Files
thrilltrack-explorer/MONITORING_SETUP.md
2025-11-11 02:30:12 +00:00

267 lines
8.0 KiB
Markdown

# 🎯 Advanced ML Anomaly Detection & Automated Monitoring
## ✅ What's Now Active
### 1. Advanced ML Algorithms
Your anomaly detection now uses **6 sophisticated algorithms**:
#### Statistical Algorithms
- **Z-Score**: Standard deviation-based outlier detection
- **Moving Average**: Trend deviation detection
- **Rate of Change**: Sudden change detection
#### Advanced ML Algorithms (NEW!)
- **Isolation Forest**: Anomaly detection based on data point isolation
- Works by measuring how "isolated" a point is from the rest
- Excellent for detecting outliers in multi-dimensional space
- **Seasonal Decomposition**: Pattern-aware anomaly detection
- Detects anomalies considering daily/weekly patterns
- Configurable period (default: 24 hours)
- Identifies seasonal spikes and drops
- **Predictive Anomaly (LSTM-inspired)**: Time-series prediction
- Uses triple exponential smoothing (Holt-Winters)
- Predicts next value based on level and trend
- Flags unexpected deviations from predictions
- **Ensemble Method**: Multi-algorithm consensus
- Combines all 5 algorithms for maximum accuracy
- Requires 40%+ algorithms to agree for anomaly detection
- Provides weighted confidence scores
### 2. Automated Cron Jobs
**NOW RUNNING AUTOMATICALLY:**
| Job | Schedule | Purpose |
|-----|----------|---------|
| `detect-anomalies-every-5-minutes` | Every 5 minutes (`*/5 * * * *`) | Run ML anomaly detection on all metrics |
| `collect-metrics-every-minute` | Every minute (`* * * * *`) | Collect system metrics (errors, queues, API times) |
| `data-retention-cleanup-daily` | Daily at 3 AM (`0 3 * * *`) | Clean up old data to manage DB size |
### 3. Algorithm Configuration
Each metric can be configured with different algorithms in the `anomaly_detection_config` table:
```sql
-- Example: Configure a metric to use all advanced algorithms
UPDATE anomaly_detection_config
SET detection_algorithms = ARRAY['z_score', 'moving_average', 'isolation_forest', 'seasonal', 'predictive', 'ensemble']
WHERE metric_name = 'api_response_time';
```
**Algorithm Selection Guide:**
- **z_score**: Best for normally distributed data, general outlier detection
- **moving_average**: Best for trending data, smooth patterns
- **rate_of_change**: Best for detecting sudden spikes/drops
- **isolation_forest**: Best for complex multi-modal distributions
- **seasonal**: Best for cyclic patterns (hourly, daily, weekly)
- **predictive**: Best for time-series with clear trends
- **ensemble**: Best for maximum accuracy, combines all methods
### 4. Sensitivity Tuning
**Sensitivity Parameter** (in `anomaly_detection_config`):
- Lower value (1.5-2.0): More sensitive, catches subtle anomalies, more false positives
- Medium value (2.5-3.0): Balanced, recommended default
- Higher value (3.5-5.0): Less sensitive, only major anomalies, fewer false positives
### 5. Monitoring Dashboard
View all anomaly detections in the admin panel:
- Navigate to `/admin/monitoring`
- See the "ML Anomaly Detection" panel
- Real-time updates every 30 seconds
- Manual trigger button available
**Anomaly Details Include:**
- Algorithm used
- Anomaly type (spike, drop, outlier, seasonal, etc.)
- Severity (low, medium, high, critical)
- Deviation score (how far from normal)
- Confidence score (algorithm certainty)
- Baseline vs actual values
## 🔍 How It Works
### Data Flow
```
1. Metrics Collection (every minute)
2. Store in metric_time_series table
3. Anomaly Detection (every 5 minutes)
4. Run ML algorithms on recent data
5. Detect anomalies & calculate scores
6. Insert into anomaly_detections table
7. Auto-create system alerts (if critical/high)
8. Display in admin dashboard
9. Data Retention Cleanup (daily 3 AM)
```
### Algorithm Comparison
| Algorithm | Strength | Best For | Time Complexity |
|-----------|----------|----------|-----------------|
| Z-Score | Simple, fast | Normal distributions | O(n) |
| Moving Average | Trend-aware | Gradual changes | O(n) |
| Rate of Change | Change detection | Sudden shifts | O(1) |
| Isolation Forest | Multi-dimensional | Complex patterns | O(n log n) |
| Seasonal | Pattern-aware | Cyclic data | O(n) |
| Predictive | Forecast-based | Time-series | O(n) |
| Ensemble | Highest accuracy | Any pattern | O(n log n) |
## 📊 Current Metrics Being Monitored
### Supabase Metrics (collected every minute)
- `api_error_count`: Recent API errors
- `rate_limit_violations`: Rate limit blocks
- `pending_submissions`: Submissions awaiting moderation
- `active_incidents`: Open/investigating incidents
- `unresolved_alerts`: Unresolved system alerts
- `submission_approval_rate`: Approval percentage
- `avg_moderation_time`: Average moderation time
### Django Metrics (collected every minute, if configured)
- `error_rate`: Error log percentage
- `api_response_time`: Average API response time (ms)
- `celery_queue_size`: Queued Celery tasks
- `database_connections`: Active DB connections
- `cache_hit_rate`: Cache hit percentage
## 🎛️ Configuration
### Add New Metrics for Detection
```sql
INSERT INTO anomaly_detection_config (
metric_name,
metric_category,
enabled,
sensitivity,
lookback_window_minutes,
detection_algorithms,
min_data_points,
alert_threshold_score,
auto_create_alert
) VALUES (
'custom_metric_name',
'performance',
true,
2.5,
60,
ARRAY['ensemble', 'predictive', 'seasonal'],
10,
3.0,
true
);
```
### Adjust Sensitivity
```sql
-- Make detection more sensitive for critical metrics
UPDATE anomaly_detection_config
SET sensitivity = 2.0, alert_threshold_score = 2.5
WHERE metric_name = 'api_error_count';
-- Make detection less sensitive for noisy metrics
UPDATE anomaly_detection_config
SET sensitivity = 4.0, alert_threshold_score = 4.0
WHERE metric_name = 'cache_hit_rate';
```
### Disable Detection for Specific Metrics
```sql
UPDATE anomaly_detection_config
SET enabled = false
WHERE metric_name = 'some_metric';
```
## 🔧 Troubleshooting
### Check Cron Job Status
```sql
SELECT jobid, jobname, schedule, active, last_run_time, last_run_status
FROM cron.job_run_details
WHERE jobname LIKE '%anomal%' OR jobname LIKE '%metric%'
ORDER BY start_time DESC
LIMIT 20;
```
### View Recent Anomalies
```sql
SELECT * FROM recent_anomalies_view
ORDER BY detected_at DESC
LIMIT 20;
```
### Check Metric Collection
```sql
SELECT metric_name, COUNT(*) as count,
MIN(timestamp) as oldest,
MAX(timestamp) as newest
FROM metric_time_series
WHERE timestamp > NOW() - INTERVAL '1 hour'
GROUP BY metric_name
ORDER BY metric_name;
```
### Manual Anomaly Detection Trigger
```sql
-- Call the edge function directly
SELECT net.http_post(
url := 'https://ydvtmnrszybqnbcqbdcy.supabase.co/functions/v1/detect-anomalies',
headers := '{"Content-Type": "application/json", "Authorization": "Bearer YOUR_ANON_KEY"}'::jsonb,
body := '{}'::jsonb
);
```
## 📈 Performance Considerations
### Data Volume
- Metrics: ~1440 records/day per metric (every minute)
- With 12 metrics: ~17,280 records/day
- 30-day retention: ~518,400 records
- Automatic cleanup prevents unbounded growth
### Detection Performance
- Each detection run processes all enabled metrics
- Ensemble algorithm is most CPU-intensive
- Recommended: Use ensemble only for critical metrics
- Typical detection time: <5 seconds for 12 metrics
### Database Impact
- Indexes on timestamp columns optimize queries
- Regular cleanup maintains query performance
- Consider partitioning for very high-volume deployments
## 🚀 Next Steps
1. **Monitor the Dashboard**: Visit `/admin/monitoring` to see anomalies
2. **Fine-tune Sensitivity**: Adjust based on false positive rate
3. **Add Custom Metrics**: Monitor application-specific KPIs
4. **Set Up Alerts**: Configure notifications for critical anomalies
5. **Review Weekly**: Check patterns and adjust algorithms
## 📚 Additional Resources
- [Edge Function Logs](https://supabase.com/dashboard/project/ydvtmnrszybqnbcqbdcy/functions/detect-anomalies/logs)
- [Cron Jobs Dashboard](https://supabase.com/dashboard/project/ydvtmnrszybqnbcqbdcy/sql/new)
- Django README: `django/README_MONITORING.md`