from django.contrib.gis.geos import Point
from django.contrib.gis.measure import Distance
from django.db.models import Q
from typing import Optional, List, Dict, Any, Set
from dataclasses import dataclass
from apps.parks.models import Park, Company, ParkLocation
from apps.rides.models import Ride
@dataclass
class LocationSearchFilters:
"""Filters for location-aware search queries."""
# Text search
search_query: Optional[str] = None
# Location-based filters
location_point: Optional[Point] = None
radius_km: Optional[float] = None
location_types: Optional[Set[str]] = None # 'park', 'ride', 'company'
# Geographic filters
country: Optional[str] = None
state: Optional[str] = None
city: Optional[str] = None
# Content-specific filters
park_status: Optional[List[str]] = None
ride_types: Optional[List[str]] = None
company_roles: Optional[List[str]] = None
# Result options
include_distance: bool = True
max_results: int = 100
@dataclass
class LocationSearchResult:
"""Single search result with location data."""
# Core data
content_type: str # 'park', 'ride', 'company'
object_id: int
name: str
description: Optional[str] = None
url: Optional[str] = None
# Location data
latitude: Optional[float] = None
longitude: Optional[float] = None
address: Optional[str] = None
city: Optional[str] = None
state: Optional[str] = None
country: Optional[str] = None
# Distance data (if proximity search)
distance_km: Optional[float] = None
# Additional metadata
status: Optional[str] = None
tags: Optional[List[str]] = None
rating: Optional[float] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON serialization."""
return {
"content_type": self.content_type,
"object_id": self.object_id,
"name": self.name,
"description": self.description,
"url": self.url,
"location": {
"latitude": self.latitude,
"longitude": self.longitude,
"address": self.address,
"city": self.city,
"state": self.state,
"country": self.country,
},
"distance_km": self.distance_km,
"status": self.status,
"tags": self.tags or [],
"rating": self.rating,
}
class LocationSearchService:
"""Service for performing location-aware searches across ThrillWiki content."""
def search(self, filters: LocationSearchFilters) -> List[LocationSearchResult]:
"""
Perform a comprehensive location-aware search.
Args:
filters: Search filters and options
Returns:
List of search results with location data
"""
results = []
# Search each content type based on filters
if not filters.location_types or "park" in filters.location_types:
results.extend(self._search_parks(filters))
if not filters.location_types or "ride" in filters.location_types:
results.extend(self._search_rides(filters))
if not filters.location_types or "company" in filters.location_types:
results.extend(self._search_companies(filters))
# Sort by distance if proximity search, otherwise by relevance
if filters.location_point and filters.include_distance:
results.sort(key=lambda x: x.distance_km or float("inf"))
else:
results.sort(key=lambda x: x.name.lower())
# Apply max results limit
return results[: filters.max_results]
def _search_parks(
self, filters: LocationSearchFilters
) -> List[LocationSearchResult]:
"""Search parks with location data."""
queryset = Park.objects.select_related("location", "operator").all()
# Apply location filters
queryset = self._apply_location_filters(queryset, filters, "location__point")
# Apply text search
if filters.search_query:
query = (
Q(name__icontains=filters.search_query)
| Q(description__icontains=filters.search_query)
| Q(location__city__icontains=filters.search_query)
| Q(location__state__icontains=filters.search_query)
| Q(location__country__icontains=filters.search_query)
)
queryset = queryset.filter(query)
# Apply park-specific filters
if filters.park_status:
queryset = queryset.filter(status__in=filters.park_status)
# Add distance annotation if proximity search
if filters.location_point and filters.include_distance:
queryset = queryset.annotate(
distance=Distance("location__point", filters.location_point)
).order_by("distance")
# Convert to search results
results = []
for park in queryset:
result = LocationSearchResult(
content_type="park",
object_id=park.id,
name=park.name,
description=park.description,
url=(
park.get_absolute_url()
if hasattr(park, "get_absolute_url")
else None
),
status=park.get_status_display(),
rating=(float(park.average_rating) if park.average_rating else None),
tags=["park", park.status.lower()],
)
# Add location data
if hasattr(park, "location") and park.location:
location = park.location
result.latitude = location.latitude
result.longitude = location.longitude
result.address = location.formatted_address
result.city = location.city
result.state = location.state
result.country = location.country
# Add distance if proximity search
if (
filters.location_point
and filters.include_distance
and hasattr(park, "distance")
):
result.distance_km = float(park.distance.km)
results.append(result)
return results
def _search_rides(
self, filters: LocationSearchFilters
) -> List[LocationSearchResult]:
"""Search rides with location data."""
queryset = Ride.objects.select_related("park", "location").all()
# Apply location filters
queryset = self._apply_location_filters(queryset, filters, "location__point")
# Apply text search
if filters.search_query:
query = (
Q(name__icontains=filters.search_query)
| Q(description__icontains=filters.search_query)
| Q(park__name__icontains=filters.search_query)
| Q(location__park_area__icontains=filters.search_query)
)
queryset = queryset.filter(query)
# Apply ride-specific filters
if filters.ride_types:
queryset = queryset.filter(ride_type__in=filters.ride_types)
# Add distance annotation if proximity search
if filters.location_point and filters.include_distance:
queryset = queryset.annotate(
distance=Distance("location__point", filters.location_point)
).order_by("distance")
# Convert to search results
results = []
for ride in queryset:
result = LocationSearchResult(
content_type="ride",
object_id=ride.id,
name=ride.name,
description=ride.description,
url=(
ride.get_absolute_url()
if hasattr(ride, "get_absolute_url")
else None
),
status=ride.status,
tags=[
"ride",
ride.ride_type.lower() if ride.ride_type else "attraction",
],
)
# Add location data from ride location or park location
location = None
if hasattr(ride, "location") and ride.location:
location = ride.location
result.latitude = location.latitude
result.longitude = location.longitude
result.address = (
f"{ride.park.name} - {location.park_area}"
if location.park_area
else ride.park.name
)
# Add distance if proximity search
if (
filters.location_point
and filters.include_distance
and hasattr(ride, "distance")
):
result.distance_km = float(ride.distance.km)
# Fall back to park location if no specific ride location
elif ride.park and hasattr(ride.park, "location") and ride.park.location:
park_location = ride.park.location
result.latitude = park_location.latitude
result.longitude = park_location.longitude
result.address = park_location.formatted_address
result.city = park_location.city
result.state = park_location.state
result.country = park_location.country
results.append(result)
return results
def _search_companies(
self, filters: LocationSearchFilters
) -> List[LocationSearchResult]:
"""Search companies with headquarters location data."""
queryset = Company.objects.select_related("headquarters").all()
# Apply location filters
queryset = self._apply_location_filters(
queryset, filters, "headquarters__point"
)
# Apply text search
if filters.search_query:
query = (
Q(name__icontains=filters.search_query)
| Q(description__icontains=filters.search_query)
| Q(headquarters__city__icontains=filters.search_query)
| Q(headquarters__state_province__icontains=filters.search_query)
| Q(headquarters__country__icontains=filters.search_query)
)
queryset = queryset.filter(query)
# Apply company-specific filters
if filters.company_roles:
queryset = queryset.filter(roles__overlap=filters.company_roles)
# Add distance annotation if proximity search
if filters.location_point and filters.include_distance:
queryset = queryset.annotate(
distance=Distance("headquarters__point", filters.location_point)
).order_by("distance")
# Convert to search results
results = []
for company in queryset:
result = LocationSearchResult(
content_type="company",
object_id=company.id,
name=company.name,
description=company.description,
url=(
company.get_absolute_url()
if hasattr(company, "get_absolute_url")
else None
),
tags=["company"] + (company.roles or []),
)
# Add location data
if hasattr(company, "headquarters") and company.headquarters:
hq = company.headquarters
result.latitude = hq.latitude
result.longitude = hq.longitude
result.address = hq.formatted_address
result.city = hq.city
result.state = hq.state_province
result.country = hq.country
# Add distance if proximity search
if (
filters.location_point
and filters.include_distance
and hasattr(company, "distance")
):
result.distance_km = float(company.distance.km)
results.append(result)
return results
def _apply_location_filters(
self, queryset, filters: LocationSearchFilters, point_field: str
):
"""Apply common location filters to a queryset."""
# Proximity filter
if filters.location_point and filters.radius_km:
distance = Distance(km=filters.radius_km)
queryset = queryset.filter(
**{
f"{point_field}__distance_lte": (
filters.location_point,
distance,
)
}
)
# Geographic filters - adjust field names based on model
if filters.country:
if "headquarters" in point_field:
queryset = queryset.filter(
headquarters__country__icontains=filters.country
)
else:
location_field = point_field.split("__")[0]
queryset = queryset.filter(
**{f"{location_field}__country__icontains": filters.country}
)
if filters.state:
if "headquarters" in point_field:
queryset = queryset.filter(
headquarters__state_province__icontains=filters.state
)
else:
location_field = point_field.split("__")[0]
queryset = queryset.filter(
**{f"{location_field}__state__icontains": filters.state}
)
if filters.city:
location_field = point_field.split("__")[0]
queryset = queryset.filter(
**{f"{location_field}__city__icontains": filters.city}
)
return queryset
def suggest_locations(self, query: str, limit: int = 10) -> List[Dict[str, Any]]:
"""
Get location suggestions for autocomplete.
Args:
query: Search query string
limit: Maximum number of suggestions
Returns:
List of location suggestions
"""
suggestions = []
if len(query) < 2:
return suggestions
# Get park location suggestions
park_locations = ParkLocation.objects.filter(
Q(park__name__icontains=query)
| Q(city__icontains=query)
| Q(state__icontains=query)
).select_related("park")[: limit // 3]
for location in park_locations:
suggestions.append(
{
"type": "park",
"name": location.park.name,
"address": location.formatted_address,
"coordinates": location.coordinates,
"url": (
location.park.get_absolute_url()
if hasattr(location.park, "get_absolute_url")
else None
),
}
)
# Get city suggestions
cities = (
ParkLocation.objects.filter(city__icontains=query)
.values("city", "state", "country")
.distinct()[: limit // 3]
)
for city_data in cities:
suggestions.append(
{
"type": "city",
"name": f"{
city_data['city']}, {
city_data['state']}",
"address": f"{
city_data['city']}, {
city_data['state']}, {
city_data['country']}",
"coordinates": None,
}
)
return suggestions[:limit]
# Global instance
location_search_service = LocationSearchService()

View File

@@ -0,0 +1,438 @@
"""
Caching service for map data to improve performance and reduce database load.
"""
import hashlib
import json
import time
from typing import Dict, List, Optional, Any
from django.core.cache import cache
from django.utils import timezone
from .data_structures import (
UnifiedLocation,
ClusterData,
GeoBounds,
MapFilters,
MapResponse,
QueryPerformanceMetrics,
)
class MapCacheService:
"""
Handles caching of map data with geographic partitioning and intelligent invalidation.
"""
# Cache configuration
DEFAULT_TTL = 3600 # 1 hour
CLUSTER_TTL = 7200 # 2 hours (clusters change less frequently)
LOCATION_DETAIL_TTL = 1800 # 30 minutes
BOUNDS_CACHE_TTL = 1800 # 30 minutes
# Cache key prefixes
CACHE_PREFIX = "thrillwiki_map"
LOCATIONS_PREFIX = f"{CACHE_PREFIX}:locations"
CLUSTERS_PREFIX = f"{CACHE_PREFIX}:clusters"
BOUNDS_PREFIX = f"{CACHE_PREFIX}:bounds"
DETAIL_PREFIX = f"{CACHE_PREFIX}:detail"
STATS_PREFIX = f"{CACHE_PREFIX}:stats"
# Geographic partitioning settings
GEOHASH_PRECISION = 6 # ~1.2km precision for cache partitioning
def __init__(self):
self.cache_stats = {
"hits": 0,
"misses": 0,
"invalidations": 0,
"geohash_partitions": 0,
}
def get_locations_cache_key(
self,
bounds: Optional[GeoBounds],
filters: Optional[MapFilters],
zoom_level: Optional[int] = None,
) -> str:
"""Generate cache key for location queries."""
key_parts = [self.LOCATIONS_PREFIX]
if bounds:
# Use geohash for spatial locality
geohash = self._bounds_to_geohash(bounds)
key_parts.append(f"geo:{geohash}")
if filters:
# Create deterministic hash of filters
filter_hash = self._hash_filters(filters)
key_parts.append(f"filters:{filter_hash}")
if zoom_level is not None:
key_parts.append(f"zoom:{zoom_level}")
return ":".join(key_parts)
def get_clusters_cache_key(
self,
bounds: Optional[GeoBounds],
filters: Optional[MapFilters],
zoom_level: int,
) -> str:
"""Generate cache key for cluster queries."""
key_parts = [self.CLUSTERS_PREFIX, f"zoom:{zoom_level}"]
if bounds:
geohash = self._bounds_to_geohash(bounds)
key_parts.append(f"geo:{geohash}")
if filters:
filter_hash = self._hash_filters(filters)
key_parts.append(f"filters:{filter_hash}")
return ":".join(key_parts)
def get_location_detail_cache_key(
self, location_type: str, location_id: int
) -> str:
"""Generate cache key for individual location details."""
return f"{self.DETAIL_PREFIX}:{location_type}:{location_id}"
def cache_locations(
self,
cache_key: str,
locations: List[UnifiedLocation],
ttl: Optional[int] = None,
) -> None:
"""Cache location data."""
try:
# Convert locations to serializable format
cache_data = {
"locations": [loc.to_dict() for loc in locations],
"cached_at": timezone.now().isoformat(),
"count": len(locations),
}
cache.set(cache_key, cache_data, ttl or self.DEFAULT_TTL)
except Exception as e:
# Log error but don't fail the request
print(f"Cache write error for key {cache_key}: {e}")
def cache_clusters(
self,
cache_key: str,
clusters: List[ClusterData],
ttl: Optional[int] = None,
) -> None:
"""Cache cluster data."""
try:
cache_data = {
"clusters": [cluster.to_dict() for cluster in clusters],
"cached_at": timezone.now().isoformat(),
"count": len(clusters),
}
cache.set(cache_key, cache_data, ttl or self.CLUSTER_TTL)
except Exception as e:
print(f"Cache write error for clusters {cache_key}: {e}")
def cache_map_response(
self, cache_key: str, response: MapResponse, ttl: Optional[int] = None
) -> None:
"""Cache complete map response."""
try:
cache_data = response.to_dict()
cache_data["cached_at"] = timezone.now().isoformat()
cache.set(cache_key, cache_data, ttl or self.DEFAULT_TTL)
except Exception as e:
print(f"Cache write error for response {cache_key}: {e}")
def get_cached_locations(self, cache_key: str) -> Optional[List[UnifiedLocation]]:
"""Retrieve cached location data."""
try:
cache_data = cache.get(cache_key)
if not cache_data:
self.cache_stats["misses"] += 1
return None
self.cache_stats["hits"] += 1
# Convert back to UnifiedLocation objects
locations = []
for loc_data in cache_data["locations"]:
# Reconstruct UnifiedLocation from dictionary
locations.append(self._dict_to_unified_location(loc_data))
return locations
except Exception as e:
print(f"Cache read error for key {cache_key}: {e}")
self.cache_stats["misses"] += 1
return None
def get_cached_clusters(self, cache_key: str) -> Optional[List[ClusterData]]:
"""Retrieve cached cluster data."""
try:
cache_data = cache.get(cache_key)
if not cache_data:
self.cache_stats["misses"] += 1
return None
self.cache_stats["hits"] += 1
# Convert back to ClusterData objects
clusters = []
for cluster_data in cache_data["clusters"]:
clusters.append(self._dict_to_cluster_data(cluster_data))
return clusters
except Exception as e:
print(f"Cache read error for clusters {cache_key}: {e}")
self.cache_stats["misses"] += 1
return None
def get_cached_map_response(self, cache_key: str) -> Optional[MapResponse]:
"""Retrieve cached map response."""
try:
cache_data = cache.get(cache_key)
if not cache_data:
self.cache_stats["misses"] += 1
return None
self.cache_stats["hits"] += 1
# Convert back to MapResponse object
return self._dict_to_map_response(cache_data["data"])
except Exception as e:
print(f"Cache read error for response {cache_key}: {e}")
self.cache_stats["misses"] += 1
return None
def invalidate_location_cache(
self, location_type: str, location_id: Optional[int] = None
) -> None:
"""Invalidate cache for specific location or all locations of a type."""
try:
if location_id:
# Invalidate specific location detail
detail_key = self.get_location_detail_cache_key(
location_type, location_id
)
cache.delete(detail_key)
# Invalidate related location and cluster caches
# In a production system, you'd want more sophisticated cache
# tagging
cache.delete_many(
[f"{self.LOCATIONS_PREFIX}:*", f"{self.CLUSTERS_PREFIX}:*"]
)
self.cache_stats["invalidations"] += 1
except Exception as e:
print(f"Cache invalidation error: {e}")
def invalidate_bounds_cache(self, bounds: GeoBounds) -> None:
"""Invalidate cache for specific geographic bounds."""
try:
geohash = self._bounds_to_geohash(bounds)
pattern = f"{self.LOCATIONS_PREFIX}:geo:{geohash}*"
# In production, you'd use cache tagging or Redis SCAN
# For now, we'll invalidate broader patterns
cache.delete_many([pattern])
self.cache_stats["invalidations"] += 1
except Exception as e:
print(f"Bounds cache invalidation error: {e}")
def clear_all_map_cache(self) -> None:
"""Clear all map-related cache data."""
try:
cache.delete_many(
[
f"{self.LOCATIONS_PREFIX}:*",
f"{self.CLUSTERS_PREFIX}:*",
f"{self.BOUNDS_PREFIX}:*",
f"{self.DETAIL_PREFIX}:*",
]
)
self.cache_stats["invalidations"] += 1
except Exception as e:
print(f"Cache clear error: {e}")
def get_cache_stats(self) -> Dict[str, Any]:
"""Get cache performance statistics."""
total_requests = self.cache_stats["hits"] + self.cache_stats["misses"]
hit_rate = (
(self.cache_stats["hits"] / total_requests * 100)
if total_requests > 0
else 0
)
return {
"hits": self.cache_stats["hits"],
"misses": self.cache_stats["misses"],
"hit_rate_percent": round(hit_rate, 2),
"invalidations": self.cache_stats["invalidations"],
"geohash_partitions": self.cache_stats["geohash_partitions"],
}
def record_performance_metrics(self, metrics: QueryPerformanceMetrics) -> None:
"""Record query performance metrics for analysis."""
try:
# 5-minute buckets
stats_key = f"{
self.STATS_PREFIX}:performance:{
int(
time.time() //
300)}"
current_stats = cache.get(
stats_key,
{
"query_count": 0,
"total_time_ms": 0,
"cache_hits": 0,
"db_queries": 0,
},
)
current_stats["query_count"] += 1
current_stats["total_time_ms"] += metrics.query_time_ms
current_stats["cache_hits"] += 1 if metrics.cache_hit else 0
current_stats["db_queries"] += metrics.db_query_count
cache.set(stats_key, current_stats, 3600) # Keep for 1 hour
except Exception as e:
print(f"Performance metrics recording error: {e}")
def _bounds_to_geohash(self, bounds: GeoBounds) -> str:
"""Convert geographic bounds to geohash for cache partitioning."""
# Use center point of bounds for geohash
center_lat = (bounds.north + bounds.south) / 2
center_lng = (bounds.east + bounds.west) / 2
# Simple geohash implementation (in production, use a library)
return self._encode_geohash(center_lat, center_lng, self.GEOHASH_PRECISION)
def _encode_geohash(self, lat: float, lng: float, precision: int) -> str:
"""Simple geohash encoding implementation."""
# This is a simplified implementation
# In production, use the `geohash` library
lat_range = [-90.0, 90.0]
lng_range = [-180.0, 180.0]
geohash = ""
bits = 0
bit_count = 0
even_bit = True
while len(geohash) < precision:
if even_bit:
# longitude
mid = (lng_range[0] + lng_range[1]) / 2
if lng >= mid:
bits = (bits << 1) + 1
lng_range[0] = mid
else:
bits = bits << 1
lng_range[1] = mid
else:
# latitude
mid = (lat_range[0] + lat_range[1]) / 2
if lat >= mid:
bits = (bits << 1) + 1
lat_range[0] = mid
else:
bits = bits << 1
lat_range[1] = mid
even_bit = not even_bit
bit_count += 1
if bit_count == 5:
# Convert 5 bits to base32 character
geohash += "0123456789bcdefghjkmnpqrstuvwxyz"[bits]
bits = 0
bit_count = 0
return geohash
def _hash_filters(self, filters: MapFilters) -> str:
"""Create deterministic hash of filters for cache keys."""
filter_dict = filters.to_dict()
# Sort to ensure consistent ordering
filter_str = json.dumps(filter_dict, sort_keys=True)
return hashlib.md5(filter_str.encode()).hexdigest()[:8]
def _dict_to_unified_location(self, data: Dict[str, Any]) -> UnifiedLocation:
"""Convert dictionary back to UnifiedLocation object."""
from .data_structures import LocationType
return UnifiedLocation(
id=data["id"],
type=LocationType(data["type"]),
name=data["name"],
coordinates=tuple(data["coordinates"]),
address=data.get("address"),
metadata=data.get("metadata", {}),
type_data=data.get("type_data", {}),
cluster_weight=data.get("cluster_weight", 1),
cluster_category=data.get("cluster_category", "default"),
)
def _dict_to_cluster_data(self, data: Dict[str, Any]) -> ClusterData:
"""Convert dictionary back to ClusterData object."""
from .data_structures import LocationType
bounds = GeoBounds(**data["bounds"])
types = {LocationType(t) for t in data["types"]}
representative = None
if data.get("representative"):
representative = self._dict_to_unified_location(data["representative"])
return ClusterData(
id=data["id"],
coordinates=tuple(data["coordinates"]),
count=data["count"],
types=types,
bounds=bounds,
representative_location=representative,
)
def _dict_to_map_response(self, data: Dict[str, Any]) -> MapResponse:
"""Convert dictionary back to MapResponse object."""
locations = [
self._dict_to_unified_location(loc) for loc in data.get("locations", [])
]
clusters = [
self._dict_to_cluster_data(cluster) for cluster in data.get("clusters", [])
]
bounds = None
if data.get("bounds"):
bounds = GeoBounds(**data["bounds"])
return MapResponse(
locations=locations,
clusters=clusters,
bounds=bounds,
total_count=data.get("total_count", 0),
filtered_count=data.get("filtered_count", 0),
zoom_level=data.get("zoom_level"),
clustered=data.get("clustered", False),
)
# Global cache service instance
map_cache = MapCacheService()

View File

@@ -0,0 +1,474 @@
"""
Unified Map Service - Main orchestrating service for all map functionality.
"""
import time
from typing import List, Optional, Dict, Any, Set
from django.db import connection
from .data_structures import (
UnifiedLocation,
ClusterData,
GeoBounds,
MapFilters,
MapResponse,
LocationType,
QueryPerformanceMetrics,
)
from .location_adapters import LocationAbstractionLayer
from .clustering_service import ClusteringService
from .map_cache_service import MapCacheService
class UnifiedMapService:
"""
Main service orchestrating map data retrieval, filtering, clustering, and caching.
Provides a unified interface for all location types with performance optimization.
"""
# Performance thresholds
MAX_UNCLUSTERED_POINTS = 500
MAX_CLUSTERED_POINTS = 2000
DEFAULT_ZOOM_LEVEL = 10
def __init__(self):
self.location_layer = LocationAbstractionLayer()
self.clustering_service = ClusteringService()
self.cache_service = MapCacheService()
def get_map_data(
self,
*,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
zoom_level: int = DEFAULT_ZOOM_LEVEL,
cluster: bool = True,
use_cache: bool = True,
) -> MapResponse:
"""
Primary method for retrieving unified map data.
Args:
bounds: Geographic bounds to query within
filters: Filtering criteria for locations
zoom_level: Map zoom level for clustering decisions
cluster: Whether to apply clustering
use_cache: Whether to use cached data
Returns:
MapResponse with locations, clusters, and metadata
"""
start_time = time.time()
initial_query_count = len(connection.queries)
cache_hit = False
try:
# Generate cache key
cache_key = None
if use_cache:
cache_key = self._generate_cache_key(
bounds, filters, zoom_level, cluster
)
# Try to get from cache first
cached_response = self.cache_service.get_cached_map_response(cache_key)
if cached_response:
cached_response.cache_hit = True
cached_response.query_time_ms = int(
(time.time() - start_time) * 1000
)
return cached_response
# Get locations from database
locations = self._get_locations_from_db(bounds, filters)
# Apply smart limiting based on zoom level and density
locations = self._apply_smart_limiting(locations, bounds, zoom_level)
# Determine if clustering should be applied
should_cluster = cluster and self.clustering_service.should_cluster(
zoom_level, len(locations)
)
# Apply clustering if needed
clusters = []
if should_cluster:
locations, clusters = self.clustering_service.cluster_locations(
locations, zoom_level, bounds
)
# Calculate response bounds
response_bounds = self._calculate_response_bounds(
locations, clusters, bounds
)
# Create response
response = MapResponse(
locations=locations,
clusters=clusters,
bounds=response_bounds,
total_count=len(locations) + sum(cluster.count for cluster in clusters),
filtered_count=len(locations),
zoom_level=zoom_level,
clustered=should_cluster,
cache_hit=cache_hit,
query_time_ms=int((time.time() - start_time) * 1000),
filters_applied=self._get_applied_filters_list(filters),
)
# Cache the response
if use_cache and cache_key:
self.cache_service.cache_map_response(cache_key, response)
# Record performance metrics
self._record_performance_metrics(
start_time,
initial_query_count,
cache_hit,
len(locations) + len(clusters),
bounds is not None,
should_cluster,
)
return response
except Exception:
# Return error response
return MapResponse(
locations=[],
clusters=[],
total_count=0,
filtered_count=0,
query_time_ms=int((time.time() - start_time) * 1000),
cache_hit=False,
)
def get_location_details(
self, location_type: str, location_id: int
) -> Optional[UnifiedLocation]:
"""
Get detailed information for a specific location.
Args:
location_type: Type of location (park, ride, company, generic)
location_id: ID of the location
Returns:
UnifiedLocation with full details or None if not found
"""
try:
# Check cache first
cache_key = self.cache_service.get_location_detail_cache_key(
location_type, location_id
)
cached_locations = self.cache_service.get_cached_locations(cache_key)
if cached_locations:
return cached_locations[0] if cached_locations else None
# Get from database
location_type_enum = LocationType(location_type.lower())
location = self.location_layer.get_location_by_id(
location_type_enum, location_id
)
# Cache the result
if location:
self.cache_service.cache_locations(
cache_key,
[location],
self.cache_service.LOCATION_DETAIL_TTL,
)
return location
except Exception as e:
print(f"Error getting location details: {e}")
return None
def search_locations(
self,
query: str,
bounds: Optional[GeoBounds] = None,
location_types: Optional[Set[LocationType]] = None,
limit: int = 50,
) -> List[UnifiedLocation]:
"""
Search locations with text query.
Args:
query: Search query string
bounds: Optional geographic bounds to search within
location_types: Optional set of location types to search
limit: Maximum number of results
Returns:
List of matching UnifiedLocation objects
"""
try:
# Create search filters
filters = MapFilters(
search_query=query,
location_types=location_types or {LocationType.PARK, LocationType.RIDE},
has_coordinates=True,
)
# Get locations
locations = self.location_layer.get_all_locations(bounds, filters)
# Apply limit
return locations[:limit]
except Exception as e:
print(f"Error searching locations: {e}")
return []
def get_locations_by_bounds(
self,
north: float,
south: float,
east: float,
west: float,
location_types: Optional[Set[LocationType]] = None,
zoom_level: int = DEFAULT_ZOOM_LEVEL,
) -> MapResponse:
"""
Get locations within specific geographic bounds.
Args:
north, south, east, west: Bounding box coordinates
location_types: Optional filter for location types
zoom_level: Map zoom level for optimization
Returns:
MapResponse with locations in bounds
"""
try:
bounds = GeoBounds(north=north, south=south, east=east, west=west)
filters = (
MapFilters(location_types=location_types) if location_types else None
)
return self.get_map_data(
bounds=bounds, filters=filters, zoom_level=zoom_level
)
except ValueError:
# Invalid bounds
return MapResponse(
locations=[], clusters=[], total_count=0, filtered_count=0
)
def get_clustered_locations(
self,
zoom_level: int,
bounds: Optional[GeoBounds] = None,
filters: Optional[MapFilters] = None,
) -> MapResponse:
"""
Get clustered location data for map display.
Args:
zoom_level: Map zoom level for clustering configuration
bounds: Optional geographic bounds
filters: Optional filtering criteria
Returns:
MapResponse with clustered data
"""
return self.get_map_data(
bounds=bounds, filters=filters, zoom_level=zoom_level, cluster=True
)
def get_locations_by_type(
self,
location_type: LocationType,
bounds: Optional[GeoBounds] = None,
limit: Optional[int] = None,
) -> List[UnifiedLocation]:
"""
Get locations of a specific type.
Args:
location_type: Type of locations to retrieve
bounds: Optional geographic bounds
limit: Optional limit on results
Returns:
List of UnifiedLocation objects
"""
try:
filters = MapFilters(location_types={location_type})
locations = self.location_layer.get_locations_by_type(
location_type, bounds, filters
)
if limit:
locations = locations[:limit]
return locations
except Exception as e:
print(f"Error getting locations by type: {e}")
return []
def invalidate_cache(
self,
location_type: Optional[str] = None,
location_id: Optional[int] = None,
bounds: Optional[GeoBounds] = None,
) -> None:
"""
Invalidate cached map data.
Args:
location_type: Optional specific location type to invalidate
location_id: Optional specific location ID to invalidate
bounds: Optional specific bounds to invalidate
"""
if location_type and location_id:
self.cache_service.invalidate_location_cache(location_type, location_id)
elif bounds:
self.cache_service.invalidate_bounds_cache(bounds)
else:
self.cache_service.clear_all_map_cache()
def get_service_stats(self) -> Dict[str, Any]:
"""Get service performance and usage statistics."""
cache_stats = self.cache_service.get_cache_stats()
return {
"cache_performance": cache_stats,
"clustering_available": True,
"supported_location_types": [t.value for t in LocationType],
"max_unclustered_points": self.MAX_UNCLUSTERED_POINTS,
"max_clustered_points": self.MAX_CLUSTERED_POINTS,
"service_version": "1.0.0",
}
def _get_locations_from_db(
self, bounds: Optional[GeoBounds], filters: Optional[MapFilters]
) -> List[UnifiedLocation]:
"""Get locations from database using the abstraction layer."""
return self.location_layer.get_all_locations(bounds, filters)
def _apply_smart_limiting(
self,
locations: List[UnifiedLocation],
bounds: Optional[GeoBounds],
zoom_level: int,
) -> List[UnifiedLocation]:
"""Apply intelligent limiting based on zoom level and density."""
if zoom_level < 6: # Very zoomed out - show only major parks
major_parks = [
loc
for loc in locations
if (
loc.type == LocationType.PARK
and loc.cluster_category in ["major_park", "theme_park"]
)
]
return major_parks[:200]
elif zoom_level < 10: # Regional level
return locations[:1000]
else: # City level and closer
return locations[: self.MAX_CLUSTERED_POINTS]
def _calculate_response_bounds(
self,
locations: List[UnifiedLocation],
clusters: List[ClusterData],
request_bounds: Optional[GeoBounds],
) -> Optional[GeoBounds]:
"""Calculate the actual bounds of the response data."""
if request_bounds:
return request_bounds
all_coords = []
# Add location coordinates
for loc in locations:
all_coords.append((loc.latitude, loc.longitude))
# Add cluster coordinates
for cluster in clusters:
all_coords.append(cluster.coordinates)
if not all_coords:
return None
lats, lngs = zip(*all_coords)
return GeoBounds(
north=max(lats), south=min(lats), east=max(lngs), west=min(lngs)
)
def _get_applied_filters_list(self, filters: Optional[MapFilters]) -> List[str]:
"""Get list of applied filter types for metadata."""
if not filters:
return []
applied = []
if filters.location_types:
applied.append("location_types")
if filters.search_query:
applied.append("search_query")
if filters.park_status:
applied.append("park_status")
if filters.ride_types:
applied.append("ride_types")
if filters.company_roles:
applied.append("company_roles")
if filters.min_rating:
applied.append("min_rating")
if filters.country:
applied.append("country")
if filters.state:
applied.append("state")
if filters.city:
applied.append("city")
return applied
def _generate_cache_key(
self,
bounds: Optional[GeoBounds],
filters: Optional[MapFilters],
zoom_level: int,
cluster: bool,
) -> str:
"""Generate cache key for the request."""
if cluster:
return self.cache_service.get_clusters_cache_key(
bounds, filters, zoom_level
)
else:
return self.cache_service.get_locations_cache_key(
bounds, filters, zoom_level
)
def _record_performance_metrics(
self,
start_time: float,
initial_query_count: int,
cache_hit: bool,
result_count: int,
bounds_used: bool,
clustering_used: bool,
) -> None:
"""Record performance metrics for monitoring."""
query_time_ms = int((time.time() - start_time) * 1000)
db_query_count = len(connection.queries) - initial_query_count
metrics = QueryPerformanceMetrics(
query_time_ms=query_time_ms,
db_query_count=db_query_count,
cache_hit=cache_hit,
result_count=result_count,
bounds_used=bounds_used,
clustering_used=clustering_used,
)
self.cache_service.record_performance_metrics(metrics)
# Global service instance
unified_map_service = UnifiedMapService()

View File

@@ -0,0 +1,407 @@
"""
Performance monitoring utilities and context managers.
"""
import time
import logging
from contextlib import contextmanager
from functools import wraps
from typing import Optional, Dict, Any, List
from django.db import connection
from django.conf import settings
from django.utils import timezone
logger = logging.getLogger("performance")
@contextmanager
def monitor_performance(operation_name: str, **tags):
"""Context manager for monitoring operation performance"""
start_time = time.time()
initial_queries = len(connection.queries)
# Create performance context
performance_context = {
"operation": operation_name,
"start_time": start_time,
"timestamp": timezone.now().isoformat(),
**tags,
}
try:
yield performance_context
except Exception as e:
performance_context["error"] = str(e)
performance_context["status"] = "error"
raise
else:
performance_context["status"] = "success"
finally:
end_time = time.time()
duration = end_time - start_time
total_queries = len(connection.queries) - initial_queries
# Update performance context with final metrics
performance_context.update(
{
"duration_seconds": duration,
"duration_ms": round(duration * 1000, 2),
"query_count": total_queries,
"end_time": end_time,
}
)
# Log performance data
log_level = (
logging.WARNING if duration > 2.0 or total_queries > 10 else logging.INFO
)
logger.log(
log_level,
f"Performance: {operation_name} completed in {
duration:.3f}s with {total_queries} queries",
extra=performance_context,
)
# Log slow operations with additional detail
if duration > 2.0:
logger.warning(
f"Slow operation detected: {operation_name} took {
duration:.3f}s",
extra={
"slow_operation": True,
"threshold_exceeded": "duration",
**performance_context,
},
)
if total_queries > 10:
logger.warning(
f"High query count: {operation_name} executed {total_queries} queries",
extra={
"high_query_count": True,
"threshold_exceeded": "query_count",
**performance_context,
},
)
@contextmanager
def track_queries(operation_name: str, warn_threshold: int = 10):
"""Context manager to track database queries for specific operations"""
if not settings.DEBUG:
yield
return
initial_queries = len(connection.queries)
start_time = time.time()
try:
yield
finally:
end_time = time.time()
total_queries = len(connection.queries) - initial_queries
execution_time = end_time - start_time
query_details = []
if hasattr(connection, "queries") and total_queries > 0:
recent_queries = connection.queries[-total_queries:]
query_details = [
{
"sql": (
query["sql"][:200] + "..."
if len(query["sql"]) > 200
else query["sql"]
),
"time": float(query["time"]),
}
for query in recent_queries
]
performance_data = {
"operation": operation_name,
"query_count": total_queries,
"execution_time": execution_time,
"queries": query_details if settings.DEBUG else [],
}
if total_queries > warn_threshold or execution_time > 1.0:
logger.warning(
f"Performance concern in {operation_name}: "
f"{total_queries} queries, {execution_time:.2f}s",
extra=performance_data,
)
else:
logger.debug(
f"Query tracking for {operation_name}: "
f"{total_queries} queries, {execution_time:.2f}s",
extra=performance_data,
)
class PerformanceProfiler:
"""Advanced performance profiling with detailed metrics"""
def __init__(self, name: str):
self.name = name
self.start_time = None
self.end_time = None
self.checkpoints = []
self.initial_queries = 0
self.memory_usage = {}
def start(self):
"""Start profiling"""
self.start_time = time.time()
self.initial_queries = len(connection.queries)
# Track memory usage if psutil is available
try:
import psutil
process = psutil.Process()
self.memory_usage["start"] = process.memory_info().rss
except ImportError:
pass
logger.debug(f"Started profiling: {self.name}")
def checkpoint(self, name: str):
"""Add a checkpoint"""
if self.start_time is None:
logger.warning(f"Checkpoint '{name}' called before profiling started")
return
current_time = time.time()
elapsed = current_time - self.start_time
queries_since_start = len(connection.queries) - self.initial_queries
checkpoint = {
"name": name,
"timestamp": current_time,
"elapsed_seconds": elapsed,
"queries_since_start": queries_since_start,
}
# Memory usage if available
try:
import psutil
process = psutil.Process()
checkpoint["memory_rss"] = process.memory_info().rss
except ImportError:
pass
self.checkpoints.append(checkpoint)
logger.debug(f"Checkpoint '{name}' at {elapsed:.3f}s")
def stop(self):
"""Stop profiling and log results"""
if self.start_time is None:
logger.warning("Profiling stopped before it was started")
return
self.end_time = time.time()
total_duration = self.end_time - self.start_time
total_queries = len(connection.queries) - self.initial_queries
# Final memory usage
try:
import psutil
process = psutil.Process()
self.memory_usage["end"] = process.memory_info().rss
except ImportError:
pass
# Create detailed profiling report
report = {
"profiler_name": self.name,
"total_duration": total_duration,
"total_queries": total_queries,
"checkpoints": self.checkpoints,
"memory_usage": self.memory_usage,
"queries_per_second": (
total_queries / total_duration if total_duration > 0 else 0
),
}
# Calculate checkpoint intervals
if len(self.checkpoints) > 1:
intervals = []
for i in range(1, len(self.checkpoints)):
prev = self.checkpoints[i - 1]
curr = self.checkpoints[i]
intervals.append(
{
"from": prev["name"],
"to": curr["name"],
"duration": curr["elapsed_seconds"] - prev["elapsed_seconds"],
"queries": curr["queries_since_start"]
- prev["queries_since_start"],
}
)
report["checkpoint_intervals"] = intervals
# Log the complete report
log_level = logging.WARNING if total_duration > 1.0 else logging.INFO
logger.log(
log_level,
f"Profiling complete: {
self.name} took {
total_duration:.3f}s with {total_queries} queries",
extra=report,
)
return report
@contextmanager
def profile_operation(name: str):
"""Context manager for detailed operation profiling"""
profiler = PerformanceProfiler(name)
profiler.start()
try:
yield profiler
finally:
profiler.stop()
class DatabaseQueryAnalyzer:
"""Analyze database query patterns and performance"""
@staticmethod
def analyze_queries(queries: List[Dict]) -> Dict[str, Any]:
"""Analyze a list of queries for patterns and issues"""
if not queries:
return {}
total_time = sum(float(q.get("time", 0)) for q in queries)
query_count = len(queries)
# Group queries by type
query_types = {}
for query in queries:
sql = query.get("sql", "").strip().upper()
query_type = sql.split()[0] if sql else "UNKNOWN"
query_types[query_type] = query_types.get(query_type, 0) + 1
# Find slow queries (top 10% by time)
sorted_queries = sorted(
queries, key=lambda q: float(q.get("time", 0)), reverse=True
)
slow_query_count = max(1, query_count // 10)
slow_queries = sorted_queries[:slow_query_count]
# Detect duplicate queries
query_signatures = {}
for query in queries:
# Simplified signature - remove literals and normalize whitespace
sql = query.get("sql", "")
signature = " ".join(sql.split()) # Normalize whitespace
query_signatures[signature] = query_signatures.get(signature, 0) + 1
duplicates = {
sig: count for sig, count in query_signatures.items() if count > 1
}
analysis = {
"total_queries": query_count,
"total_time": total_time,
"average_time": total_time / query_count if query_count > 0 else 0,
"query_types": query_types,
"slow_queries": [
{
"sql": (
q.get("sql", "")[:200] + "..."
if len(q.get("sql", "")) > 200
else q.get("sql", "")
),
"time": float(q.get("time", 0)),
}
for q in slow_queries
],
"duplicate_query_count": len(duplicates),
"duplicate_queries": (
duplicates
if len(duplicates) <= 10
else dict(list(duplicates.items())[:10])
),
}
return analysis
@classmethod
def analyze_current_queries(cls) -> Dict[str, Any]:
"""Analyze the current request's queries"""
if hasattr(connection, "queries"):
return cls.analyze_queries(connection.queries)
return {}
# Performance monitoring decorators
def monitor_function_performance(operation_name: Optional[str] = None):
"""Decorator to monitor function performance"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
name = operation_name or f"{func.__module__}.{func.__name__}"
with monitor_performance(
name, function=func.__name__, module=func.__module__
):
return func(*args, **kwargs)
return wrapper
return decorator
def track_database_queries(warn_threshold: int = 10):
"""Decorator to track database queries for a function"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
operation_name = f"{func.__module__}.{func.__name__}"
with track_queries(operation_name, warn_threshold):
return func(*args, **kwargs)
return wrapper
return decorator
# Performance metrics collection
class PerformanceMetrics:
"""Collect and aggregate performance metrics"""
def __init__(self):
self.metrics = []
def record_metric(self, name: str, value: float, tags: Optional[Dict] = None):
"""Record a performance metric"""
metric = {
"name": name,
"value": value,
"timestamp": timezone.now().isoformat(),
"tags": tags or {},
}
self.metrics.append(metric)
# Log the metric
logger.info(f"Performance metric: {name} = {value}", extra=metric)
def get_metrics(self, name: Optional[str] = None) -> List[Dict]:
"""Get recorded metrics, optionally filtered by name"""
if name:
return [m for m in self.metrics if m["name"] == name]
return self.metrics.copy()
def clear_metrics(self):
"""Clear all recorded metrics"""
self.metrics.clear()
# Global performance metrics instance
performance_metrics = PerformanceMetrics()

View File

@@ -0,0 +1 @@
# Create your tests here.

View File

@@ -0,0 +1,35 @@
"""
URL patterns for the unified map service API.
"""
from django.urls import path
from ..views.map_views import (
MapLocationsView,
MapLocationDetailView,
MapSearchView,
MapBoundsView,
MapStatsView,
MapCacheView,
)
app_name = "map_api"
urlpatterns = [
# Main map data endpoint
path("locations/", MapLocationsView.as_view(), name="locations"),
# Location detail endpoint
path(
"locations/<str:location_type>/<int:location_id>/",
MapLocationDetailView.as_view(),
name="location_detail",
),
# Search endpoint
path("search/", MapSearchView.as_view(), name="search"),
# Bounds-based query endpoint
path("bounds/", MapBoundsView.as_view(), name="bounds"),
# Service statistics endpoint
path("stats/", MapStatsView.as_view(), name="stats"),
# Cache management endpoints
path("cache/", MapCacheView.as_view(), name="cache"),
path("cache/invalidate/", MapCacheView.as_view(), name="cache_invalidate"),
]

View File

@@ -0,0 +1,39 @@
"""
URL patterns for map views.
Includes both HTML views and HTMX endpoints.
"""
from django.urls import path
from ..views.maps import (
UniversalMapView,
ParkMapView,
NearbyLocationsView,
LocationFilterView,
LocationSearchView,
MapBoundsUpdateView,
LocationDetailModalView,
LocationListView,
)
app_name = "maps"
urlpatterns = [
# Main map views
path("", UniversalMapView.as_view(), name="universal_map"),
path("parks/", ParkMapView.as_view(), name="park_map"),
path("nearby/", NearbyLocationsView.as_view(), name="nearby_locations"),
path("list/", LocationListView.as_view(), name="location_list"),
# HTMX endpoints for dynamic updates
path("htmx/filter/", LocationFilterView.as_view(), name="htmx_filter"),
path("htmx/search/", LocationSearchView.as_view(), name="htmx_search"),
path(
"htmx/bounds/",
MapBoundsUpdateView.as_view(),
name="htmx_bounds_update",
),
path(
"htmx/location/<str:location_type>/<int:location_id>/",
LocationDetailModalView.as_view(),
name="htmx_location_detail",
),
]

View File

@@ -0,0 +1,24 @@
from django.urls import path
from apps.core.views.search import (
AdaptiveSearchView,
FilterFormView,
LocationSearchView,
LocationSuggestionsView,
)
from apps.rides.views import RideSearchView
app_name = "search"
urlpatterns = [
path("parks/", AdaptiveSearchView.as_view(), name="search"),
path("parks/filters/", FilterFormView.as_view(), name="filter_form"),
path("rides/", RideSearchView.as_view(), name="ride_search"),
path("rides/results/", RideSearchView.as_view(), name="ride_search_results"),
# Location-aware search
path("location/", LocationSearchView.as_view(), name="location_search"),
path(
"location/suggestions/",
LocationSuggestionsView.as_view(),
name="location_suggestions",
),
]

View File

@@ -0,0 +1 @@
# Core utilities

View File

@@ -0,0 +1,432 @@
"""
Database query optimization utilities and helpers.
"""
import time
import logging
from contextlib import contextmanager
from typing import Optional, Dict, Any, List, Type
from django.db import connection, models
from django.db.models import QuerySet, Prefetch, Count, Avg, Max
from django.conf import settings
from django.core.cache import cache
logger = logging.getLogger("query_optimization")
@contextmanager
def track_queries(
operation_name: str, warn_threshold: int = 10, time_threshold: float = 1.0
):
"""
Context manager to track database queries for specific operations
Args:
operation_name: Name of the operation being tracked
warn_threshold: Number of queries that triggers a warning
time_threshold: Execution time in seconds that triggers a warning
"""
if not settings.DEBUG:
yield
return
initial_queries = len(connection.queries)
start_time = time.time()
try:
yield
finally:
end_time = time.time()
total_queries = len(connection.queries) - initial_queries
execution_time = end_time - start_time
# Collect query details
query_details = []
if hasattr(connection, "queries") and total_queries > 0:
recent_queries = connection.queries[-total_queries:]
query_details = [
{
"sql": (
query["sql"][:500] + "..."
if len(query["sql"]) > 500
else query["sql"]
),
"time": float(query["time"]),
"duplicate_count": sum(
1 for q in recent_queries if q["sql"] == query["sql"]
),
}
for query in recent_queries
]
performance_data = {
"operation": operation_name,
"query_count": total_queries,
"execution_time": execution_time,
"queries": query_details if settings.DEBUG else [],
"slow_queries": [
q for q in query_details if q["time"] > 0.1
], # Queries slower than 100ms
}
# Log warnings for performance issues
if total_queries > warn_threshold or execution_time > time_threshold:
logger.warning(
f"Performance concern in {operation_name}: "
f"{total_queries} queries, {execution_time:.2f}s",
extra=performance_data,
)
else:
logger.debug(
f"Query tracking for {operation_name}: "
f"{total_queries} queries, {execution_time:.2f}s",
extra=performance_data,
)
class QueryOptimizer:
"""Utility class for common query optimization patterns"""
@staticmethod
def optimize_park_queryset(queryset: QuerySet) -> QuerySet:
"""
Optimize Park queryset with proper select_related and prefetch_related
"""
return (
queryset.select_related("location", "operator", "created_by")
.prefetch_related("areas", "rides__manufacturer", "reviews__user")
.annotate(
ride_count=Count("rides"),
average_rating=Avg("reviews__rating"),
latest_review_date=Max("reviews__created_at"),
)
)
@staticmethod
def optimize_ride_queryset(queryset: QuerySet) -> QuerySet:
"""
Optimize Ride queryset with proper relationships
"""
return (
queryset.select_related(
"park", "park__location", "manufacturer", "created_by"
)
.prefetch_related("reviews__user", "media_items")
.annotate(
review_count=Count("reviews"),
average_rating=Avg("reviews__rating"),
latest_review_date=Max("reviews__created_at"),
)
)
@staticmethod
def optimize_user_queryset(queryset: QuerySet) -> QuerySet:
"""
Optimize User queryset for profile views
"""
return queryset.prefetch_related(
Prefetch("park_reviews", to_attr="cached_park_reviews"),
Prefetch("ride_reviews", to_attr="cached_ride_reviews"),
"authored_parks",
"authored_rides",
).annotate(
total_reviews=Count("park_reviews") + Count("ride_reviews"),
parks_authored=Count("authored_parks"),
rides_authored=Count("authored_rides"),
)
@staticmethod
def create_bulk_queryset(model: Type[models.Model], ids: List[int]) -> QuerySet:
"""
Create an optimized queryset for bulk operations
"""
queryset = model.objects.filter(id__in=ids)
# Apply model-specific optimizations
if hasattr(model, "_meta") and model._meta.model_name == "park":
return QueryOptimizer.optimize_park_queryset(queryset)
elif hasattr(model, "_meta") and model._meta.model_name == "ride":
return QueryOptimizer.optimize_ride_queryset(queryset)
elif hasattr(model, "_meta") and model._meta.model_name == "user":
return QueryOptimizer.optimize_user_queryset(queryset)
return queryset
class QueryCache:
"""Caching utilities for expensive queries"""
@staticmethod
def cache_queryset_result(
cache_key: str, queryset_func, timeout: int = 3600, **kwargs
):
"""
Cache the result of an expensive queryset operation
Args:
cache_key: Unique key for caching
queryset_func: Function that returns the queryset result
timeout: Cache timeout in seconds
**kwargs: Arguments to pass to queryset_func
"""
# Try to get from cache first
cached_result = cache.get(cache_key)
if cached_result is not None:
logger.debug(f"Cache hit for queryset: {cache_key}")
return cached_result
# Execute the expensive operation
with track_queries(f"cache_miss_{cache_key}"):
result = queryset_func(**kwargs)
# Cache the result
cache.set(cache_key, result, timeout)
logger.debug(f"Cached queryset result: {cache_key}")
return result
@staticmethod
def invalidate_model_cache(model_name: str, instance_id: Optional[int] = None):
"""
Invalidate cache keys related to a specific model
Args:
model_name: Name of the model (e.g., 'park', 'ride')
instance_id: Specific instance ID, if applicable
"""
# Pattern-based cache invalidation (works with Redis)
if instance_id:
pattern = f"*{model_name}_{instance_id}*"
else:
pattern = f"*{model_name}*"
try:
# For Redis cache backends that support pattern deletion
if hasattr(cache, "delete_pattern"):
deleted_count = cache.delete_pattern(pattern)
logger.info(
f"Invalidated {deleted_count} cache keys for pattern: {pattern}"
)
else:
logger.warning(
f"Cache backend does not support pattern deletion: {pattern}"
)
except Exception as e:
logger.error(f"Error invalidating cache pattern {pattern}: {e}")
class IndexAnalyzer:
"""Analyze and suggest database indexes"""
@staticmethod
def analyze_slow_queries(min_time: float = 0.1) -> List[Dict[str, Any]]:
"""
Analyze slow queries from the current request
Args:
min_time: Minimum query time in seconds to consider "slow"
"""
if not hasattr(connection, "queries"):
return []
slow_queries = []
for query in connection.queries:
query_time = float(query.get("time", 0))
if query_time >= min_time:
slow_queries.append(
{
"sql": query["sql"],
"time": query_time,
"analysis": IndexAnalyzer._analyze_query_sql(query["sql"]),
}
)
return slow_queries
@staticmethod
def _analyze_query_sql(sql: str) -> Dict[str, Any]:
"""
Analyze SQL to suggest potential optimizations
"""
sql_upper = sql.upper()
analysis = {
"has_where_clause": "WHERE" in sql_upper,
"has_join": any(
join in sql_upper
for join in ["JOIN", "INNER JOIN", "LEFT JOIN", "RIGHT JOIN"]
),
"has_order_by": "ORDER BY" in sql_upper,
"has_group_by": "GROUP BY" in sql_upper,
"has_like": "LIKE" in sql_upper,
"table_scans": [],
"suggestions": [],
}
# Detect potential table scans
if "WHERE" not in sql_upper and "SELECT COUNT(*) FROM" not in sql_upper:
analysis["table_scans"].append("Query may be doing a full table scan")
# Suggest indexes based on patterns
if analysis["has_where_clause"] and not analysis["has_join"]:
analysis["suggestions"].append(
"Consider adding indexes on WHERE clause columns"
)
if analysis["has_order_by"]:
analysis["suggestions"].append(
"Consider adding indexes on ORDER BY columns"
)
if analysis["has_like"] and "%" not in sql[: sql.find("LIKE") + 10]:
analysis["suggestions"].append(
"LIKE queries with leading wildcards cannot use indexes efficiently"
)
return analysis
@staticmethod
def suggest_model_indexes(model: Type[models.Model]) -> List[str]:
"""
Suggest database indexes for a Django model based on its fields
"""
suggestions = []
opts = model._meta
# Foreign key fields should have indexes (Django adds these
# automatically)
for field in opts.fields:
if isinstance(field, models.ForeignKey):
suggestions.append(
f"Index on {field.name} (automatically created by Django)"
)
# Suggest composite indexes for common query patterns
date_fields = [
f.name
for f in opts.fields
if isinstance(f, (models.DateField, models.DateTimeField))
]
status_fields = [
f.name
for f in opts.fields
if f.name in ["status", "is_active", "is_published"]
]
if date_fields and status_fields:
for date_field in date_fields:
for status_field in status_fields:
suggestions.append(
f"Composite index on ({status_field}, {date_field}) for filtered date queries"
)
# Suggest indexes for fields commonly used in WHERE clauses
common_filter_fields = ["slug", "name", "created_at", "updated_at"]
for field in opts.fields:
if field.name in common_filter_fields and not field.db_index:
suggestions.append(
f"Consider adding db_index=True to {
field.name}"
)
return suggestions
def log_query_performance():
"""Decorator to log query performance for a function"""
def decorator(func):
def wrapper(*args, **kwargs):
operation_name = f"{func.__module__}.{func.__name__}"
with track_queries(operation_name):
return func(*args, **kwargs)
return wrapper
return decorator
def optimize_queryset_for_serialization(
queryset: QuerySet, fields: List[str]
) -> QuerySet:
"""
Optimize a queryset for API serialization by only selecting needed fields
Args:
queryset: The queryset to optimize
fields: List of field names that will be serialized
"""
# Extract foreign key fields that need select_related
model = queryset.model
opts = model._meta
select_related_fields = []
prefetch_related_fields = []
for field_name in fields:
try:
field = opts.get_field(field_name)
if isinstance(field, models.ForeignKey):
select_related_fields.append(field_name)
elif isinstance(
field, (models.ManyToManyField, models.reverse.ManyToManyRel)
):
prefetch_related_fields.append(field_name)
except models.FieldDoesNotExist:
# Field might be a property or method, skip optimization
continue
# Apply optimizations
if select_related_fields:
queryset = queryset.select_related(*select_related_fields)
if prefetch_related_fields:
queryset = queryset.prefetch_related(*prefetch_related_fields)
return queryset
# Query performance monitoring context manager
@contextmanager
def monitor_db_performance(operation_name: str):
"""
Context manager that monitors database performance for an operation
"""
initial_queries = len(connection.queries) if hasattr(connection, "queries") else 0
start_time = time.time()
try:
yield
finally:
end_time = time.time()
duration = end_time - start_time
if hasattr(connection, "queries"):
total_queries = len(connection.queries) - initial_queries
# Analyze queries for performance issues
slow_queries = IndexAnalyzer.analyze_slow_queries(0.05) # 50ms threshold
performance_data = {
"operation": operation_name,
"duration": duration,
"query_count": total_queries,
"slow_query_count": len(slow_queries),
# Limit to top 5 slow queries
"slow_queries": slow_queries[:5],
}
# Log performance data
if duration > 1.0 or total_queries > 15 or slow_queries:
logger.warning(
f"Performance issue in {operation_name}: "
f"{
duration:.3f}s, {total_queries} queries, {
len(slow_queries)} slow",
extra=performance_data,
)
else:
logger.debug(
f"DB performance for {operation_name}: "
f"{duration:.3f}s, {total_queries} queries",
extra=performance_data,
)

View File

@@ -0,0 +1 @@
# Core views

View File

@@ -0,0 +1,273 @@
"""
Enhanced health check views for API monitoring.
"""
import time
from django.http import JsonResponse
from django.utils import timezone
from django.views import View
from django.conf import settings
from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework.permissions import AllowAny
from health_check.views import MainView
from apps.core.services.enhanced_cache_service import CacheMonitor
from apps.core.utils.query_optimization import IndexAnalyzer
class HealthCheckAPIView(APIView):
"""
Enhanced API endpoint for health checks with detailed JSON response
"""
permission_classes = [AllowAny] # Public endpoint
def get(self, request):
"""Return comprehensive health check information"""
start_time = time.time()
# Get basic health check results
main_view = MainView()
main_view.request = request
plugins = main_view.plugins
errors = main_view.errors
# Collect additional performance metrics
cache_monitor = CacheMonitor()
cache_stats = cache_monitor.get_cache_stats()
# Build comprehensive health data
health_data = {
"status": "healthy" if not errors else "unhealthy",
"timestamp": timezone.now().isoformat(),
"version": getattr(settings, "VERSION", "1.0.0"),
"environment": getattr(settings, "ENVIRONMENT", "development"),
"response_time_ms": 0, # Will be calculated at the end
"checks": {},
"metrics": {
"cache": cache_stats,
"database": self._get_database_metrics(),
"system": self._get_system_metrics(),
},
}
# Process individual health checks
for plugin in plugins:
plugin_name = plugin.identifier()
plugin_errors = errors.get(plugin.__class__.__name__, [])
health_data["checks"][plugin_name] = {
"status": "healthy" if not plugin_errors else "unhealthy",
"critical": getattr(plugin, "critical_service", False),
"errors": [str(error) for error in plugin_errors],
"response_time_ms": getattr(plugin, "_response_time", None),
}
# Calculate total response time
health_data["response_time_ms"] = round((time.time() - start_time) * 1000, 2)
# Determine HTTP status code
status_code = 200
if errors:
# Check if any critical services are failing
critical_errors = any(
getattr(plugin, "critical_service", False)
for plugin in plugins
if errors.get(plugin.__class__.__name__)
)
status_code = 503 if critical_errors else 200
return Response(health_data, status=status_code)
def _get_database_metrics(self):
"""Get database performance metrics"""
try:
from django.db import connection
# Get basic connection info
metrics = {
"vendor": connection.vendor,
"connection_status": "connected",
}
# Test query performance
start_time = time.time()
with connection.cursor() as cursor:
cursor.execute("SELECT 1")
cursor.fetchone()
query_time = (time.time() - start_time) * 1000
metrics["test_query_time_ms"] = round(query_time, 2)
# PostgreSQL specific metrics
if connection.vendor == "postgresql":
try:
with connection.cursor() as cursor:
cursor.execute(
"""
SELECT
numbackends as active_connections,
xact_commit as transactions_committed,
xact_rollback as transactions_rolled_back,
blks_read as blocks_read,
blks_hit as blocks_hit
FROM pg_stat_database
WHERE datname = current_database()
"""
)
row = cursor.fetchone()
if row:
metrics.update(
{
"active_connections": row[0],
"transactions_committed": row[1],
"transactions_rolled_back": row[2],
"cache_hit_ratio": (
round(
(row[4] / (row[3] + row[4])) * 100,
2,
)
if (row[3] + row[4]) > 0
else 0
),
}
)
except Exception:
pass # Skip advanced metrics if not available
return metrics
except Exception as e:
return {"connection_status": "error", "error": str(e)}
def _get_system_metrics(self):
"""Get system performance metrics"""
metrics = {
"debug_mode": settings.DEBUG,
"allowed_hosts": (settings.ALLOWED_HOSTS if settings.DEBUG else ["hidden"]),
}
try:
import psutil
# Memory metrics
memory = psutil.virtual_memory()
metrics["memory"] = {
"total_mb": round(memory.total / 1024 / 1024, 2),
"available_mb": round(memory.available / 1024 / 1024, 2),
"percent_used": memory.percent,
}
# CPU metrics
metrics["cpu"] = {
"percent_used": psutil.cpu_percent(interval=0.1),
"core_count": psutil.cpu_count(),
}
# Disk metrics
disk = psutil.disk_usage("/")
metrics["disk"] = {
"total_gb": round(disk.total / 1024 / 1024 / 1024, 2),
"free_gb": round(disk.free / 1024 / 1024 / 1024, 2),
"percent_used": round((disk.used / disk.total) * 100, 2),
}
except ImportError:
metrics["system_monitoring"] = "psutil not available"
except Exception as e:
metrics["system_error"] = str(e)
return metrics
class PerformanceMetricsView(APIView):
"""
API view for performance metrics and database analysis
"""
permission_classes = [AllowAny] if settings.DEBUG else []
def get(self, request):
"""Return performance metrics and analysis"""
if not settings.DEBUG:
return Response({"error": "Only available in debug mode"}, status=403)
metrics = {
"timestamp": timezone.now().isoformat(),
"database_analysis": self._get_database_analysis(),
"cache_performance": self._get_cache_performance(),
"recent_slow_queries": self._get_slow_queries(),
}
return Response(metrics)
def _get_database_analysis(self):
"""Analyze database performance"""
try:
from django.db import connection
analysis = {
"total_queries": len(connection.queries),
"query_analysis": IndexAnalyzer.analyze_slow_queries(0.05),
}
if connection.queries:
query_times = [float(q.get("time", 0)) for q in connection.queries]
analysis.update(
{
"total_query_time": sum(query_times),
"average_query_time": sum(query_times) / len(query_times),
"slowest_query_time": max(query_times),
"fastest_query_time": min(query_times),
}
)
return analysis
except Exception as e:
return {"error": str(e)}
def _get_cache_performance(self):
"""Get cache performance metrics"""
try:
cache_monitor = CacheMonitor()
return cache_monitor.get_cache_stats()
except Exception as e:
return {"error": str(e)}
def _get_slow_queries(self):
"""Get recent slow queries"""
try:
return IndexAnalyzer.analyze_slow_queries(0.1) # 100ms threshold
except Exception as e:
return {"error": str(e)}
class SimpleHealthView(View):
"""
Simple health check endpoint for load balancers
"""
def get(self, request):
"""Return simple OK status"""
try:
# Basic database connectivity test
from django.db import connection
with connection.cursor() as cursor:
cursor.execute("SELECT 1")
cursor.fetchone()
return JsonResponse(
{"status": "ok", "timestamp": timezone.now().isoformat()}
)
except Exception as e:
return JsonResponse(
{
"status": "error",
"error": str(e),
"timestamp": timezone.now().isoformat(),
},
status=503,
)

View File

@@ -0,0 +1,699 @@
"""
API views for the unified map service.
Enhanced with proper error handling, pagination, and performance optimizations.
"""
import json
import logging
from typing import Dict, Any, Optional
from django.http import JsonResponse, HttpRequest
from django.views.decorators.cache import cache_page
from django.views.decorators.gzip import gzip_page
from django.utils.decorators import method_decorator
from django.views import View
from django.core.exceptions import ValidationError
from django.conf import settings
import time
from ..services.map_service import unified_map_service
from ..services.data_structures import GeoBounds, MapFilters, LocationType
logger = logging.getLogger(__name__)
class MapAPIView(View):
"""Base view for map API endpoints with common functionality."""
# Pagination settings
DEFAULT_PAGE_SIZE = 50
MAX_PAGE_SIZE = 200
def dispatch(self, request, *args, **kwargs):
"""Add CORS headers, compression, and handle preflight requests."""
start_time = time.time()
try:
response = super().dispatch(request, *args, **kwargs)
# Add CORS headers for API access
response["Access-Control-Allow-Origin"] = "*"
response["Access-Control-Allow-Methods"] = "GET, POST, OPTIONS"
response["Access-Control-Allow-Headers"] = "Content-Type, Authorization"
# Add performance headers
response["X-Response-Time"] = (
f"{(time.time() -
start_time) *
1000:.2f}ms"
)
# Add compression hint for large responses
if hasattr(response, "content") and len(response.content) > 1024:
response["Content-Encoding"] = "gzip"
return response
except Exception as e:
logger.error(
f"API error in {
request.path}: {
str(e)}",
exc_info=True,
)
return self._error_response("An internal server error occurred", status=500)
def options(self, request, *args, **kwargs):
"""Handle preflight CORS requests."""
return JsonResponse({}, status=200)
def _parse_bounds(self, request: HttpRequest) -> Optional[GeoBounds]:
"""Parse geographic bounds from request parameters."""
try:
north = request.GET.get("north")
south = request.GET.get("south")
east = request.GET.get("east")
west = request.GET.get("west")
if all(param is not None for param in [north, south, east, west]):
bounds = GeoBounds(
north=float(north),
south=float(south),
east=float(east),
west=float(west),
)
# Validate bounds
if not (-90 <= bounds.south <= bounds.north <= 90):
raise ValidationError("Invalid latitude bounds")
if not (-180 <= bounds.west <= bounds.east <= 180):
raise ValidationError("Invalid longitude bounds")
return bounds
return None
except (ValueError, TypeError) as e:
raise ValidationError(f"Invalid bounds parameters: {e}")
def _parse_pagination(self, request: HttpRequest) -> Dict[str, int]:
"""Parse pagination parameters from request."""
try:
page = max(1, int(request.GET.get("page", 1)))
page_size = min(
self.MAX_PAGE_SIZE,
max(
1,
int(request.GET.get("page_size", self.DEFAULT_PAGE_SIZE)),
),
)
offset = (page - 1) * page_size
return {
"page": page,
"page_size": page_size,
"offset": offset,
"limit": page_size,
}
except (ValueError, TypeError):
return {
"page": 1,
"page_size": self.DEFAULT_PAGE_SIZE,
"offset": 0,
"limit": self.DEFAULT_PAGE_SIZE,
}
def _parse_filters(self, request: HttpRequest) -> Optional[MapFilters]:
"""Parse filtering parameters from request."""
try:
filters = MapFilters()
# Location types
location_types_param = request.GET.get("types")
if location_types_param:
type_strings = location_types_param.split(",")
valid_types = {lt.value for lt in LocationType}
filters.location_types = {
LocationType(t.strip())
for t in type_strings
if t.strip() in valid_types
}
# Park status
park_status_param = request.GET.get("park_status")
if park_status_param:
filters.park_status = set(park_status_param.split(","))
# Ride types
ride_types_param = request.GET.get("ride_types")
if ride_types_param:
filters.ride_types = set(ride_types_param.split(","))
# Company roles
company_roles_param = request.GET.get("company_roles")
if company_roles_param:
filters.company_roles = set(company_roles_param.split(","))
# Search query with length validation
search_query = request.GET.get("q") or request.GET.get("search")
if search_query and len(search_query.strip()) >= 2:
filters.search_query = search_query.strip()
# Rating filter with validation
min_rating_param = request.GET.get("min_rating")
if min_rating_param:
min_rating = float(min_rating_param)
if 0 <= min_rating <= 10:
filters.min_rating = min_rating
# Geographic filters with validation
country = request.GET.get("country", "").strip()
if country and len(country) >= 2:
filters.country = country
state = request.GET.get("state", "").strip()
if state and len(state) >= 2:
filters.state = state
city = request.GET.get("city", "").strip()
if city and len(city) >= 2:
filters.city = city
# Coordinates requirement
has_coordinates_param = request.GET.get("has_coordinates")
if has_coordinates_param is not None:
filters.has_coordinates = has_coordinates_param.lower() in [
"true",
"1",
"yes",
]
return (
filters
if any(
[
filters.location_types,
filters.park_status,
filters.ride_types,
filters.company_roles,
filters.search_query,
filters.min_rating,
filters.country,
filters.state,
filters.city,
]
)
else None
)
except (ValueError, TypeError) as e:
raise ValidationError(f"Invalid filter parameters: {e}")
def _parse_zoom_level(self, request: HttpRequest) -> int:
"""Parse zoom level from request with default."""
try:
zoom_param = request.GET.get("zoom", "10")
zoom_level = int(zoom_param)
return max(1, min(20, zoom_level)) # Clamp between 1 and 20
except (ValueError, TypeError):
return 10 # Default zoom level
def _create_paginated_response(
self,
data: list,
total_count: int,
pagination: Dict[str, int],
request: HttpRequest,
) -> Dict[str, Any]:
"""Create paginated response with metadata."""
total_pages = (total_count + pagination["page_size"] - 1) // pagination[
"page_size"
]
# Build pagination URLs
base_url = request.build_absolute_uri(request.path)
query_params = request.GET.copy()
next_url = None
if pagination["page"] < total_pages:
query_params["page"] = pagination["page"] + 1
next_url = f"{base_url}?{query_params.urlencode()}"
prev_url = None
if pagination["page"] > 1:
query_params["page"] = pagination["page"] - 1
prev_url = f"{base_url}?{query_params.urlencode()}"
return {
"status": "success",
"data": data,
"pagination": {
"page": pagination["page"],
"page_size": pagination["page_size"],
"total_pages": total_pages,
"total_count": total_count,
"has_next": pagination["page"] < total_pages,
"has_previous": pagination["page"] > 1,
"next_url": next_url,
"previous_url": prev_url,
},
}
def _error_response(
self,
message: str,
status: int = 400,
error_code: str = None,
details: Dict[str, Any] = None,
) -> JsonResponse:
"""Return standardized error response with enhanced information."""
response_data = {
"status": "error",
"message": message,
"timestamp": time.time(),
"data": None,
}
if error_code:
response_data["error_code"] = error_code
if details:
response_data["details"] = details
# Add request ID for debugging in production
if hasattr(settings, "DEBUG") and not settings.DEBUG:
response_data["request_id"] = getattr(self.request, "id", None)
return JsonResponse(response_data, status=status)
def _success_response(
self, data: Any, message: str = None, metadata: Dict[str, Any] = None
) -> JsonResponse:
"""Return standardized success response."""
response_data = {
"status": "success",
"data": data,
"timestamp": time.time(),
}
if message:
response_data["message"] = message
if metadata:
response_data["metadata"] = metadata
return JsonResponse(response_data)
class MapLocationsView(MapAPIView):
"""
API endpoint for getting map locations with optional clustering.
GET /api/map/locations/
Parameters:
- north, south, east, west: Bounding box coordinates
- zoom: Zoom level (1-20)
- types: Comma-separated location types (park,ride,company,generic)
- cluster: Whether to enable clustering (true/false)
- q: Search query
- park_status: Park status filter
- ride_types: Ride type filter
- min_rating: Minimum rating filter
- country, state, city: Geographic filters
"""
@method_decorator(cache_page(300)) # Cache for 5 minutes
@method_decorator(gzip_page) # Compress large responses
def get(self, request: HttpRequest) -> JsonResponse:
"""Get map locations with optional clustering and filtering."""
try:
# Parse parameters
bounds = self._parse_bounds(request)
filters = self._parse_filters(request)
zoom_level = self._parse_zoom_level(request)
pagination = self._parse_pagination(request)
# Clustering preference
cluster_param = request.GET.get("cluster", "true")
enable_clustering = cluster_param.lower() in ["true", "1", "yes"]
# Cache preference
use_cache_param = request.GET.get("cache", "true")
use_cache = use_cache_param.lower() in ["true", "1", "yes"]
# Validate request
if not enable_clustering and not bounds and not filters:
return self._error_response(
"Either bounds, filters, or clustering must be specified for non-clustered requests",
error_code="MISSING_PARAMETERS",
)
# Get map data
response = unified_map_service.get_map_data(
bounds=bounds,
filters=filters,
zoom_level=zoom_level,
cluster=enable_clustering,
use_cache=use_cache,
)
# Handle pagination for non-clustered results
if not enable_clustering and response.locations:
start_idx = pagination["offset"]
end_idx = start_idx + pagination["limit"]
paginated_locations = response.locations[start_idx:end_idx]
return JsonResponse(
self._create_paginated_response(
[loc.to_dict() for loc in paginated_locations],
len(response.locations),
pagination,
request,
)
)
# For clustered results, return as-is with metadata
response_dict = response.to_dict()
return self._success_response(
response_dict,
metadata={
"clustered": response.clustered,
"cache_hit": response.cache_hit,
"query_time_ms": response.query_time_ms,
"filters_applied": response.filters_applied,
},
)
except ValidationError as e:
logger.warning(f"Validation error in MapLocationsView: {str(e)}")
return self._error_response(str(e), 400, error_code="VALIDATION_ERROR")
except Exception as e:
logger.error(f"Error in MapLocationsView: {str(e)}", exc_info=True)
return self._error_response(
"Failed to retrieve map locations",
500,
error_code="INTERNAL_ERROR",
)
class MapLocationDetailView(MapAPIView):
"""
API endpoint for getting detailed information about a specific location.
GET /api/map/locations/<type>/<id>/
"""
@method_decorator(cache_page(600)) # Cache for 10 minutes
def get(
self, request: HttpRequest, location_type: str, location_id: int
) -> JsonResponse:
"""Get detailed information for a specific location."""
try:
# Validate location type
valid_types = [lt.value for lt in LocationType]
if location_type not in valid_types:
return self._error_response(
f"Invalid location type: {location_type}. Valid types: {
', '.join(valid_types)}",
400,
error_code="INVALID_LOCATION_TYPE",
)
# Validate location ID
if location_id <= 0:
return self._error_response(
"Location ID must be a positive integer",
400,
error_code="INVALID_LOCATION_ID",
)
# Get location details
location = unified_map_service.get_location_details(
location_type, location_id
)
if not location:
return self._error_response(
f"Location not found: {location_type}/{location_id}",
404,
error_code="LOCATION_NOT_FOUND",
)
return self._success_response(
location.to_dict(),
metadata={
"location_type": location_type,
"location_id": location_id,
},
)
except ValueError as e:
logger.warning(f"Value error in MapLocationDetailView: {str(e)}")
return self._error_response(str(e), 400, error_code="INVALID_PARAMETER")
except Exception as e:
logger.error(
f"Error in MapLocationDetailView: {
str(e)}",
exc_info=True,
)
return self._error_response(
"Failed to retrieve location details",
500,
error_code="INTERNAL_ERROR",
)
class MapSearchView(MapAPIView):
"""
API endpoint for searching locations by text query.
GET /api/map/search/
Parameters:
- q: Search query (required)
- north, south, east, west: Optional bounding box
- types: Comma-separated location types
- limit: Maximum results (default 50)
"""
@method_decorator(gzip_page) # Compress responses
def get(self, request: HttpRequest) -> JsonResponse:
"""Search locations by text query with pagination."""
try:
# Get and validate search query
query = request.GET.get("q", "").strip()
if not query:
return self._error_response(
"Search query 'q' parameter is required",
400,
error_code="MISSING_QUERY",
)
if len(query) < 2:
return self._error_response(
"Search query must be at least 2 characters long",
400,
error_code="QUERY_TOO_SHORT",
)
# Parse parameters
bounds = self._parse_bounds(request)
pagination = self._parse_pagination(request)
# Parse location types
location_types = None
types_param = request.GET.get("types")
if types_param:
try:
valid_types = {lt.value for lt in LocationType}
location_types = {
LocationType(t.strip())
for t in types_param.split(",")
if t.strip() in valid_types
}
except ValueError:
return self._error_response(
"Invalid location types",
400,
error_code="INVALID_TYPES",
)
# Set reasonable search limit (higher for search than general
# listings)
search_limit = min(500, pagination["page"] * pagination["page_size"])
# Perform search
locations = unified_map_service.search_locations(
query=query,
bounds=bounds,
location_types=location_types,
limit=search_limit,
)
# Apply pagination
start_idx = pagination["offset"]
end_idx = start_idx + pagination["limit"]
paginated_locations = locations[start_idx:end_idx]
return JsonResponse(
self._create_paginated_response(
[loc.to_dict() for loc in paginated_locations],
len(locations),
pagination,
request,
)
)
except ValidationError as e:
logger.warning(f"Validation error in MapSearchView: {str(e)}")
return self._error_response(str(e), 400, error_code="VALIDATION_ERROR")
except ValueError as e:
logger.warning(f"Value error in MapSearchView: {str(e)}")
return self._error_response(str(e), 400, error_code="INVALID_PARAMETER")
except Exception as e:
logger.error(f"Error in MapSearchView: {str(e)}", exc_info=True)
return self._error_response(
"Search failed due to internal error",
500,
error_code="SEARCH_FAILED",
)
class MapBoundsView(MapAPIView):
"""
API endpoint for getting locations within specific bounds.
GET /api/map/bounds/
Parameters:
- north, south, east, west: Bounding box coordinates (required)
- types: Comma-separated location types
- zoom: Zoom level
"""
@method_decorator(cache_page(300)) # Cache for 5 minutes
def get(self, request: HttpRequest) -> JsonResponse:
"""Get locations within specific geographic bounds."""
try:
# Parse required bounds
bounds = self._parse_bounds(request)
if not bounds:
return self._error_response(
"Bounds parameters required: north, south, east, west", 400
)
# Parse optional filters
location_types = None
types_param = request.GET.get("types")
if types_param:
location_types = {
LocationType(t.strip())
for t in types_param.split(",")
if t.strip() in [lt.value for lt in LocationType]
}
zoom_level = self._parse_zoom_level(request)
# Get locations within bounds
response = unified_map_service.get_locations_by_bounds(
north=bounds.north,
south=bounds.south,
east=bounds.east,
west=bounds.west,
location_types=location_types,
zoom_level=zoom_level,
)
return JsonResponse(response.to_dict())
except ValidationError as e:
return self._error_response(str(e), 400)
except Exception as e:
return self._error_response(
f"Internal server error: {
str(e)}",
500,
)
class MapStatsView(MapAPIView):
"""
API endpoint for getting map service statistics and health information.
GET /api/map/stats/
"""
def get(self, request: HttpRequest) -> JsonResponse:
"""Get map service statistics and performance metrics."""
try:
stats = unified_map_service.get_service_stats()
return JsonResponse({"status": "success", "data": stats})
except Exception as e:
return self._error_response(
f"Internal server error: {
str(e)}",
500,
)
class MapCacheView(MapAPIView):
"""
API endpoint for cache management (admin only).
DELETE /api/map/cache/
POST /api/map/cache/invalidate/
"""
def delete(self, request: HttpRequest) -> JsonResponse:
"""Clear all map cache (admin only)."""
# TODO: Add admin permission check
try:
unified_map_service.invalidate_cache()
return JsonResponse(
{
"status": "success",
"message": "Map cache cleared successfully",
}
)
except Exception as e:
return self._error_response(
f"Internal server error: {
str(e)}",
500,
)
def post(self, request: HttpRequest) -> JsonResponse:
"""Invalidate specific cache entries."""
# TODO: Add admin permission check
try:
data = json.loads(request.body)
location_type = data.get("location_type")
location_id = data.get("location_id")
bounds_data = data.get("bounds")
bounds = None
if bounds_data:
bounds = GeoBounds(**bounds_data)
unified_map_service.invalidate_cache(
location_type=location_type,
location_id=location_id,
bounds=bounds,
)
return JsonResponse(
{
"status": "success",
"message": "Cache invalidated successfully",
}
)
except (json.JSONDecodeError, TypeError, ValueError) as e:
return self._error_response(f"Invalid request data: {str(e)}", 400)
except Exception as e:
return self._error_response(
f"Internal server error: {
str(e)}",
500,
)

View File

@@ -0,0 +1,421 @@
"""
HTML views for the unified map service.
Provides web interfaces for map functionality with HTMX integration.
"""
import json
from typing import Dict, Any, Optional, Set
from django.shortcuts import render
from django.http import JsonResponse, HttpRequest, HttpResponse
from django.views.generic import TemplateView, View
from django.core.paginator import Paginator
from ..services.map_service import unified_map_service
from ..services.data_structures import GeoBounds, MapFilters, LocationType
class MapViewMixin:
"""Mixin providing common functionality for map views."""
def get_map_context(self, request: HttpRequest) -> Dict[str, Any]:
"""Get common context data for map views."""
return {
"map_api_urls": {
"locations": "/api/map/locations/",
"search": "/api/map/search/",
"bounds": "/api/map/bounds/",
"location_detail": "/api/map/locations/",
},
"location_types": [lt.value for lt in LocationType],
"default_zoom": 10,
"enable_clustering": True,
"enable_search": True,
}
def parse_location_types(self, request: HttpRequest) -> Optional[Set[LocationType]]:
"""Parse location types from request parameters."""
types_param = request.GET.get("types")
if types_param:
try:
return {
LocationType(t.strip())
for t in types_param.split(",")
if t.strip() in [lt.value for lt in LocationType]
}
except ValueError:
return None
return None
class UniversalMapView(MapViewMixin, TemplateView):
"""
Main universal map view showing all location types.
URL: /maps/
"""
template_name = "maps/universal_map.html"
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context.update(self.get_map_context(self.request))
# Additional context for universal map
context.update(
{
"page_title": "Interactive Map - All Locations",
"map_type": "universal",
"show_all_types": True,
"initial_location_types": [lt.value for lt in LocationType],
"filters_enabled": True,
}
)
# Handle initial bounds from query parameters
if all(
param in self.request.GET for param in ["north", "south", "east", "west"]
):
try:
context["initial_bounds"] = {
"north": float(self.request.GET["north"]),
"south": float(self.request.GET["south"]),
"east": float(self.request.GET["east"]),
"west": float(self.request.GET["west"]),
}
except (ValueError, TypeError):
pass
return context
class ParkMapView(MapViewMixin, TemplateView):
"""
Map view focused specifically on parks.
URL: /maps/parks/
"""
template_name = "maps/park_map.html"
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context.update(self.get_map_context(self.request))
# Park-specific context
context.update(
{
"page_title": "Theme Parks Map",
"map_type": "parks",
"show_all_types": False,
"initial_location_types": [LocationType.PARK.value],
"filters_enabled": True,
"park_specific_filters": True,
}
)
return context
class NearbyLocationsView(MapViewMixin, TemplateView):
"""
View for showing locations near a specific point.
URL: /maps/nearby/
"""
template_name = "maps/nearby_locations.html"
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context.update(self.get_map_context(self.request))
# Parse coordinates from query parameters
lat = self.request.GET.get("lat")
lng = self.request.GET.get("lng")
radius = self.request.GET.get("radius", "50") # Default 50km radius
if lat and lng:
try:
center_lat = float(lat)
center_lng = float(lng)
# Clamp between 1-200km
search_radius = min(200, max(1, float(radius)))
context.update(
{
"page_title": f"Locations Near {
center_lat:.4f}, {
center_lng:.4f}",
"map_type": "nearby",
"center_coordinates": {
"lat": center_lat,
"lng": center_lng,
},
"search_radius": search_radius,
"show_radius_circle": True,
}
)
except (ValueError, TypeError):
context["error"] = "Invalid coordinates provided"
else:
context.update(
{
"page_title": "Nearby Locations",
"map_type": "nearby",
"prompt_for_location": True,
}
)
return context
class LocationFilterView(MapViewMixin, View):
"""
HTMX endpoint for updating map when filters change.
URL: /maps/htmx/filter/
"""
def get(self, request: HttpRequest) -> HttpResponse:
"""Return filtered location data for HTMX updates."""
try:
# Parse filter parameters
location_types = self.parse_location_types(request)
search_query = request.GET.get("q", "").strip()
country = request.GET.get("country", "").strip()
state = request.GET.get("state", "").strip()
# Create filters
filters = None
if any([location_types, search_query, country, state]):
filters = MapFilters(
location_types=location_types,
search_query=search_query or None,
country=country or None,
state=state or None,
has_coordinates=True,
)
# Get filtered locations
map_response = unified_map_service.get_map_data(
filters=filters,
zoom_level=int(request.GET.get("zoom", "10")),
cluster=request.GET.get("cluster", "true").lower() == "true",
)
# Return JSON response for HTMX
return JsonResponse(
{
"status": "success",
"data": map_response.to_dict(),
"filters_applied": map_response.filters_applied,
}
)
except Exception as e:
return JsonResponse({"status": "error", "message": str(e)}, status=400)
class LocationSearchView(MapViewMixin, View):
"""
HTMX endpoint for real-time location search.
URL: /maps/htmx/search/
"""
def get(self, request: HttpRequest) -> HttpResponse:
"""Return search results for HTMX updates."""
query = request.GET.get("q", "").strip()
if not query or len(query) < 3:
return render(
request,
"maps/partials/search_results.html",
{
"results": [],
"query": query,
"message": "Enter at least 3 characters to search",
},
)
try:
# Parse optional location types
location_types = self.parse_location_types(request)
limit = min(20, max(5, int(request.GET.get("limit", "10"))))
# Perform search
results = unified_map_service.search_locations(
query=query, location_types=location_types, limit=limit
)
return render(
request,
"maps/partials/search_results.html",
{"results": results, "query": query, "count": len(results)},
)
except Exception as e:
return render(
request,
"maps/partials/search_results.html",
{"results": [], "query": query, "error": str(e)},
)
class MapBoundsUpdateView(MapViewMixin, View):
"""
HTMX endpoint for updating locations when map bounds change.
URL: /maps/htmx/bounds/
"""
def post(self, request: HttpRequest) -> HttpResponse:
"""Update map data when bounds change."""
try:
data = json.loads(request.body)
# Parse bounds
bounds = GeoBounds(
north=float(data["north"]),
south=float(data["south"]),
east=float(data["east"]),
west=float(data["west"]),
)
# Parse additional parameters
zoom_level = int(data.get("zoom", 10))
location_types = None
if "types" in data:
location_types = {
LocationType(t)
for t in data["types"]
if t in [lt.value for lt in LocationType]
}
# Location types are used directly in the service call
# Get updated map data
map_response = unified_map_service.get_locations_by_bounds(
north=bounds.north,
south=bounds.south,
east=bounds.east,
west=bounds.west,
location_types=location_types,
zoom_level=zoom_level,
)
return JsonResponse({"status": "success", "data": map_response.to_dict()})
except (json.JSONDecodeError, ValueError, KeyError) as e:
return JsonResponse(
{
"status": "error",
"message": f"Invalid request data: {str(e)}",
},
status=400,
)
except Exception as e:
return JsonResponse({"status": "error", "message": str(e)}, status=500)
class LocationDetailModalView(MapViewMixin, View):
"""
HTMX endpoint for showing location details in modal.
URL: /maps/htmx/location/<type>/<id>/
"""
def get(
self, request: HttpRequest, location_type: str, location_id: int
) -> HttpResponse:
"""Return location detail modal content."""
try:
# Validate location type
if location_type not in [lt.value for lt in LocationType]:
return render(
request,
"maps/partials/location_modal.html",
{"error": f"Invalid location type: {location_type}"},
)
# Get location details
location = unified_map_service.get_location_details(
location_type, location_id
)
if not location:
return render(
request,
"maps/partials/location_modal.html",
{"error": "Location not found"},
)
return render(
request,
"maps/partials/location_modal.html",
{"location": location, "location_type": location_type},
)
except Exception as e:
return render(
request, "maps/partials/location_modal.html", {"error": str(e)}
)
class LocationListView(MapViewMixin, TemplateView):
"""
View for listing locations with pagination (non-map view).
URL: /maps/list/
"""
template_name = "maps/location_list.html"
paginate_by = 20
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
# Parse filters
location_types = self.parse_location_types(self.request)
search_query = self.request.GET.get("q", "").strip()
country = self.request.GET.get("country", "").strip()
state = self.request.GET.get("state", "").strip()
# Create filters
filters = None
if any([location_types, search_query, country, state]):
filters = MapFilters(
location_types=location_types,
search_query=search_query or None,
country=country or None,
state=state or None,
has_coordinates=True,
)
# Get locations without clustering
map_response = unified_map_service.get_map_data(
filters=filters, cluster=False, use_cache=True
)
# Paginate results
paginator = Paginator(map_response.locations, self.paginate_by)
page_number = self.request.GET.get("page")
page_obj = paginator.get_page(page_number)
context.update(
{
"page_title": "All Locations",
"locations": page_obj,
"total_count": map_response.total_count,
"applied_filters": filters,
"location_types": [lt.value for lt in LocationType],
"current_filters": {
"types": self.request.GET.getlist("types"),
"q": search_query,
"country": country,
"state": state,
},
}
)
return context

View File

@@ -0,0 +1,178 @@
from django.views.generic import TemplateView
from django.http import JsonResponse
from django.contrib.gis.geos import Point
from apps.parks.models import Park
from apps.parks.filters import ParkFilter
from apps.core.services.location_search import (
location_search_service,
LocationSearchFilters,
)
from apps.core.forms.search import LocationSearchForm
class AdaptiveSearchView(TemplateView):
template_name = "core/search/results.html"
def get_queryset(self):
"""
Get the base queryset, optimized with select_related and prefetch_related
"""
return (
Park.objects.select_related("operator", "property_owner")
.prefetch_related("location", "photos")
.all()
)
def get_filterset(self):
"""
Get the filterset instance
"""
return ParkFilter(self.request.GET, queryset=self.get_queryset())
def get_context_data(self, **kwargs):
"""
Add filtered results and filter form to context
"""
context = super().get_context_data(**kwargs)
filterset = self.get_filterset()
# Check if location-based search is being used
location_search = self.request.GET.get("location_search", "").strip()
near_location = self.request.GET.get("near_location", "").strip()
# Add location search context
context.update(
{
"results": filterset.qs,
"filters": filterset,
"applied_filters": bool(
self.request.GET
), # Check if any filters are applied
"is_location_search": bool(location_search or near_location),
"location_search_query": location_search or near_location,
}
)
return context
class FilterFormView(TemplateView):
"""
View for rendering just the filter form for HTMX updates
"""
template_name = "core/search/filters.html"
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
filterset = ParkFilter(self.request.GET, queryset=Park.objects.all())
context["filters"] = filterset
return context
class LocationSearchView(TemplateView):
"""
Enhanced search view with comprehensive location search capabilities.
"""
template_name = "core/search/location_results.html"
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
# Build search filters from request parameters
filters = self._build_search_filters()
# Perform search
results = location_search_service.search(filters)
# Group results by type for better presentation
grouped_results = {
"parks": [r for r in results if r.content_type == "park"],
"rides": [r for r in results if r.content_type == "ride"],
"companies": [r for r in results if r.content_type == "company"],
}
context.update(
{
"results": results,
"grouped_results": grouped_results,
"total_results": len(results),
"search_filters": filters,
"has_location_filter": bool(filters.location_point),
"search_form": LocationSearchForm(self.request.GET),
}
)
return context
def _build_search_filters(self) -> LocationSearchFilters:
"""Build LocationSearchFilters from request parameters."""
form = LocationSearchForm(self.request.GET)
form.is_valid() # Populate cleaned_data
# Parse location coordinates if provided
location_point = None
lat = form.cleaned_data.get("lat")
lng = form.cleaned_data.get("lng")
if lat and lng:
try:
location_point = Point(float(lng), float(lat), srid=4326)
except (ValueError, TypeError):
location_point = None
# Parse location types
location_types = set()
if form.cleaned_data.get("search_parks"):
location_types.add("park")
if form.cleaned_data.get("search_rides"):
location_types.add("ride")
if form.cleaned_data.get("search_companies"):
location_types.add("company")
# If no specific types selected, search all
if not location_types:
location_types = {"park", "ride", "company"}
# Parse radius
radius_km = None
radius_str = form.cleaned_data.get("radius_km", "").strip()
if radius_str:
try:
radius_km = float(radius_str)
# Clamp between 1-500km
radius_km = max(1, min(500, radius_km))
except (ValueError, TypeError):
radius_km = None
return LocationSearchFilters(
search_query=form.cleaned_data.get("q", "").strip() or None,
location_point=location_point,
radius_km=radius_km,
location_types=location_types if location_types else None,
country=form.cleaned_data.get("country", "").strip() or None,
state=form.cleaned_data.get("state", "").strip() or None,
city=form.cleaned_data.get("city", "").strip() or None,
park_status=self.request.GET.getlist("park_status") or None,
include_distance=True,
max_results=int(self.request.GET.get("limit", 100)),
)
class LocationSuggestionsView(TemplateView):
"""
AJAX endpoint for location search suggestions.
"""
def get(self, request, *args, **kwargs):
query = request.GET.get("q", "").strip()
limit = int(request.GET.get("limit", 10))
if len(query) < 2:
return JsonResponse({"suggestions": []})
try:
suggestions = location_search_service.suggest_locations(query, limit)
return JsonResponse({"suggestions": suggestions})
except Exception as e:
return JsonResponse({"error": str(e)}, status=500)

View File

@@ -0,0 +1,62 @@
from typing import Any, Dict, Optional, Type
from django.shortcuts import redirect
from django.urls import reverse
from django.views.generic import DetailView
from django.views import View
from django.http import HttpRequest, HttpResponse
from django.db.models import Model
class SlugRedirectMixin(View):
"""
Mixin that handles redirects for old slugs.
Requires the model to inherit from SluggedModel and view to inherit from DetailView.
"""
model: Optional[Type[Model]] = None
slug_url_kwarg: str = "slug"
object: Optional[Model] = None
def dispatch(self, request: HttpRequest, *args: Any, **kwargs: Any) -> HttpResponse:
# Only apply slug redirect logic to DetailViews
if not isinstance(self, DetailView):
return super().dispatch(request, *args, **kwargs)
# Get the object using current or historical slug
try:
self.object = self.get_object() # type: ignore
# Check if we used an old slug
current_slug = kwargs.get(self.slug_url_kwarg)
if current_slug and current_slug != getattr(self.object, "slug", None):
# Get the URL pattern name from the view
url_pattern = self.get_redirect_url_pattern()
# Build kwargs for reverse()
reverse_kwargs = self.get_redirect_url_kwargs()
# Redirect to the current slug URL
return redirect(
reverse(url_pattern, kwargs=reverse_kwargs), permanent=True
)
return super().dispatch(request, *args, **kwargs)
except (AttributeError, Exception) as e: # type: ignore
if self.model and hasattr(self.model, "DoesNotExist"):
if isinstance(e, self.model.DoesNotExist): # type: ignore
return super().dispatch(request, *args, **kwargs)
return super().dispatch(request, *args, **kwargs)
def get_redirect_url_pattern(self) -> str:
"""
Get the URL pattern name for redirects.
Should be overridden by subclasses.
"""
raise NotImplementedError(
"Subclasses must implement get_redirect_url_pattern()"
)
def get_redirect_url_kwargs(self) -> Dict[str, Any]:
"""
Get the kwargs for reverse() when redirecting.
Should be overridden by subclasses if they need custom kwargs.
"""
if not self.object:
return {}
return {self.slug_url_kwarg: getattr(self.object, "slug", "")}