Files
thrillwiki_django_no_react/README_HYBRID_ENDPOINTS.md
pacnpal 35f8d0ef8f Implement hybrid filtering strategy for parks and rides
- Added comprehensive documentation for hybrid filtering implementation, including architecture, API endpoints, performance characteristics, and usage examples.
- Developed a hybrid pagination and client-side filtering recommendation, detailing server-side responsibilities and client-side logic.
- Created a test script for hybrid filtering endpoints, covering various test cases including basic filtering, search functionality, pagination, and edge cases.
2025-09-14 21:07:17 -04:00

5.6 KiB

ThrillWiki Hybrid Filtering Endpoints Test Suite

This repository contains a comprehensive test script for the newly synchronized Parks and Rides hybrid filtering endpoints.

Quick Start

  1. Start the Django server:

    cd backend && uv run manage.py runserver 8000
    
  2. Run the test script:

    ./test_hybrid_endpoints.sh
    

    Or with a custom base URL:

    ./test_hybrid_endpoints.sh http://localhost:8000
    

What Gets Tested

Parks Hybrid Filtering (/api/v1/parks/hybrid/)

  • Basic hybrid filtering (automatic strategy selection)
  • Search functionality (?search=disney)
  • Status filtering (?status=OPERATING,CLOSED_TEMP)
  • Geographic filtering (?country=United%20States&state=Florida,California)
  • Numeric range filtering (?opening_year_min=1990&rating_min=4.0)
  • Park statistics filtering (?size_min=100&ride_count_min=10)
  • Operator filtering (?operator=disney,universal)
  • Progressive loading (?offset=50)
  • Filter metadata (/filter-metadata/)
  • Scoped metadata (/filter-metadata/?scoped=true&country=United%20States)

Rides Hybrid Filtering (/api/v1/rides/hybrid/)

  • Basic hybrid filtering (automatic strategy selection)
  • Search functionality (?search=coaster)
  • Category filtering (?category=RC,DR)
  • Status and park filtering (?status=OPERATING&park_slug=cedar-point)
  • Manufacturer/designer filtering (?manufacturer=bolliger-mabillard)
  • Roller coaster specific filtering (?roller_coaster_type=INVERTED&has_inversions=true)
  • Performance filtering (?height_ft_min=200&speed_mph_min=70)
  • Quality metrics (?rating_min=4.5&capacity_min=1000)
  • Accessibility filtering (?height_requirement_min=48&height_requirement_max=54)
  • Progressive loading (?offset=25&category=RC)
  • Filter metadata (/filter-metadata/)
  • Scoped metadata (/filter-metadata/?scoped=true&category=RC)

Advanced Testing

  • Complex combination queries
  • Edge cases (empty results, invalid parameters)
  • Performance timing comparisons
  • Error handling validation

Key Features Demonstrated

🔄 Automatic Strategy Selection

  • ≤200 records: Client-side filtering (loads all data for frontend filtering)
  • >200 records: Server-side filtering (database filtering with pagination)

📊 Progressive Loading

  • Initial load: 50 records
  • Progressive batches: 25 records
  • Seamless pagination for large datasets

🔍 Comprehensive Filtering

  • Parks: 17+ filter parameters including geographic, temporal, and statistical filters
  • Rides: 17+ filter parameters including roller coaster specs, performance metrics, and accessibility

📋 Dynamic Filter Metadata

  • Real-time filter options based on current data
  • Scoped metadata for contextual filtering
  • Ranges and categorical options automatically generated

Performance Optimized

  • 5-minute intelligent caching
  • Strategic database indexing
  • Optimized queries with prefetch_related

Response Format

Both endpoints return consistent response structures:

{
  "parks": [...],           // or "rides": [...]
  "total_count": 123,
  "strategy": "client_side", // or "server_side"
  "has_more": false,
  "next_offset": null,
  "filter_metadata": {
    "categorical": {
      "countries": ["United States", "Canada", ...],
      "categories": ["RC", "DR", "FR", ...],
      // ... more options
    },
    "ranges": {
      "opening_year": {"min": 1800, "max": 2025},
      "rating": {"min": 1.0, "max": 10.0},
      // ... more ranges
    }
  }
}

Dependencies

  • curl: Required for making HTTP requests
  • jq: Optional but recommended for pretty JSON formatting

Example Usage

Basic Parks Query

curl "http://localhost:8000/api/v1/parks/hybrid/"

Search for Disney Parks

curl "http://localhost:8000/api/v1/parks/hybrid/?search=disney"

Filter Roller Coasters with Inversions

curl "http://localhost:8000/api/v1/rides/hybrid/?category=RC&has_inversions=true&height_ft_min=100"

Get Filter Metadata

curl "http://localhost:8000/api/v1/parks/hybrid/filter-metadata/"

Integration Guide

Frontend Integration

  1. Use filter metadata to build dynamic filter interfaces
  2. Implement progressive loading for better UX
  3. Handle both client-side and server-side strategies
  4. Cache filter metadata to reduce API calls

Performance Considerations

  • Monitor response times and adjust thresholds as needed
  • Use progressive loading for datasets >200 records
  • Implement proper error handling for edge cases
  • Consider implementing request debouncing for search

Troubleshooting

Server Not Running

❌ Server not available at http://localhost:8000
💡 Make sure to start the Django server first:
   cd backend && uv run manage.py runserver 8000

Missing jq

⚠️  jq not found - JSON responses will not be pretty-printed

Install jq for better output formatting:

# macOS
brew install jq

# Ubuntu/Debian
sudo apt-get install jq

Next Steps

  1. Integrate into Frontend: Use these endpoints in your React/Next.js application
  2. Build Filter UI: Create dynamic filter interfaces using the metadata
  3. Implement Progressive Loading: Handle large datasets efficiently
  4. Monitor Performance: Track response times and optimize as needed
  5. Add Caching: Implement client-side caching for better UX

🎢 Happy filtering! These endpoints provide a powerful, scalable foundation for building advanced search and filtering experiences in your theme park application.