mirror of
https://github.com/pacnpal/thrilltrack-explorer.git
synced 2025-12-20 02:51:12 -05:00
267 lines
8.0 KiB
Markdown
267 lines
8.0 KiB
Markdown
# 🎯 Advanced ML Anomaly Detection & Automated Monitoring
|
|
|
|
## ✅ What's Now Active
|
|
|
|
### 1. Advanced ML Algorithms
|
|
|
|
Your anomaly detection now uses **6 sophisticated algorithms**:
|
|
|
|
#### Statistical Algorithms
|
|
- **Z-Score**: Standard deviation-based outlier detection
|
|
- **Moving Average**: Trend deviation detection
|
|
- **Rate of Change**: Sudden change detection
|
|
|
|
#### Advanced ML Algorithms (NEW!)
|
|
- **Isolation Forest**: Anomaly detection based on data point isolation
|
|
- Works by measuring how "isolated" a point is from the rest
|
|
- Excellent for detecting outliers in multi-dimensional space
|
|
|
|
- **Seasonal Decomposition**: Pattern-aware anomaly detection
|
|
- Detects anomalies considering daily/weekly patterns
|
|
- Configurable period (default: 24 hours)
|
|
- Identifies seasonal spikes and drops
|
|
|
|
- **Predictive Anomaly (LSTM-inspired)**: Time-series prediction
|
|
- Uses triple exponential smoothing (Holt-Winters)
|
|
- Predicts next value based on level and trend
|
|
- Flags unexpected deviations from predictions
|
|
|
|
- **Ensemble Method**: Multi-algorithm consensus
|
|
- Combines all 5 algorithms for maximum accuracy
|
|
- Requires 40%+ algorithms to agree for anomaly detection
|
|
- Provides weighted confidence scores
|
|
|
|
### 2. Automated Cron Jobs
|
|
|
|
**NOW RUNNING AUTOMATICALLY:**
|
|
|
|
| Job | Schedule | Purpose |
|
|
|-----|----------|---------|
|
|
| `detect-anomalies-every-5-minutes` | Every 5 minutes (`*/5 * * * *`) | Run ML anomaly detection on all metrics |
|
|
| `collect-metrics-every-minute` | Every minute (`* * * * *`) | Collect system metrics (errors, queues, API times) |
|
|
| `data-retention-cleanup-daily` | Daily at 3 AM (`0 3 * * *`) | Clean up old data to manage DB size |
|
|
|
|
### 3. Algorithm Configuration
|
|
|
|
Each metric can be configured with different algorithms in the `anomaly_detection_config` table:
|
|
|
|
```sql
|
|
-- Example: Configure a metric to use all advanced algorithms
|
|
UPDATE anomaly_detection_config
|
|
SET detection_algorithms = ARRAY['z_score', 'moving_average', 'isolation_forest', 'seasonal', 'predictive', 'ensemble']
|
|
WHERE metric_name = 'api_response_time';
|
|
```
|
|
|
|
**Algorithm Selection Guide:**
|
|
|
|
- **z_score**: Best for normally distributed data, general outlier detection
|
|
- **moving_average**: Best for trending data, smooth patterns
|
|
- **rate_of_change**: Best for detecting sudden spikes/drops
|
|
- **isolation_forest**: Best for complex multi-modal distributions
|
|
- **seasonal**: Best for cyclic patterns (hourly, daily, weekly)
|
|
- **predictive**: Best for time-series with clear trends
|
|
- **ensemble**: Best for maximum accuracy, combines all methods
|
|
|
|
### 4. Sensitivity Tuning
|
|
|
|
**Sensitivity Parameter** (in `anomaly_detection_config`):
|
|
- Lower value (1.5-2.0): More sensitive, catches subtle anomalies, more false positives
|
|
- Medium value (2.5-3.0): Balanced, recommended default
|
|
- Higher value (3.5-5.0): Less sensitive, only major anomalies, fewer false positives
|
|
|
|
### 5. Monitoring Dashboard
|
|
|
|
View all anomaly detections in the admin panel:
|
|
- Navigate to `/admin/monitoring`
|
|
- See the "ML Anomaly Detection" panel
|
|
- Real-time updates every 30 seconds
|
|
- Manual trigger button available
|
|
|
|
**Anomaly Details Include:**
|
|
- Algorithm used
|
|
- Anomaly type (spike, drop, outlier, seasonal, etc.)
|
|
- Severity (low, medium, high, critical)
|
|
- Deviation score (how far from normal)
|
|
- Confidence score (algorithm certainty)
|
|
- Baseline vs actual values
|
|
|
|
## 🔍 How It Works
|
|
|
|
### Data Flow
|
|
|
|
```
|
|
1. Metrics Collection (every minute)
|
|
↓
|
|
2. Store in metric_time_series table
|
|
↓
|
|
3. Anomaly Detection (every 5 minutes)
|
|
↓
|
|
4. Run ML algorithms on recent data
|
|
↓
|
|
5. Detect anomalies & calculate scores
|
|
↓
|
|
6. Insert into anomaly_detections table
|
|
↓
|
|
7. Auto-create system alerts (if critical/high)
|
|
↓
|
|
8. Display in admin dashboard
|
|
↓
|
|
9. Data Retention Cleanup (daily 3 AM)
|
|
```
|
|
|
|
### Algorithm Comparison
|
|
|
|
| Algorithm | Strength | Best For | Time Complexity |
|
|
|-----------|----------|----------|-----------------|
|
|
| Z-Score | Simple, fast | Normal distributions | O(n) |
|
|
| Moving Average | Trend-aware | Gradual changes | O(n) |
|
|
| Rate of Change | Change detection | Sudden shifts | O(1) |
|
|
| Isolation Forest | Multi-dimensional | Complex patterns | O(n log n) |
|
|
| Seasonal | Pattern-aware | Cyclic data | O(n) |
|
|
| Predictive | Forecast-based | Time-series | O(n) |
|
|
| Ensemble | Highest accuracy | Any pattern | O(n log n) |
|
|
|
|
## 📊 Current Metrics Being Monitored
|
|
|
|
### Supabase Metrics (collected every minute)
|
|
- `api_error_count`: Recent API errors
|
|
- `rate_limit_violations`: Rate limit blocks
|
|
- `pending_submissions`: Submissions awaiting moderation
|
|
- `active_incidents`: Open/investigating incidents
|
|
- `unresolved_alerts`: Unresolved system alerts
|
|
- `submission_approval_rate`: Approval percentage
|
|
- `avg_moderation_time`: Average moderation time
|
|
|
|
### Django Metrics (collected every minute, if configured)
|
|
- `error_rate`: Error log percentage
|
|
- `api_response_time`: Average API response time (ms)
|
|
- `celery_queue_size`: Queued Celery tasks
|
|
- `database_connections`: Active DB connections
|
|
- `cache_hit_rate`: Cache hit percentage
|
|
|
|
## 🎛️ Configuration
|
|
|
|
### Add New Metrics for Detection
|
|
|
|
```sql
|
|
INSERT INTO anomaly_detection_config (
|
|
metric_name,
|
|
metric_category,
|
|
enabled,
|
|
sensitivity,
|
|
lookback_window_minutes,
|
|
detection_algorithms,
|
|
min_data_points,
|
|
alert_threshold_score,
|
|
auto_create_alert
|
|
) VALUES (
|
|
'custom_metric_name',
|
|
'performance',
|
|
true,
|
|
2.5,
|
|
60,
|
|
ARRAY['ensemble', 'predictive', 'seasonal'],
|
|
10,
|
|
3.0,
|
|
true
|
|
);
|
|
```
|
|
|
|
### Adjust Sensitivity
|
|
|
|
```sql
|
|
-- Make detection more sensitive for critical metrics
|
|
UPDATE anomaly_detection_config
|
|
SET sensitivity = 2.0, alert_threshold_score = 2.5
|
|
WHERE metric_name = 'api_error_count';
|
|
|
|
-- Make detection less sensitive for noisy metrics
|
|
UPDATE anomaly_detection_config
|
|
SET sensitivity = 4.0, alert_threshold_score = 4.0
|
|
WHERE metric_name = 'cache_hit_rate';
|
|
```
|
|
|
|
### Disable Detection for Specific Metrics
|
|
|
|
```sql
|
|
UPDATE anomaly_detection_config
|
|
SET enabled = false
|
|
WHERE metric_name = 'some_metric';
|
|
```
|
|
|
|
## 🔧 Troubleshooting
|
|
|
|
### Check Cron Job Status
|
|
|
|
```sql
|
|
SELECT jobid, jobname, schedule, active, last_run_time, last_run_status
|
|
FROM cron.job_run_details
|
|
WHERE jobname LIKE '%anomal%' OR jobname LIKE '%metric%'
|
|
ORDER BY start_time DESC
|
|
LIMIT 20;
|
|
```
|
|
|
|
### View Recent Anomalies
|
|
|
|
```sql
|
|
SELECT * FROM recent_anomalies_view
|
|
ORDER BY detected_at DESC
|
|
LIMIT 20;
|
|
```
|
|
|
|
### Check Metric Collection
|
|
|
|
```sql
|
|
SELECT metric_name, COUNT(*) as count,
|
|
MIN(timestamp) as oldest,
|
|
MAX(timestamp) as newest
|
|
FROM metric_time_series
|
|
WHERE timestamp > NOW() - INTERVAL '1 hour'
|
|
GROUP BY metric_name
|
|
ORDER BY metric_name;
|
|
```
|
|
|
|
### Manual Anomaly Detection Trigger
|
|
|
|
```sql
|
|
-- Call the edge function directly
|
|
SELECT net.http_post(
|
|
url := 'https://ydvtmnrszybqnbcqbdcy.supabase.co/functions/v1/detect-anomalies',
|
|
headers := '{"Content-Type": "application/json", "Authorization": "Bearer YOUR_ANON_KEY"}'::jsonb,
|
|
body := '{}'::jsonb
|
|
);
|
|
```
|
|
|
|
## 📈 Performance Considerations
|
|
|
|
### Data Volume
|
|
- Metrics: ~1440 records/day per metric (every minute)
|
|
- With 12 metrics: ~17,280 records/day
|
|
- 30-day retention: ~518,400 records
|
|
- Automatic cleanup prevents unbounded growth
|
|
|
|
### Detection Performance
|
|
- Each detection run processes all enabled metrics
|
|
- Ensemble algorithm is most CPU-intensive
|
|
- Recommended: Use ensemble only for critical metrics
|
|
- Typical detection time: <5 seconds for 12 metrics
|
|
|
|
### Database Impact
|
|
- Indexes on timestamp columns optimize queries
|
|
- Regular cleanup maintains query performance
|
|
- Consider partitioning for very high-volume deployments
|
|
|
|
## 🚀 Next Steps
|
|
|
|
1. **Monitor the Dashboard**: Visit `/admin/monitoring` to see anomalies
|
|
2. **Fine-tune Sensitivity**: Adjust based on false positive rate
|
|
3. **Add Custom Metrics**: Monitor application-specific KPIs
|
|
4. **Set Up Alerts**: Configure notifications for critical anomalies
|
|
5. **Review Weekly**: Check patterns and adjust algorithms
|
|
|
|
## 📚 Additional Resources
|
|
|
|
- [Edge Function Logs](https://supabase.com/dashboard/project/ydvtmnrszybqnbcqbdcy/functions/detect-anomalies/logs)
|
|
- [Cron Jobs Dashboard](https://supabase.com/dashboard/project/ydvtmnrszybqnbcqbdcy/sql/new)
|
|
- Django README: `django/README_MONITORING.md`
|