- Add complete backend/ directory with full Django application - Add frontend/ directory with Vite + TypeScript setup ready for Next.js - Add comprehensive shared/ directory with: - Complete documentation and memory-bank archives - Media files and avatars (letters, park/ride images) - Deployment scripts and automation tools - Shared types and utilities - Add architecture/ directory with migration guides - Configure pnpm workspace for monorepo development - Update .gitignore to exclude .django_tailwind_cli/ build artifacts - Preserve all historical documentation in shared/docs/memory-bank/ - Set up proper structure for full-stack development with shared resources
50 KiB
Search-Location Integration Plan - ThrillWiki
Executive Summary
This document outlines the comprehensive integration strategy for enhancing ThrillWiki's existing search system with location capabilities. The plan builds upon the current django-filters based search architecture and integrates it with the designed domain-specific location models (ParkLocation, RideLocation, CompanyHeadquarters) and unified map service.
Current State Analysis
Existing Search Architecture
- Framework: Django-filters with
ParkFilterandRideSearchView - Current Capabilities: Text search, status filtering, operator filtering, date ranges, numeric filters
- Performance: Basic queryset optimization with select_related/prefetch_related
- UI: HTMX-driven filtered results with
AdaptiveSearchView - Templates: Structured template hierarchy in
templates/core/search/
Location System State
- Current: Hybrid system with both generic Location model and domain-specific models
- Designed: Complete transition to
ParkLocation,RideLocation,CompanyHeadquarters - Spatial Features: PostGIS with PointField, spatial indexing, distance calculations
- Map Integration:
UnifiedMapServicedesigned for clustering and filtering
1. Search Index Enhancement Plan
1.1 Location Field Integration
Current Search Fields Extension
# Enhanced ParkFilter in parks/filters.py
class LocationEnhancedParkFilter(ParkFilter):
search_fields = [
'name__icontains',
'description__icontains',
'park_location__city__icontains', # Domain-specific model
'park_location__state__icontains',
'park_location__country__icontains',
'park_location__highway_exit__icontains', # Road trip specific
'park_location__postal_code__icontains'
]
Spatial Search Fields
# New spatial search capabilities
class SpatialSearchMixin:
near_point = PointFilter(
method='filter_near_point',
help_text="Search within radius of coordinates"
)
within_radius = NumberFilter(
method='filter_within_radius',
help_text="Radius in miles (used with near_point)"
)
within_bounds = BoundsFilter(
method='filter_within_bounds',
help_text="Search within geographic bounding box"
)
Index Performance Strategy
- Spatial Indexes: Maintain GIST indexes on all PointField columns
- Composite Indexes: Add indexes on frequently combined fields (city+state, country+state)
- Text Search Optimization: Consider adding GIN indexes for full-text search if performance degrades
1.2 Cross-Domain Location Indexing
Unified Location Search Index
class UnifiedLocationSearchService:
"""Service for searching across all location-enabled models"""
def search_all_locations(self, query: str, location_types: Set[str] = None):
results = []
# Parks via ParkLocation
if not location_types or 'park' in location_types:
park_results = self._search_parks(query)
results.extend(park_results)
# Rides via RideLocation (optional)
if not location_types or 'ride' in location_types:
ride_results = self._search_rides(query)
results.extend(ride_results)
# Companies via CompanyHeadquarters
if not location_types or 'company' in location_types:
company_results = self._search_companies(query)
results.extend(company_results)
return self._rank_and_sort_results(results)
2. Spatial Search Architecture
2.1 Geographic Query Patterns
Distance-Based Search
class DistanceSearchMixin:
"""Mixin for distance-based filtering"""
def filter_near_point(self, queryset, name, value):
"""Filter by proximity to a point"""
if not value or not hasattr(value, 'coords'):
return queryset
radius_miles = self.data.get('within_radius', 50) # Default 50 miles
from django.contrib.gis.measure import D
return queryset.filter(
park_location__point__distance_lte=(
value, D(mi=radius_miles)
)
).annotate(
distance=Distance('park_location__point', value)
).order_by('distance')
def filter_within_bounds(self, queryset, name, value):
"""Filter within geographic bounding box"""
if not value or not hasattr(value, 'extent'):
return queryset
return queryset.filter(
park_location__point__within=value.extent
)
Geocoding Integration Pattern
class GeocodingSearchMixin:
"""Handle address-to-coordinate conversion in search"""
def filter_near_address(self, queryset, name, value):
"""Search near an address (geocoded to coordinates)"""
if not value:
return queryset
# Use OpenStreetMap Nominatim for geocoding
coordinates = self._geocode_address(value)
if not coordinates:
# Graceful fallback to text search
return self._fallback_text_search(queryset, value)
return self.filter_near_point(queryset, name, coordinates)
def _geocode_address(self, address: str) -> Optional[Point]:
"""Convert address to coordinates with caching"""
cache_key = f"geocode:{hash(address)}"
cached = cache.get(cache_key)
if cached:
return cached
# Implementation using Nominatim API
result = nominatim_geocode(address)
if result:
point = Point(result['lon'], result['lat'])
cache.set(cache_key, point, timeout=86400) # 24 hours
return point
return None
2.2 Database Query Optimization
Optimized Spatial Queries
class SpatialQueryOptimizer:
"""Optimize spatial queries for performance"""
def get_optimized_queryset(self, base_queryset, spatial_filters):
"""Apply optimizations based on query type"""
# Use spatial index hints for PostgreSQL
queryset = base_queryset.extra(
select={'spatial_distance': 'ST_Distance(park_location.point, %s)'},
select_params=[spatial_filters.get('reference_point')]
) if spatial_filters.get('reference_point') else base_queryset
# Limit radius searches to reasonable bounds
max_radius = min(spatial_filters.get('radius', 100), 500) # Cap at 500 miles
# Pre-filter with bounding box before distance calculation
if spatial_filters.get('reference_point'):
# Create bounding box slightly larger than radius for pre-filtering
bbox = self._create_bounding_box(
spatial_filters['reference_point'],
max_radius * 1.1
)
queryset = queryset.filter(park_location__point__within=bbox)
return queryset
3. "Near Me" Functionality Design
3.1 Geolocation Integration
Frontend Geolocation Handling
class LocationSearchService {
constructor() {
this.userLocation = null;
this.locationPermission = 'prompt';
}
async requestUserLocation() {
try {
if (!navigator.geolocation) {
throw new Error('Geolocation not supported');
}
const position = await new Promise((resolve, reject) => {
navigator.geolocation.getCurrentPosition(
resolve,
reject,
{
enableHighAccuracy: true,
timeout: 10000,
maximumAge: 300000 // 5 minutes
}
);
});
this.userLocation = {
lat: position.coords.latitude,
lng: position.coords.longitude,
accuracy: position.coords.accuracy
};
this.locationPermission = 'granted';
return this.userLocation;
} catch (error) {
this.locationPermission = 'denied';
await this._handleLocationError(error);
return null;
}
}
async _handleLocationError(error) {
switch(error.code) {
case error.PERMISSION_DENIED:
await this._tryIPLocationFallback();
break;
case error.POSITION_UNAVAILABLE:
this._showLocationUnavailableMessage();
break;
case error.TIMEOUT:
this._showTimeoutMessage();
break;
}
}
}
Privacy and Permission Handling
class LocationPrivacyMixin:
"""Handle location privacy concerns"""
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
# Add location permission context
context.update({
'location_features_available': True,
'privacy_policy_url': reverse('privacy'),
'location_consent_required': True,
'ip_location_available': self._ip_location_available(),
})
return context
def _ip_location_available(self) -> bool:
"""Check if IP-based location estimation is available"""
# Could integrate with MaxMind GeoIP or similar service
return hasattr(self.request, 'META') and 'HTTP_CF_IPCOUNTRY' in self.request.META
3.2 Fallback Strategies
IP-Based Location Approximation
class IPLocationService:
"""Fallback location service using IP geolocation"""
def get_approximate_location(self, request) -> Optional[Dict]:
"""Get approximate location from IP address"""
try:
# Try Cloudflare country header first
country = request.META.get('HTTP_CF_IPCOUNTRY')
if country and country != 'XX':
return self._country_to_coordinates(country)
# Fallback to GeoIP database
ip_address = self._get_client_ip(request)
return self._geoip_lookup(ip_address)
except Exception:
return None
def _country_to_coordinates(self, country_code: str) -> Dict:
"""Convert country code to approximate center coordinates"""
country_centers = {
'US': {'lat': 39.8283, 'lng': -98.5795, 'accuracy': 'country'},
'CA': {'lat': 56.1304, 'lng': -106.3468, 'accuracy': 'country'},
# Add more countries as needed
}
return country_centers.get(country_code.upper())
4. Location-Based Filtering Integration
4.1 Enhanced Filter Integration
Geographic Region Filters
class GeographicFilterMixin:
"""Add geographic filtering to existing filter system"""
# State/Province filtering
state = ModelChoiceFilter(
field_name='park_location__state',
queryset=None, # Dynamically populated
empty_label='Any state/province',
method='filter_by_state'
)
# Country filtering
country = ModelChoiceFilter(
field_name='park_location__country',
queryset=None, # Dynamically populated
empty_label='Any country',
method='filter_by_country'
)
# Metropolitan area clustering
metro_area = ChoiceFilter(
method='filter_by_metro_area',
choices=[] # Dynamically populated
)
def filter_by_metro_area(self, queryset, name, value):
"""Filter by predefined metropolitan areas"""
metro_definitions = {
'orlando': {
'center': Point(-81.3792, 28.5383),
'radius_miles': 30
},
'los_angeles': {
'center': Point(-118.2437, 34.0522),
'radius_miles': 50
},
# Add more metropolitan areas
}
metro = metro_definitions.get(value)
if not metro:
return queryset
from django.contrib.gis.measure import D
return queryset.filter(
park_location__point__distance_lte=(
metro['center'], D(mi=metro['radius_miles'])
)
)
Performance-Optimized Filtering
class OptimizedLocationFilter(GeographicFilterMixin, ParkFilter):
"""Location filtering with performance optimizations"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Dynamically populate geographic choices based on available data
self._populate_geographic_choices()
def _populate_geographic_choices(self):
"""Populate geographic filter choices efficiently"""
# Cache geographic options for performance
cache_key = 'location_filter_choices'
cached_choices = cache.get(cache_key)
if not cached_choices:
# Query distinct values efficiently
states = ParkLocation.objects.values_list(
'state', flat=True
).distinct().order_by('state')
countries = ParkLocation.objects.values_list(
'country', flat=True
).distinct().order_by('country')
cached_choices = {
'states': [(s, s) for s in states if s],
'countries': [(c, c) for c in countries if c]
}
cache.set(cache_key, cached_choices, timeout=3600) # 1 hour
# Update filter choices
self.filters['state'].extra['choices'] = cached_choices['states']
self.filters['country'].extra['choices'] = cached_choices['countries']
5. Query Integration Patterns
5.1 Hybrid Search Scoring
Relevance + Proximity Scoring
class HybridSearchRanking:
"""Combine text relevance with geographic proximity"""
def rank_results(self, queryset, search_query: str, user_location: Point = None):
"""Apply hybrid ranking algorithm"""
# Base text relevance scoring
queryset = queryset.annotate(
text_rank=Case(
When(name__iexact=search_query, then=Value(100)),
When(name__icontains=search_query, then=Value(80)),
When(description__icontains=search_query, then=Value(60)),
When(park_location__city__icontains=search_query, then=Value(40)),
default=Value(20),
output_field=IntegerField()
)
)
# Add proximity scoring if user location available
if user_location:
queryset = queryset.annotate(
distance_miles=Distance('park_location__point', user_location),
proximity_rank=Case(
When(distance_miles__lt=25, then=Value(50)), # Very close
When(distance_miles__lt=100, then=Value(30)), # Close
When(distance_miles__lt=300, then=Value(10)), # Regional
default=Value(0),
output_field=IntegerField()
)
)
# Combined score: text relevance + proximity bonus
queryset = queryset.annotate(
combined_rank=F('text_rank') + F('proximity_rank')
).order_by('-combined_rank', 'distance_miles')
else:
queryset = queryset.order_by('-text_rank', 'name')
return queryset
5.2 Cross-Domain Location Search
Unified Search Across Entities
class UnifiedLocationSearchView(TemplateView):
"""Search across parks, rides, and companies with location context"""
template_name = "core/search/unified_results.html"
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
query = self.request.GET.get('q', '')
location_types = self.request.GET.getlist('types', ['park', 'ride', 'company'])
user_location = self._get_user_location()
results = {
'parks': [],
'rides': [],
'companies': [],
'unified': []
}
# Search each entity type with location context
if 'park' in location_types:
results['parks'] = self._search_parks(query, user_location)
if 'ride' in location_types:
results['rides'] = self._search_rides(query, user_location)
if 'company' in location_types:
results['companies'] = self._search_companies(query, user_location)
# Create unified ranked results
results['unified'] = self._create_unified_results(results, user_location)
context.update({
'results': results,
'search_query': query,
'user_location': user_location,
'total_results': sum(len(r) for r in results.values() if isinstance(r, list))
})
return context
6. Geocoding Integration Strategy
6.1 OpenStreetMap Nominatim Integration
Geocoding Service Implementation
class GeocodingService:
"""Geocoding service using OpenStreetMap Nominatim"""
def __init__(self):
self.base_url = "https://nominatim.openstreetmap.org"
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'ThrillWiki/1.0 (contact@thrillwiki.com)'
})
def geocode_address(self, address: str, country_bias: str = None) -> Optional[Dict]:
"""Convert address to coordinates"""
cache_key = f"geocode:{hashlib.md5(address.encode()).hexdigest()}"
cached = cache.get(cache_key)
if cached:
return cached
params = {
'q': address,
'format': 'json',
'limit': 1,
'addressdetails': 1,
'extratags': 1
}
if country_bias:
params['countrycodes'] = country_bias
try:
response = self.session.get(
f"{self.base_url}/search",
params=params,
timeout=5
)
response.raise_for_status()
results = response.json()
if results:
result = results[0]
geocoded = {
'lat': float(result['lat']),
'lng': float(result['lon']),
'display_name': result['display_name'],
'confidence': float(result.get('importance', 0.5)),
'address_components': result.get('address', {})
}
# Cache successful results for 7 days
cache.set(cache_key, geocoded, timeout=604800)
return geocoded
except (requests.RequestException, ValueError, KeyError) as e:
logger.warning(f"Geocoding failed for '{address}': {e}")
# Cache failed attempts for 1 hour to prevent repeated API calls
cache.set(cache_key, None, timeout=3600)
return None
def reverse_geocode(self, lat: float, lng: float) -> Optional[Dict]:
"""Convert coordinates to address"""
cache_key = f"reverse_geocode:{lat:.4f},{lng:.4f}"
cached = cache.get(cache_key)
if cached:
return cached
params = {
'lat': lat,
'lon': lng,
'format': 'json',
'addressdetails': 1
}
try:
response = self.session.get(
f"{self.base_url}/reverse",
params=params,
timeout=5
)
response.raise_for_status()
result = response.json()
if result:
address = {
'display_name': result['display_name'],
'components': result.get('address', {})
}
cache.set(cache_key, address, timeout=604800) # 7 days
return address
except (requests.RequestException, ValueError) as e:
logger.warning(f"Reverse geocoding failed for {lat},{lng}: {e}")
return None
6.2 Search Query Enhancement
Intelligent Address Detection
class SmartQueryProcessor:
"""Detect and process different types of search queries"""
def __init__(self):
self.geocoding_service = GeocodingService()
def process_search_query(self, query: str) -> Dict:
"""Analyze query and determine search strategy"""
query_analysis = {
'original_query': query,
'is_address': self._looks_like_address(query),
'is_coordinates': self._looks_like_coordinates(query),
'has_location_keywords': self._has_location_keywords(query),
'processed_query': query,
'geocoded_location': None,
'search_strategy': 'text'
}
if query_analysis['is_coordinates']:
coords = self._parse_coordinates(query)
if coords:
query_analysis['geocoded_location'] = coords
query_analysis['search_strategy'] = 'spatial'
elif query_analysis['is_address'] or query_analysis['has_location_keywords']:
geocoded = self.geocoding_service.geocode_address(query)
if geocoded:
query_analysis['geocoded_location'] = geocoded
query_analysis['search_strategy'] = 'spatial_text_hybrid'
return query_analysis
def _looks_like_address(self, query: str) -> bool:
"""Detect if query looks like an address"""
address_patterns = [
r'\d+\s+\w+\s+(street|st|avenue|ave|road|rd|boulevard|blvd)',
r'\w+,\s*\w+\s*\d{5}', # City, State ZIP
r'\w+,\s*\w+,\s*\w+', # City, State, Country
]
return any(re.search(pattern, query, re.IGNORECASE) for pattern in address_patterns)
def _looks_like_coordinates(self, query: str) -> bool:
"""Detect if query contains coordinates"""
coord_pattern = r'-?\d+\.?\d*\s*,\s*-?\d+\.?\d*'
return bool(re.search(coord_pattern, query))
7. Performance Optimization Strategy
7.1 Database Optimization
Spatial Index Strategy
-- Essential indexes for location-enhanced search
CREATE INDEX CONCURRENTLY idx_park_location_point_gist
ON parks_parklocation USING GIST (point);
CREATE INDEX CONCURRENTLY idx_park_location_city_state
ON parks_parklocation (city, state);
CREATE INDEX CONCURRENTLY idx_park_location_country
ON parks_parklocation (country);
-- Composite indexes for common filter combinations
CREATE INDEX CONCURRENTLY idx_park_status_location
ON parks_park (status)
INCLUDE (id)
WHERE status = 'OPERATING';
-- Partial indexes for performance
CREATE INDEX CONCURRENTLY idx_ride_location_point_not_null
ON rides_ridelocation USING GIST (entrance_point)
WHERE entrance_point IS NOT NULL;
Query Optimization Patterns
class SpatialQueryOptimizer:
"""Optimize spatial queries for performance"""
def optimize_distance_query(self, queryset, reference_point, max_radius_miles=100):
"""Optimize distance-based queries with bounding box pre-filtering"""
# Create bounding box for initial filtering (much faster than distance calc)
bbox = self._create_bounding_box(reference_point, max_radius_miles)
# Pre-filter with bounding box, then apply precise distance filter
return queryset.filter(
park_location__point__within=bbox
).filter(
park_location__point__distance_lte=(reference_point, D(mi=max_radius_miles))
).annotate(
distance=Distance('park_location__point', reference_point)
).order_by('distance')
def optimize_multi_location_query(self, park_qs, ride_qs, bounds=None):
"""Optimize queries across multiple location types"""
# Use common table expressions for complex spatial queries
if bounds:
# Apply spatial filtering early
park_qs = park_qs.filter(park_location__point__within=bounds)
ride_qs = ride_qs.filter(ride_location__entrance_point__within=bounds)
# Use union for combining different location types efficiently
return park_qs.union(ride_qs, all=False)
7.2 Caching Strategy
Multi-Level Caching Architecture
class LocationSearchCache:
"""Caching strategy for location-enhanced search"""
CACHE_TIMEOUTS = {
'geocoding': 604800, # 7 days
'search_results': 300, # 5 minutes
'location_filters': 3600, # 1 hour
'spatial_index': 86400, # 24 hours
}
def cache_search_results(self, cache_key: str, results: QuerySet,
user_location: Point = None):
"""Cache search results with location context"""
# Include location context in cache key
if user_location:
location_hash = hashlib.md5(
f"{user_location.x:.4f},{user_location.y:.4f}".encode()
).hexdigest()[:8]
cache_key = f"{cache_key}_loc_{location_hash}"
# Cache serialized results
serialized = self._serialize_results(results)
cache.set(
cache_key,
serialized,
timeout=self.CACHE_TIMEOUTS['search_results']
)
def get_cached_search_results(self, cache_key: str, user_location: Point = None):
"""Retrieve cached search results"""
if user_location:
location_hash = hashlib.md5(
f"{user_location.x:.4f},{user_location.y:.4f}".encode()
).hexdigest()[:8]
cache_key = f"{cache_key}_loc_{location_hash}"
cached = cache.get(cache_key)
return self._deserialize_results(cached) if cached else None
def invalidate_location_cache(self, location_type: str = None):
"""Invalidate location-related caches when data changes"""
patterns = [
'search_results_*',
'location_filters',
'geocoding_*'
]
if location_type:
patterns.append(f'{location_type}_search_*')
# Use cache versioning for efficient invalidation
for pattern in patterns:
cache.delete_pattern(pattern)
7.3 Performance Monitoring
Search Performance Metrics
class SearchPerformanceMonitor:
"""Monitor search performance and spatial query efficiency"""
def __init__(self):
self.metrics_logger = logging.getLogger('search.performance')
def track_search_query(self, query_type: str, query_params: Dict,
execution_time: float, result_count: int):
"""Track search query performance"""
metrics = {
'query_type': query_type,
'has_spatial_filter': bool(query_params.get('user_location')),
'has_text_search': bool(query_params.get('search')),
'filter_count': len([k for k, v in query_params.items() if v]),
'execution_time_ms': execution_time * 1000,
'result_count': result_count,
'timestamp': timezone.now().isoformat()
}
# Log performance data
self.metrics_logger.info(json.dumps(metrics))
# Alert on slow queries
if execution_time > 1.0: # Queries over 1 second
self._alert_slow_query(metrics)
def _alert_slow_query(self, metrics: Dict):
"""Alert on performance issues"""
# Implementation for alerting system
pass
8. API Enhancement Design
8.1 Location-Aware Search Endpoints
Enhanced Search API
class LocationSearchAPIView(APIView):
"""REST API for location-enhanced search"""
def get(self, request):
"""
Enhanced search endpoint with location capabilities
Query Parameters:
- q: Search query (text)
- lat, lng: User coordinates for proximity search
- radius: Search radius in miles (default: 50)
- bounds: Geographic bounding box (format: north,south,east,west)
- types: Entity types to search (park,ride,company)
- filters: Additional filters (status, operator, etc.)
"""
try:
search_params = self._parse_search_params(request.GET)
results = self._execute_search(search_params)
return Response({
'status': 'success',
'data': {
'results': results['items'],
'total_count': results['total'],
'search_params': search_params,
'has_more': results['has_more']
},
'meta': {
'query_time_ms': results['execution_time'] * 1000,
'cache_hit': results['from_cache'],
'location_used': bool(search_params.get('user_location'))
}
})
except ValidationError as e:
return Response({
'status': 'error',
'error': 'Invalid search parameters',
'details': str(e)
}, status=400)
def _parse_search_params(self, params: QueryDict) -> Dict:
"""Parse and validate search parameters"""
# Parse user location
user_location = None
if params.get('lat') and params.get('lng'):
try:
lat = float(params['lat'])
lng = float(params['lng'])
if -90 <= lat <= 90 and -180 <= lng <= 180:
user_location = Point(lng, lat)
except (ValueError, TypeError):
raise ValidationError("Invalid coordinates")
# Parse bounding box
bounds = None
if params.get('bounds'):
try:
north, south, east, west = map(float, params['bounds'].split(','))
bounds = Polygon.from_bbox((west, south, east, north))
except (ValueError, TypeError):
raise ValidationError("Invalid bounds format")
return {
'query': params.get('q', '').strip(),
'user_location': user_location,
'radius_miles': min(float(params.get('radius', 50)), 500), # Cap at 500 miles
'bounds': bounds,
'entity_types': params.getlist('types') or ['park'],
'filters': self._parse_filters(params),
'page': int(params.get('page', 1)),
'page_size': min(int(params.get('page_size', 20)), 100) # Cap at 100
}
Autocomplete API with Location Context
class LocationAutocompleteAPIView(APIView):
"""Autocomplete API with location awareness"""
def get(self, request):
"""
Location-aware autocomplete for search queries
Returns suggestions based on:
1. Entity names (parks, rides, companies)
2. Location names (cities, states, countries)
3. Address suggestions
"""
query = request.GET.get('q', '').strip()
if len(query) < 2:
return Response({'suggestions': []})
user_location = self._parse_user_location(request.GET)
suggestions = []
# Entity name suggestions (with location context for ranking)
entity_suggestions = self._get_entity_suggestions(query, user_location)
suggestions.extend(entity_suggestions)
# Location name suggestions
location_suggestions = self._get_location_suggestions(query)
suggestions.extend(location_suggestions)
# Address suggestions (via geocoding)
if self._looks_like_address(query):
address_suggestions = self._get_address_suggestions(query)
suggestions.extend(address_suggestions)
# Rank and limit suggestions
ranked_suggestions = self._rank_suggestions(suggestions, user_location)[:10]
return Response({
'suggestions': ranked_suggestions,
'query': query
})
8.2 Enhanced Response Formats
Unified Location Response Format
class LocationSearchResultSerializer(serializers.Serializer):
"""Unified serializer for location-enhanced search results"""
id = serializers.CharField()
type = serializers.CharField() # 'park', 'ride', 'company'
name = serializers.CharField()
slug = serializers.CharField()
# Location data
location = serializers.SerializerMethodField()
# Entity-specific data
entity_data = serializers.SerializerMethodField()
# Search relevance
relevance_score = serializers.FloatField(required=False)
distance_miles = serializers.FloatField(required=False)
def get_location(self, obj):
"""Get unified location data"""
if hasattr(obj, 'park_location'):
location = obj.park_location
return {
'coordinates': [location.point.y, location.point.x] if location.point else None,
'address': location.formatted_address,
'city': location.city,
'state': location.state,
'country': location.country,
'highway_exit': location.highway_exit
}
elif hasattr(obj, 'ride_location'):
location = obj.ride_location
return {
'coordinates': [location.entrance_point.y, location.entrance_point.x]
if location.entrance_point else None,
'park_area': location.park_area,
'park_location': self._get_park_location(obj.park)
}
# Add other location types...
return None
def get_entity_data(self, obj):
"""Get entity-specific data based on type"""
if obj._meta.model_name == 'park':
return {
'status': obj.status,
'operator': obj.operating_company.name if obj.operating_company else None,
'ride_count': getattr(obj, 'ride_count', 0),
'coaster_count': getattr(obj, 'coaster_count', 0),
'website': obj.website,
'opening_date': obj.opening_date
}
elif obj._meta.model_name == 'ride':
return {
'category': obj.category,
'park': {
'name': obj.park.name,
'slug': obj.park.slug
},
'manufacturer': obj.ride_model.manufacturer.name
if obj.ride_model and obj.ride_model.manufacturer else None,
'opening_date': obj.opening_date
}
# Add other entity types...
return {}
9. User Experience Design
9.1 Search Interface Enhancements
Location-Aware Search Form
<!-- Enhanced search form with location features -->
<form id="location-search-form" class="search-form">
<!-- Primary search input -->
<div class="search-input-group">
<input type="text"
id="search-query"
name="q"
placeholder="Search parks, rides, or locations..."
autocomplete="off"
data-autocomplete-url="{% url 'api:autocomplete' %}">
<!-- Location context button -->
<button type="button"
id="use-my-location"
class="location-btn"
title="Search near my location">
<i class="icon-location"></i>
<span class="sr-only">Use my location</span>
</button>
</div>
<!-- Location context display -->
<div id="location-context" class="location-context hidden">
<span class="location-label">Searching near:</span>
<span id="location-display"></span>
<button type="button" id="clear-location" class="clear-btn">×</button>
</div>
<!-- Advanced filters toggle -->
<div class="filter-controls">
<button type="button"
id="toggle-filters"
class="filter-toggle"
aria-expanded="false">
<i class="icon-filter"></i>
Filters
</button>
<!-- Location-specific filters -->
<div id="location-filters" class="filter-section hidden">
<label for="search-radius">Within:</label>
<select id="search-radius" name="radius">
<option value="25">25 miles</option>
<option value="50" selected>50 miles</option>
<option value="100">100 miles</option>
<option value="250">250 miles</option>
</select>
<label for="entity-types">Show:</label>
<div class="checkbox-group">
<label><input type="checkbox" name="types" value="park" checked> Parks</label>
<label><input type="checkbox" name="types" value="ride"> Rides</label>
<label><input type="checkbox" name="types" value="company"> Companies</label>
</div>
</div>
</div>
</form>
Location Permission Handling
class LocationPermissionManager {
constructor() {
this.permissionStatus = 'unknown';
this.setupEventHandlers();
}
setupEventHandlers() {
// Location button click handler
document.getElementById('use-my-location').addEventListener('click',
() => this.requestLocation());
// Privacy-conscious permission checking
if ('permissions' in navigator) {
navigator.permissions.query({name: 'geolocation'})
.then(permission => {
this.permissionStatus = permission.state;
this.updateLocationButton();
permission.addEventListener('change', () => {
this.permissionStatus = permission.state;
this.updateLocationButton();
});
});
}
}
async requestLocation() {
// Show privacy notice if first time
if (this.permissionStatus === 'prompt') {
const consent = await this.showPrivacyConsent();
if (!consent) return;
}
try {
this.showLocationLoading();
const location = await this.getCurrentPosition();
this.handleLocationSuccess(location);
} catch (error) {
this.handleLocationError(error);
}
}
showPrivacyConsent() {
return new Promise(resolve => {
const modal = document.createElement('div');
modal.className = 'location-consent-modal';
modal.innerHTML = `
<div class="modal-content">
<h3>Use Your Location</h3>
<p>ThrillWiki would like to use your location to show nearby parks and improve search results.</p>
<p>Your location data is not stored or shared with third parties.</p>
<div class="modal-actions">
<button class="btn-secondary" data-action="deny">No Thanks</button>
<button class="btn-primary" data-action="allow">Allow Location</button>
</div>
<a href="/privacy" target="_blank">Privacy Policy</a>
</div>
`;
modal.addEventListener('click', (e) => {
if (e.target.dataset.action === 'allow') {
resolve(true);
} else if (e.target.dataset.action === 'deny') {
resolve(false);
}
modal.remove();
});
document.body.appendChild(modal);
});
}
}
9.2 Results Display with Location Context
Distance-Enhanced Results
<!-- Results template with location context -->
<div class="search-results">
{% for result in results %}
<div class="result-item" data-type="{{ result.type }}" data-id="{{ result.id }}">
<div class="result-header">
<h3 class="result-title">
<a href="{{ result.get_absolute_url }}">{{ result.name }}</a>
</h3>
{% if result.distance_miles %}
<div class="distance-badge">
<i class="icon-location-arrow"></i>
{{ result.distance_miles|floatformat:1 }} miles away
</div>
{% endif %}
</div>
<div class="result-location">
{% if result.location.address %}
<i class="icon-map-pin"></i>
{{ result.location.address }}
{% if result.location.highway_exit %}
<div class="highway-info">
<i class="icon-highway"></i>
Exit: {{ result.location.highway_exit }}
</div>
{% endif %}
{% endif %}
</div>
<div class="result-actions">
<a href="{{ result.get_absolute_url }}" class="btn-primary">View Details</a>
{% if result.location.coordinates %}
<button type="button"
class="btn-secondary get-directions"
data-lat="{{ result.location.coordinates.0 }}"
data-lng="{{ result.location.coordinates.1 }}"
data-name="{{ result.name }}">
<i class="icon-directions"></i>
Directions
</button>
{% endif %}
{% if user_location and result.location.coordinates %}
<button type="button"
class="btn-secondary show-on-map"
data-result-id="{{ result.id }}">
<i class="icon-map"></i>
Show on Map
</button>
{% endif %}
</div>
</div>
{% endfor %}
</div>
9.3 Map Integration
Search-Map Bidirectional Integration
class SearchMapIntegration {
constructor(mapInstance, searchForm) {
this.map = mapInstance;
this.searchForm = searchForm;
this.searchResults = [];
this.setupIntegration();
}
setupIntegration() {
// Update search when map viewport changes
this.map.on('moveend', () => {
if (this.shouldUpdateSearchOnMapMove()) {
this.updateSearchFromMap();
}
});
// Show search results on map
this.searchForm.addEventListener('results-updated', (e) => {
this.showResultsOnMap(e.detail.results);
});
// Handle "Show on Map" button clicks
document.addEventListener('click', (e) => {
if (e.target.matches('.show-on-map')) {
const resultId = e.target.dataset.resultId;
this.highlightResultOnMap(resultId);
}
});
}
updateSearchFromMap() {
const bounds = this.map.getBounds();
const boundsParam = [
bounds.getNorth(),
bounds.getSouth(),
bounds.getEast(),
bounds.getWest()
].join(',');
// Update search form with map bounds
const boundsInput = document.getElementById('search-bounds');
if (boundsInput) {
boundsInput.value = boundsParam;
this.searchForm.submit();
}
}
showResultsOnMap(results) {
// Clear existing result markers
this.clearResultMarkers();
// Add markers for each result with location
results.forEach(result => {
if (result.location && result.location.coordinates) {
const marker = this.addResultMarker(result);
this.searchResults.push({
id: result.id,
marker: marker,
data: result
});
}
});
// Adjust map view to show all results
if (this.searchResults.length > 0) {
this.fitMapToResults();
}
}
}
10. Implementation Phases
Phase 1: Foundation (Weeks 1-2)
Goal: Establish basic location search infrastructure
Tasks:
-
Enhanced Filter Classes
- Extend
ParkFilterwith spatial search mixins - Create
DistanceSearchMixinandGeographicFilterMixin - Add location-based filter fields (state, country, metro area)
- Extend
-
Geocoding Service Integration
- Implement
GeocodingServicewith OpenStreetMap Nominatim - Add address detection and coordinate parsing
- Set up caching layer for geocoding results
- Implement
-
Database Optimization
- Add spatial indexes to location models
- Create composite indexes for common filter combinations
- Optimize existing queries for location joins
Deliverables:
- Enhanced filter classes with location capabilities
- Working geocoding service with caching
- Optimized database indexes
Phase 2: Core Search Enhancement (Weeks 3-4)
Goal: Integrate location capabilities into existing search
Tasks:
-
Search View Enhancement
- Extend
AdaptiveSearchViewwith location processing - Add user location detection and handling
- Implement hybrid text + proximity ranking
- Extend
-
API Development
- Create location-aware search API endpoints
- Implement autocomplete with location context
- Add proper error handling and validation
-
Query Optimization
- Implement spatial query optimization patterns
- Add performance monitoring for search queries
- Create caching strategies for search results
Deliverables:
- Location-enhanced search views and APIs
- Optimized spatial query patterns
- Performance monitoring infrastructure
Phase 3: User Experience (Weeks 5-6)
Goal: Create intuitive location search features
Tasks:
-
Frontend Enhancement
- Implement "near me" functionality with geolocation
- Add location permission handling and privacy controls
- Create enhanced search form with location context
-
Results Display
- Add distance information to search results
- Implement "get directions" functionality
- Create map integration for result visualization
-
Progressive Enhancement
- Ensure graceful fallback for users without location access
- Add IP-based location approximation
- Implement accessibility improvements
Deliverables:
- Enhanced search interface with location features
- Map integration for search results
- Accessibility-compliant location features
Phase 4: Advanced Features (Weeks 7-8)
Goal: Implement advanced location search capabilities
Tasks:
-
Cross-Domain Search
- Implement unified search across parks, rides, companies
- Create location-aware ranking algorithms
- Add entity-specific location features
-
Advanced Filtering
- Implement metropolitan area filtering
- Add route-based search (search along a path)
- Create clustering for dense geographic areas
-
Performance Optimization
- Implement advanced caching strategies
- Add query result pagination for large datasets
- Optimize for mobile and low-bandwidth scenarios
Deliverables:
- Unified cross-domain location search
- Advanced geographic filtering options
- Production-ready performance optimizations
Performance Benchmarks and Success Criteria
Performance Targets
- Text + Location Search: < 200ms for 90th percentile queries
- Spatial Queries: < 300ms for radius searches up to 100 miles
- Geocoding: < 100ms cache hit rate > 85%
- API Response: < 150ms for location-enhanced autocomplete
Success Metrics
- User Adoption: 40% of searches use location features within 3 months
- Search Improvement: 25% increase in search result relevance scores
- Performance: No degradation in non-location search performance
- Coverage: Location data available for 95% of parks in database
Monitoring and Alerting
- Query performance tracking with detailed metrics
- Geocoding service health monitoring
- User location permission grant rates
- Search abandonment rate analysis
Risk Mitigation
Technical Risks
- Performance Degradation: Comprehensive testing and gradual rollout
- Geocoding Service Reliability: Multiple fallback providers and caching
- Privacy Compliance: Clear consent flows and data minimization
User Experience Risks
- Location Permission Denial: Graceful fallbacks and alternative experiences
- Accuracy Issues: Clear accuracy indicators and user feedback mechanisms
- Complexity Overload: Progressive disclosure and intuitive defaults
Conclusion
This integration plan provides a comprehensive roadmap for enhancing ThrillWiki's search system with sophisticated location capabilities while maintaining performance and user experience. The phased approach ensures manageable implementation complexity and allows for iterative improvement based on user feedback and performance metrics.
The integration leverages existing Django-filters architecture while adding powerful spatial search capabilities that will significantly enhance the user experience for theme park enthusiasts planning visits and exploring new destinations.