mirror of
https://github.com/pacnpal/thrillwiki_django_no_react.git
synced 2025-12-20 10:31:09 -05:00
- Added comprehensive documentation for hybrid filtering implementation, including architecture, API endpoints, performance characteristics, and usage examples. - Developed a hybrid pagination and client-side filtering recommendation, detailing server-side responsibilities and client-side logic. - Created a test script for hybrid filtering endpoints, covering various test cases including basic filtering, search functionality, pagination, and edge cases.
5.6 KiB
5.6 KiB
ThrillWiki Hybrid Filtering Endpoints Test Suite
This repository contains a comprehensive test script for the newly synchronized Parks and Rides hybrid filtering endpoints.
Quick Start
-
Start the Django server:
cd backend && uv run manage.py runserver 8000 -
Run the test script:
./test_hybrid_endpoints.shOr with a custom base URL:
./test_hybrid_endpoints.sh http://localhost:8000
What Gets Tested
Parks Hybrid Filtering (/api/v1/parks/hybrid/)
- ✅ Basic hybrid filtering (automatic strategy selection)
- ✅ Search functionality (
?search=disney) - ✅ Status filtering (
?status=OPERATING,CLOSED_TEMP) - ✅ Geographic filtering (
?country=United%20States&state=Florida,California) - ✅ Numeric range filtering (
?opening_year_min=1990&rating_min=4.0) - ✅ Park statistics filtering (
?size_min=100&ride_count_min=10) - ✅ Operator filtering (
?operator=disney,universal) - ✅ Progressive loading (
?offset=50) - ✅ Filter metadata (
/filter-metadata/) - ✅ Scoped metadata (
/filter-metadata/?scoped=true&country=United%20States)
Rides Hybrid Filtering (/api/v1/rides/hybrid/)
- ✅ Basic hybrid filtering (automatic strategy selection)
- ✅ Search functionality (
?search=coaster) - ✅ Category filtering (
?category=RC,DR) - ✅ Status and park filtering (
?status=OPERATING&park_slug=cedar-point) - ✅ Manufacturer/designer filtering (
?manufacturer=bolliger-mabillard) - ✅ Roller coaster specific filtering (
?roller_coaster_type=INVERTED&has_inversions=true) - ✅ Performance filtering (
?height_ft_min=200&speed_mph_min=70) - ✅ Quality metrics (
?rating_min=4.5&capacity_min=1000) - ✅ Accessibility filtering (
?height_requirement_min=48&height_requirement_max=54) - ✅ Progressive loading (
?offset=25&category=RC) - ✅ Filter metadata (
/filter-metadata/) - ✅ Scoped metadata (
/filter-metadata/?scoped=true&category=RC)
Advanced Testing
- ✅ Complex combination queries
- ✅ Edge cases (empty results, invalid parameters)
- ✅ Performance timing comparisons
- ✅ Error handling validation
Key Features Demonstrated
🔄 Automatic Strategy Selection
- ≤200 records: Client-side filtering (loads all data for frontend filtering)
- >200 records: Server-side filtering (database filtering with pagination)
📊 Progressive Loading
- Initial load: 50 records
- Progressive batches: 25 records
- Seamless pagination for large datasets
🔍 Comprehensive Filtering
- Parks: 17+ filter parameters including geographic, temporal, and statistical filters
- Rides: 17+ filter parameters including roller coaster specs, performance metrics, and accessibility
📋 Dynamic Filter Metadata
- Real-time filter options based on current data
- Scoped metadata for contextual filtering
- Ranges and categorical options automatically generated
⚡ Performance Optimized
- 5-minute intelligent caching
- Strategic database indexing
- Optimized queries with prefetch_related
Response Format
Both endpoints return consistent response structures:
{
"parks": [...], // or "rides": [...]
"total_count": 123,
"strategy": "client_side", // or "server_side"
"has_more": false,
"next_offset": null,
"filter_metadata": {
"categorical": {
"countries": ["United States", "Canada", ...],
"categories": ["RC", "DR", "FR", ...],
// ... more options
},
"ranges": {
"opening_year": {"min": 1800, "max": 2025},
"rating": {"min": 1.0, "max": 10.0},
// ... more ranges
}
}
}
Dependencies
- curl: Required for making HTTP requests
- jq: Optional but recommended for pretty JSON formatting
Example Usage
Basic Parks Query
curl "http://localhost:8000/api/v1/parks/hybrid/"
Search for Disney Parks
curl "http://localhost:8000/api/v1/parks/hybrid/?search=disney"
Filter Roller Coasters with Inversions
curl "http://localhost:8000/api/v1/rides/hybrid/?category=RC&has_inversions=true&height_ft_min=100"
Get Filter Metadata
curl "http://localhost:8000/api/v1/parks/hybrid/filter-metadata/"
Integration Guide
Frontend Integration
- Use filter metadata to build dynamic filter interfaces
- Implement progressive loading for better UX
- Handle both client-side and server-side strategies
- Cache filter metadata to reduce API calls
Performance Considerations
- Monitor response times and adjust thresholds as needed
- Use progressive loading for datasets >200 records
- Implement proper error handling for edge cases
- Consider implementing request debouncing for search
Troubleshooting
Server Not Running
❌ Server not available at http://localhost:8000
💡 Make sure to start the Django server first:
cd backend && uv run manage.py runserver 8000
Missing jq
⚠️ jq not found - JSON responses will not be pretty-printed
Install jq for better output formatting:
# macOS
brew install jq
# Ubuntu/Debian
sudo apt-get install jq
Next Steps
- Integrate into Frontend: Use these endpoints in your React/Next.js application
- Build Filter UI: Create dynamic filter interfaces using the metadata
- Implement Progressive Loading: Handle large datasets efficiently
- Monitor Performance: Track response times and optimize as needed
- Add Caching: Implement client-side caching for better UX
🎢 Happy filtering! These endpoints provide a powerful, scalable foundation for building advanced search and filtering experiences in your theme park application.