mirror of
https://github.com/pacnpal/markov-discord.git
synced 2025-12-20 03:01:04 -05:00
116 lines
2.7 KiB
Markdown
Executable File
116 lines
2.7 KiB
Markdown
Executable File
# Active Context
|
|
Last Updated: 2024-12-27
|
|
|
|
## Current Focus
|
|
Integrating LLM capabilities into the existing Discord bot while maintaining the unique "personality" of each server's Markov-based responses.
|
|
|
|
### Active Issues
|
|
1. Response Generation
|
|
- Need to implement hybrid Markov-LLM response system
|
|
- Must maintain response speed within acceptable limits
|
|
- Need to handle API rate limiting gracefully
|
|
|
|
2. Data Management
|
|
- Implement efficient storage for embeddings
|
|
- Design context window management
|
|
- Handle conversation threading
|
|
|
|
3. Integration Points
|
|
- Modify generateResponse function to support LLM
|
|
- Add embedding generation pipeline
|
|
- Implement context tracking
|
|
|
|
## Recent Changes
|
|
- Analyzed current codebase structure
|
|
- Identified integration points for LLM
|
|
- Documented system architecture
|
|
- Created implementation plan
|
|
|
|
## Active Files
|
|
|
|
### Core Implementation
|
|
- src/index.ts
|
|
- Main bot logic
|
|
- Message handling
|
|
- Command processing
|
|
|
|
- src/entity/
|
|
- Database schema
|
|
- Need to add embedding and context tables
|
|
|
|
- src/train.ts
|
|
- Training pipeline
|
|
- Need to add embedding generation
|
|
|
|
### New Files Needed
|
|
- src/llm/
|
|
- provider.ts (LLM service integration)
|
|
- embedding.ts (Embedding generation)
|
|
- context.ts (Context management)
|
|
|
|
- src/entity/
|
|
- MessageEmbedding.ts
|
|
- ConversationContext.ts
|
|
|
|
## Next Steps
|
|
|
|
### Immediate Tasks
|
|
1. Create database migrations
|
|
- Add embedding table
|
|
- Add context table
|
|
- Update existing message schema
|
|
|
|
2. Implement LLM integration
|
|
- Set up OpenAI client
|
|
- Create response generation service
|
|
- Add fallback mechanisms
|
|
|
|
3. Add embedding pipeline
|
|
- Implement background processing
|
|
- Set up batch operations
|
|
- Add storage management
|
|
|
|
### Short-term Goals
|
|
1. Test hybrid response system
|
|
- Benchmark response times
|
|
- Measure coherence
|
|
- Validate context usage
|
|
|
|
2. Optimize performance
|
|
- Implement caching
|
|
- Add rate limiting
|
|
- Tune batch sizes
|
|
|
|
3. Update documentation
|
|
- Add LLM configuration guide
|
|
- Update deployment instructions
|
|
- Document new commands
|
|
|
|
### Dependencies
|
|
- OpenAI API access
|
|
- Additional storage capacity
|
|
- Updated environment configuration
|
|
|
|
## Implementation Strategy
|
|
|
|
### Phase 1: Foundation
|
|
1. Database schema updates
|
|
2. Basic LLM integration
|
|
3. Simple context tracking
|
|
|
|
### Phase 2: Enhancement
|
|
1. Hybrid response system
|
|
2. Advanced context management
|
|
3. Performance optimization
|
|
|
|
### Phase 3: Refinement
|
|
1. User feedback integration
|
|
2. Response quality metrics
|
|
3. Fine-tuning capabilities
|
|
|
|
## Notes
|
|
- Keep existing Markov system as fallback
|
|
- Monitor API usage and costs
|
|
- Consider implementing local LLM option
|
|
- Need to update help documentation
|
|
- Consider adding configuration commands |