mirror of
https://github.com/pacnpal/markov-discord.git
synced 2025-12-23 04:11:04 -05:00
Update file permissions and add documentation for LLM integration
This commit is contained in:
116
cline_docs/activeContext.md
Executable file
116
cline_docs/activeContext.md
Executable file
@@ -0,0 +1,116 @@
|
||||
# Active Context
|
||||
Last Updated: 2024-12-27
|
||||
|
||||
## Current Focus
|
||||
Integrating LLM capabilities into the existing Discord bot while maintaining the unique "personality" of each server's Markov-based responses.
|
||||
|
||||
### Active Issues
|
||||
1. Response Generation
|
||||
- Need to implement hybrid Markov-LLM response system
|
||||
- Must maintain response speed within acceptable limits
|
||||
- Need to handle API rate limiting gracefully
|
||||
|
||||
2. Data Management
|
||||
- Implement efficient storage for embeddings
|
||||
- Design context window management
|
||||
- Handle conversation threading
|
||||
|
||||
3. Integration Points
|
||||
- Modify generateResponse function to support LLM
|
||||
- Add embedding generation pipeline
|
||||
- Implement context tracking
|
||||
|
||||
## Recent Changes
|
||||
- Analyzed current codebase structure
|
||||
- Identified integration points for LLM
|
||||
- Documented system architecture
|
||||
- Created implementation plan
|
||||
|
||||
## Active Files
|
||||
|
||||
### Core Implementation
|
||||
- src/index.ts
|
||||
- Main bot logic
|
||||
- Message handling
|
||||
- Command processing
|
||||
|
||||
- src/entity/
|
||||
- Database schema
|
||||
- Need to add embedding and context tables
|
||||
|
||||
- src/train.ts
|
||||
- Training pipeline
|
||||
- Need to add embedding generation
|
||||
|
||||
### New Files Needed
|
||||
- src/llm/
|
||||
- provider.ts (LLM service integration)
|
||||
- embedding.ts (Embedding generation)
|
||||
- context.ts (Context management)
|
||||
|
||||
- src/entity/
|
||||
- MessageEmbedding.ts
|
||||
- ConversationContext.ts
|
||||
|
||||
## Next Steps
|
||||
|
||||
### Immediate Tasks
|
||||
1. Create database migrations
|
||||
- Add embedding table
|
||||
- Add context table
|
||||
- Update existing message schema
|
||||
|
||||
2. Implement LLM integration
|
||||
- Set up OpenAI client
|
||||
- Create response generation service
|
||||
- Add fallback mechanisms
|
||||
|
||||
3. Add embedding pipeline
|
||||
- Implement background processing
|
||||
- Set up batch operations
|
||||
- Add storage management
|
||||
|
||||
### Short-term Goals
|
||||
1. Test hybrid response system
|
||||
- Benchmark response times
|
||||
- Measure coherence
|
||||
- Validate context usage
|
||||
|
||||
2. Optimize performance
|
||||
- Implement caching
|
||||
- Add rate limiting
|
||||
- Tune batch sizes
|
||||
|
||||
3. Update documentation
|
||||
- Add LLM configuration guide
|
||||
- Update deployment instructions
|
||||
- Document new commands
|
||||
|
||||
### Dependencies
|
||||
- OpenAI API access
|
||||
- Additional storage capacity
|
||||
- Updated environment configuration
|
||||
|
||||
## Implementation Strategy
|
||||
|
||||
### Phase 1: Foundation
|
||||
1. Database schema updates
|
||||
2. Basic LLM integration
|
||||
3. Simple context tracking
|
||||
|
||||
### Phase 2: Enhancement
|
||||
1. Hybrid response system
|
||||
2. Advanced context management
|
||||
3. Performance optimization
|
||||
|
||||
### Phase 3: Refinement
|
||||
1. User feedback integration
|
||||
2. Response quality metrics
|
||||
3. Fine-tuning capabilities
|
||||
|
||||
## Notes
|
||||
- Keep existing Markov system as fallback
|
||||
- Monitor API usage and costs
|
||||
- Consider implementing local LLM option
|
||||
- Need to update help documentation
|
||||
- Consider adding configuration commands
|
||||
Reference in New Issue
Block a user