Files
markov-discord/cline_docs/activeContext.md

2.7 KiB
Executable File

Active Context

Last Updated: 2024-12-27

Current Focus

Integrating LLM capabilities into the existing Discord bot while maintaining the unique "personality" of each server's Markov-based responses.

Active Issues

  1. Response Generation

    • Need to implement hybrid Markov-LLM response system
    • Must maintain response speed within acceptable limits
    • Need to handle API rate limiting gracefully
  2. Data Management

    • Implement efficient storage for embeddings
    • Design context window management
    • Handle conversation threading
  3. Integration Points

    • Modify generateResponse function to support LLM
    • Add embedding generation pipeline
    • Implement context tracking

Recent Changes

  • Analyzed current codebase structure
  • Identified integration points for LLM
  • Documented system architecture
  • Created implementation plan

Active Files

Core Implementation

  • src/index.ts

    • Main bot logic
    • Message handling
    • Command processing
  • src/entity/

    • Database schema
    • Need to add embedding and context tables
  • src/train.ts

    • Training pipeline
    • Need to add embedding generation

New Files Needed

  • src/llm/

    • provider.ts (LLM service integration)
    • embedding.ts (Embedding generation)
    • context.ts (Context management)
  • src/entity/

    • MessageEmbedding.ts
    • ConversationContext.ts

Next Steps

Immediate Tasks

  1. Create database migrations

    • Add embedding table
    • Add context table
    • Update existing message schema
  2. Implement LLM integration

    • Set up OpenAI client
    • Create response generation service
    • Add fallback mechanisms
  3. Add embedding pipeline

    • Implement background processing
    • Set up batch operations
    • Add storage management

Short-term Goals

  1. Test hybrid response system

    • Benchmark response times
    • Measure coherence
    • Validate context usage
  2. Optimize performance

    • Implement caching
    • Add rate limiting
    • Tune batch sizes
  3. Update documentation

    • Add LLM configuration guide
    • Update deployment instructions
    • Document new commands

Dependencies

  • OpenAI API access
  • Additional storage capacity
  • Updated environment configuration

Implementation Strategy

Phase 1: Foundation

  1. Database schema updates
  2. Basic LLM integration
  3. Simple context tracking

Phase 2: Enhancement

  1. Hybrid response system
  2. Advanced context management
  3. Performance optimization

Phase 3: Refinement

  1. User feedback integration
  2. Response quality metrics
  3. Fine-tuning capabilities

Notes

  • Keep existing Markov system as fallback
  • Monitor API usage and costs
  • Consider implementing local LLM option
  • Need to update help documentation
  • Consider adding configuration commands