Files
thrillwiki_django_no_react/memory-bank/features/search-location-integration.md
2025-08-15 12:24:20 -04:00

50 KiB
Raw Blame History

Search-Location Integration Plan - ThrillWiki

Executive Summary

This document outlines the comprehensive integration strategy for enhancing ThrillWiki's existing search system with location capabilities. The plan builds upon the current django-filters based search architecture and integrates it with the designed domain-specific location models (ParkLocation, RideLocation, CompanyHeadquarters) and unified map service.

Current State Analysis

Existing Search Architecture

  • Framework: Django-filters with ParkFilter and RideSearchView
  • Current Capabilities: Text search, status filtering, operator filtering, date ranges, numeric filters
  • Performance: Basic queryset optimization with select_related/prefetch_related
  • UI: HTMX-driven filtered results with AdaptiveSearchView
  • Templates: Structured template hierarchy in templates/core/search/

Location System State

  • Current: Hybrid system with both generic Location model and domain-specific models
  • Designed: Complete transition to ParkLocation, RideLocation, CompanyHeadquarters
  • Spatial Features: PostGIS with PointField, spatial indexing, distance calculations
  • Map Integration: UnifiedMapService designed for clustering and filtering

1. Search Index Enhancement Plan

1.1 Location Field Integration

Current Search Fields Extension

# Enhanced ParkFilter in parks/filters.py
class LocationEnhancedParkFilter(ParkFilter):
    search_fields = [
        'name__icontains',
        'description__icontains',
        'park_location__city__icontains',          # Domain-specific model
        'park_location__state__icontains',
        'park_location__country__icontains',
        'park_location__highway_exit__icontains',   # Road trip specific
        'park_location__postal_code__icontains'
    ]

Spatial Search Fields

# New spatial search capabilities
class SpatialSearchMixin:
    near_point = PointFilter(
        method='filter_near_point',
        help_text="Search within radius of coordinates"
    )
    
    within_radius = NumberFilter(
        method='filter_within_radius',
        help_text="Radius in miles (used with near_point)"
    )
    
    within_bounds = BoundsFilter(
        method='filter_within_bounds', 
        help_text="Search within geographic bounding box"
    )

Index Performance Strategy

  • Spatial Indexes: Maintain GIST indexes on all PointField columns
  • Composite Indexes: Add indexes on frequently combined fields (city+state, country+state)
  • Text Search Optimization: Consider adding GIN indexes for full-text search if performance degrades

1.2 Cross-Domain Location Indexing

Unified Location Search Index

class UnifiedLocationSearchService:
    """Service for searching across all location-enabled models"""
    
    def search_all_locations(self, query: str, location_types: Set[str] = None):
        results = []
        
        # Parks via ParkLocation
        if not location_types or 'park' in location_types:
            park_results = self._search_parks(query)
            results.extend(park_results)
        
        # Rides via RideLocation (optional)
        if not location_types or 'ride' in location_types:
            ride_results = self._search_rides(query)
            results.extend(ride_results)
            
        # Companies via CompanyHeadquarters
        if not location_types or 'company' in location_types:
            company_results = self._search_companies(query)
            results.extend(company_results)
            
        return self._rank_and_sort_results(results)

2. Spatial Search Architecture

2.1 Geographic Query Patterns

class DistanceSearchMixin:
    """Mixin for distance-based filtering"""
    
    def filter_near_point(self, queryset, name, value):
        """Filter by proximity to a point"""
        if not value or not hasattr(value, 'coords'):
            return queryset
            
        radius_miles = self.data.get('within_radius', 50)  # Default 50 miles
        
        from django.contrib.gis.measure import D
        return queryset.filter(
            park_location__point__distance_lte=(
                value, D(mi=radius_miles)
            )
        ).annotate(
            distance=Distance('park_location__point', value)
        ).order_by('distance')
    
    def filter_within_bounds(self, queryset, name, value):
        """Filter within geographic bounding box"""
        if not value or not hasattr(value, 'extent'):
            return queryset
            
        return queryset.filter(
            park_location__point__within=value.extent
        )

Geocoding Integration Pattern

class GeocodingSearchMixin:
    """Handle address-to-coordinate conversion in search"""
    
    def filter_near_address(self, queryset, name, value):
        """Search near an address (geocoded to coordinates)"""
        if not value:
            return queryset
            
        # Use OpenStreetMap Nominatim for geocoding
        coordinates = self._geocode_address(value)
        if not coordinates:
            # Graceful fallback to text search
            return self._fallback_text_search(queryset, value)
            
        return self.filter_near_point(queryset, name, coordinates)
    
    def _geocode_address(self, address: str) -> Optional[Point]:
        """Convert address to coordinates with caching"""
        cache_key = f"geocode:{hash(address)}"
        cached = cache.get(cache_key)
        if cached:
            return cached
            
        # Implementation using Nominatim API
        result = nominatim_geocode(address)
        if result:
            point = Point(result['lon'], result['lat'])
            cache.set(cache_key, point, timeout=86400)  # 24 hours
            return point
        return None

2.2 Database Query Optimization

Optimized Spatial Queries

class SpatialQueryOptimizer:
    """Optimize spatial queries for performance"""
    
    def get_optimized_queryset(self, base_queryset, spatial_filters):
        """Apply optimizations based on query type"""
        
        # Use spatial index hints for PostgreSQL
        queryset = base_queryset.extra(
            select={'spatial_distance': 'ST_Distance(park_location.point, %s)'},
            select_params=[spatial_filters.get('reference_point')]
        ) if spatial_filters.get('reference_point') else base_queryset
        
        # Limit radius searches to reasonable bounds
        max_radius = min(spatial_filters.get('radius', 100), 500)  # Cap at 500 miles
        
        # Pre-filter with bounding box before distance calculation
        if spatial_filters.get('reference_point'):
            # Create bounding box slightly larger than radius for pre-filtering
            bbox = self._create_bounding_box(
                spatial_filters['reference_point'], 
                max_radius * 1.1
            )
            queryset = queryset.filter(park_location__point__within=bbox)
        
        return queryset

3. "Near Me" Functionality Design

3.1 Geolocation Integration

Frontend Geolocation Handling

class LocationSearchService {
    constructor() {
        this.userLocation = null;
        this.locationPermission = 'prompt';
    }
    
    async requestUserLocation() {
        try {
            if (!navigator.geolocation) {
                throw new Error('Geolocation not supported');
            }
            
            const position = await new Promise((resolve, reject) => {
                navigator.geolocation.getCurrentPosition(
                    resolve, 
                    reject,
                    {
                        enableHighAccuracy: true,
                        timeout: 10000,
                        maximumAge: 300000  // 5 minutes
                    }
                );
            });
            
            this.userLocation = {
                lat: position.coords.latitude,
                lng: position.coords.longitude,
                accuracy: position.coords.accuracy
            };
            
            this.locationPermission = 'granted';
            return this.userLocation;
            
        } catch (error) {
            this.locationPermission = 'denied';
            await this._handleLocationError(error);
            return null;
        }
    }
    
    async _handleLocationError(error) {
        switch(error.code) {
            case error.PERMISSION_DENIED:
                await this._tryIPLocationFallback();
                break;
            case error.POSITION_UNAVAILABLE:
                this._showLocationUnavailableMessage();
                break;
            case error.TIMEOUT:
                this._showTimeoutMessage();
                break;
        }
    }
}

Privacy and Permission Handling

class LocationPrivacyMixin:
    """Handle location privacy concerns"""
    
    def get_context_data(self, **kwargs):
        context = super().get_context_data(**kwargs)
        
        # Add location permission context
        context.update({
            'location_features_available': True,
            'privacy_policy_url': reverse('privacy'),
            'location_consent_required': True,
            'ip_location_available': self._ip_location_available(),
        })
        
        return context
    
    def _ip_location_available(self) -> bool:
        """Check if IP-based location estimation is available"""
        # Could integrate with MaxMind GeoIP or similar service
        return hasattr(self.request, 'META') and 'HTTP_CF_IPCOUNTRY' in self.request.META

3.2 Fallback Strategies

IP-Based Location Approximation

class IPLocationService:
    """Fallback location service using IP geolocation"""
    
    def get_approximate_location(self, request) -> Optional[Dict]:
        """Get approximate location from IP address"""
        try:
            # Try Cloudflare country header first
            country = request.META.get('HTTP_CF_IPCOUNTRY')
            if country and country != 'XX':
                return self._country_to_coordinates(country)
            
            # Fallback to GeoIP database
            ip_address = self._get_client_ip(request)
            return self._geoip_lookup(ip_address)
            
        except Exception:
            return None
    
    def _country_to_coordinates(self, country_code: str) -> Dict:
        """Convert country code to approximate center coordinates"""
        country_centers = {
            'US': {'lat': 39.8283, 'lng': -98.5795, 'accuracy': 'country'},
            'CA': {'lat': 56.1304, 'lng': -106.3468, 'accuracy': 'country'},
            # Add more countries as needed
        }
        return country_centers.get(country_code.upper())

4. Location-Based Filtering Integration

4.1 Enhanced Filter Integration

Geographic Region Filters

class GeographicFilterMixin:
    """Add geographic filtering to existing filter system"""
    
    # State/Province filtering
    state = ModelChoiceFilter(
        field_name='park_location__state',
        queryset=None,  # Dynamically populated
        empty_label='Any state/province',
        method='filter_by_state'
    )
    
    # Country filtering
    country = ModelChoiceFilter(
        field_name='park_location__country', 
        queryset=None,  # Dynamically populated
        empty_label='Any country',
        method='filter_by_country'
    )
    
    # Metropolitan area clustering
    metro_area = ChoiceFilter(
        method='filter_by_metro_area',
        choices=[]  # Dynamically populated
    )
    
    def filter_by_metro_area(self, queryset, name, value):
        """Filter by predefined metropolitan areas"""
        metro_definitions = {
            'orlando': {
                'center': Point(-81.3792, 28.5383),
                'radius_miles': 30
            },
            'los_angeles': {
                'center': Point(-118.2437, 34.0522), 
                'radius_miles': 50
            },
            # Add more metropolitan areas
        }
        
        metro = metro_definitions.get(value)
        if not metro:
            return queryset
            
        from django.contrib.gis.measure import D
        return queryset.filter(
            park_location__point__distance_lte=(
                metro['center'], D(mi=metro['radius_miles'])
            )
        )

Performance-Optimized Filtering

class OptimizedLocationFilter(GeographicFilterMixin, ParkFilter):
    """Location filtering with performance optimizations"""
    
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        
        # Dynamically populate geographic choices based on available data
        self._populate_geographic_choices()
    
    def _populate_geographic_choices(self):
        """Populate geographic filter choices efficiently"""
        
        # Cache geographic options for performance
        cache_key = 'location_filter_choices'
        cached_choices = cache.get(cache_key)
        
        if not cached_choices:
            # Query distinct values efficiently
            states = ParkLocation.objects.values_list(
                'state', flat=True
            ).distinct().order_by('state')
            
            countries = ParkLocation.objects.values_list(
                'country', flat=True  
            ).distinct().order_by('country')
            
            cached_choices = {
                'states': [(s, s) for s in states if s],
                'countries': [(c, c) for c in countries if c]
            }
            
            cache.set(cache_key, cached_choices, timeout=3600)  # 1 hour
        
        # Update filter choices
        self.filters['state'].extra['choices'] = cached_choices['states']
        self.filters['country'].extra['choices'] = cached_choices['countries']

5. Query Integration Patterns

5.1 Hybrid Search Scoring

Relevance + Proximity Scoring

class HybridSearchRanking:
    """Combine text relevance with geographic proximity"""
    
    def rank_results(self, queryset, search_query: str, user_location: Point = None):
        """Apply hybrid ranking algorithm"""
        
        # Base text relevance scoring
        queryset = queryset.annotate(
            text_rank=Case(
                When(name__iexact=search_query, then=Value(100)),
                When(name__icontains=search_query, then=Value(80)),
                When(description__icontains=search_query, then=Value(60)),
                When(park_location__city__icontains=search_query, then=Value(40)),
                default=Value(20),
                output_field=IntegerField()
            )
        )
        
        # Add proximity scoring if user location available
        if user_location:
            queryset = queryset.annotate(
                distance_miles=Distance('park_location__point', user_location),
                proximity_rank=Case(
                    When(distance_miles__lt=25, then=Value(50)),    # Very close
                    When(distance_miles__lt=100, then=Value(30)),   # Close
                    When(distance_miles__lt=300, then=Value(10)),   # Regional  
                    default=Value(0),
                    output_field=IntegerField()
                )
            )
            
            # Combined score: text relevance + proximity bonus
            queryset = queryset.annotate(
                combined_rank=F('text_rank') + F('proximity_rank')
            ).order_by('-combined_rank', 'distance_miles')
        else:
            queryset = queryset.order_by('-text_rank', 'name')
        
        return queryset

Unified Search Across Entities

class UnifiedLocationSearchView(TemplateView):
    """Search across parks, rides, and companies with location context"""
    
    template_name = "core/search/unified_results.html"
    
    def get_context_data(self, **kwargs):
        context = super().get_context_data(**kwargs)
        
        query = self.request.GET.get('q', '')
        location_types = self.request.GET.getlist('types', ['park', 'ride', 'company'])
        user_location = self._get_user_location()
        
        results = {
            'parks': [],
            'rides': [], 
            'companies': [],
            'unified': []
        }
        
        # Search each entity type with location context
        if 'park' in location_types:
            results['parks'] = self._search_parks(query, user_location)
            
        if 'ride' in location_types:
            results['rides'] = self._search_rides(query, user_location)
            
        if 'company' in location_types:
            results['companies'] = self._search_companies(query, user_location)
        
        # Create unified ranked results
        results['unified'] = self._create_unified_results(results, user_location)
        
        context.update({
            'results': results,
            'search_query': query,
            'user_location': user_location,
            'total_results': sum(len(r) for r in results.values() if isinstance(r, list))
        })
        
        return context

6. Geocoding Integration Strategy

6.1 OpenStreetMap Nominatim Integration

Geocoding Service Implementation

class GeocodingService:
    """Geocoding service using OpenStreetMap Nominatim"""
    
    def __init__(self):
        self.base_url = "https://nominatim.openstreetmap.org"
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'ThrillWiki/1.0 (contact@thrillwiki.com)'
        })
    
    def geocode_address(self, address: str, country_bias: str = None) -> Optional[Dict]:
        """Convert address to coordinates"""
        cache_key = f"geocode:{hashlib.md5(address.encode()).hexdigest()}"
        cached = cache.get(cache_key)
        if cached:
            return cached
        
        params = {
            'q': address,
            'format': 'json',
            'limit': 1,
            'addressdetails': 1,
            'extratags': 1
        }
        
        if country_bias:
            params['countrycodes'] = country_bias
        
        try:
            response = self.session.get(
                f"{self.base_url}/search",
                params=params,
                timeout=5
            )
            response.raise_for_status()
            
            results = response.json()
            if results:
                result = results[0]
                geocoded = {
                    'lat': float(result['lat']),
                    'lng': float(result['lon']),
                    'display_name': result['display_name'],
                    'confidence': float(result.get('importance', 0.5)),
                    'address_components': result.get('address', {})
                }
                
                # Cache successful results for 7 days
                cache.set(cache_key, geocoded, timeout=604800)
                return geocoded
                
        except (requests.RequestException, ValueError, KeyError) as e:
            logger.warning(f"Geocoding failed for '{address}': {e}")
        
        # Cache failed attempts for 1 hour to prevent repeated API calls
        cache.set(cache_key, None, timeout=3600)
        return None
    
    def reverse_geocode(self, lat: float, lng: float) -> Optional[Dict]:
        """Convert coordinates to address"""
        cache_key = f"reverse_geocode:{lat:.4f},{lng:.4f}"
        cached = cache.get(cache_key)
        if cached:
            return cached
        
        params = {
            'lat': lat,
            'lon': lng,
            'format': 'json',
            'addressdetails': 1
        }
        
        try:
            response = self.session.get(
                f"{self.base_url}/reverse",
                params=params,
                timeout=5
            )
            response.raise_for_status()
            
            result = response.json()
            if result:
                address = {
                    'display_name': result['display_name'],
                    'components': result.get('address', {})
                }
                
                cache.set(cache_key, address, timeout=604800)  # 7 days
                return address
                
        except (requests.RequestException, ValueError) as e:
            logger.warning(f"Reverse geocoding failed for {lat},{lng}: {e}")
        
        return None

6.2 Search Query Enhancement

Intelligent Address Detection

class SmartQueryProcessor:
    """Detect and process different types of search queries"""
    
    def __init__(self):
        self.geocoding_service = GeocodingService()
    
    def process_search_query(self, query: str) -> Dict:
        """Analyze query and determine search strategy"""
        
        query_analysis = {
            'original_query': query,
            'is_address': self._looks_like_address(query),
            'is_coordinates': self._looks_like_coordinates(query), 
            'has_location_keywords': self._has_location_keywords(query),
            'processed_query': query,
            'geocoded_location': None,
            'search_strategy': 'text'
        }
        
        if query_analysis['is_coordinates']:
            coords = self._parse_coordinates(query)
            if coords:
                query_analysis['geocoded_location'] = coords
                query_analysis['search_strategy'] = 'spatial'
        
        elif query_analysis['is_address'] or query_analysis['has_location_keywords']:
            geocoded = self.geocoding_service.geocode_address(query)
            if geocoded:
                query_analysis['geocoded_location'] = geocoded
                query_analysis['search_strategy'] = 'spatial_text_hybrid'
        
        return query_analysis
    
    def _looks_like_address(self, query: str) -> bool:
        """Detect if query looks like an address"""
        address_patterns = [
            r'\d+\s+\w+\s+(street|st|avenue|ave|road|rd|boulevard|blvd)',
            r'\w+,\s*\w+\s*\d{5}',  # City, State ZIP
            r'\w+,\s*\w+,\s*\w+',   # City, State, Country
        ]
        
        return any(re.search(pattern, query, re.IGNORECASE) for pattern in address_patterns)
    
    def _looks_like_coordinates(self, query: str) -> bool:
        """Detect if query contains coordinates"""
        coord_pattern = r'-?\d+\.?\d*\s*,\s*-?\d+\.?\d*'
        return bool(re.search(coord_pattern, query))

7. Performance Optimization Strategy

7.1 Database Optimization

Spatial Index Strategy

-- Essential indexes for location-enhanced search
CREATE INDEX CONCURRENTLY idx_park_location_point_gist 
ON parks_parklocation USING GIST (point);

CREATE INDEX CONCURRENTLY idx_park_location_city_state 
ON parks_parklocation (city, state);

CREATE INDEX CONCURRENTLY idx_park_location_country 
ON parks_parklocation (country);

-- Composite indexes for common filter combinations
CREATE INDEX CONCURRENTLY idx_park_status_location 
ON parks_park (status) 
INCLUDE (id) 
WHERE status = 'OPERATING';

-- Partial indexes for performance
CREATE INDEX CONCURRENTLY idx_ride_location_point_not_null 
ON rides_ridelocation USING GIST (entrance_point) 
WHERE entrance_point IS NOT NULL;

Query Optimization Patterns

class SpatialQueryOptimizer:
    """Optimize spatial queries for performance"""
    
    def optimize_distance_query(self, queryset, reference_point, max_radius_miles=100):
        """Optimize distance-based queries with bounding box pre-filtering"""
        
        # Create bounding box for initial filtering (much faster than distance calc)
        bbox = self._create_bounding_box(reference_point, max_radius_miles)
        
        # Pre-filter with bounding box, then apply precise distance filter
        return queryset.filter(
            park_location__point__within=bbox
        ).filter(
            park_location__point__distance_lte=(reference_point, D(mi=max_radius_miles))
        ).annotate(
            distance=Distance('park_location__point', reference_point)
        ).order_by('distance')
    
    def optimize_multi_location_query(self, park_qs, ride_qs, bounds=None):
        """Optimize queries across multiple location types"""
        
        # Use common table expressions for complex spatial queries
        if bounds:
            # Apply spatial filtering early
            park_qs = park_qs.filter(park_location__point__within=bounds)
            ride_qs = ride_qs.filter(ride_location__entrance_point__within=bounds)
        
        # Use union for combining different location types efficiently
        return park_qs.union(ride_qs, all=False)

7.2 Caching Strategy

Multi-Level Caching Architecture

class LocationSearchCache:
    """Caching strategy for location-enhanced search"""
    
    CACHE_TIMEOUTS = {
        'geocoding': 604800,      # 7 days
        'search_results': 300,    # 5 minutes  
        'location_filters': 3600, # 1 hour
        'spatial_index': 86400,   # 24 hours
    }
    
    def cache_search_results(self, cache_key: str, results: QuerySet, 
                           user_location: Point = None):
        """Cache search results with location context"""
        
        # Include location context in cache key
        if user_location:
            location_hash = hashlib.md5(
                f"{user_location.x:.4f},{user_location.y:.4f}".encode()
            ).hexdigest()[:8]
            cache_key = f"{cache_key}_loc_{location_hash}"
        
        # Cache serialized results
        serialized = self._serialize_results(results)
        cache.set(
            cache_key, 
            serialized, 
            timeout=self.CACHE_TIMEOUTS['search_results']
        )
    
    def get_cached_search_results(self, cache_key: str, user_location: Point = None):
        """Retrieve cached search results"""
        
        if user_location:
            location_hash = hashlib.md5(
                f"{user_location.x:.4f},{user_location.y:.4f}".encode()
            ).hexdigest()[:8]
            cache_key = f"{cache_key}_loc_{location_hash}"
        
        cached = cache.get(cache_key)
        return self._deserialize_results(cached) if cached else None
    
    def invalidate_location_cache(self, location_type: str = None):
        """Invalidate location-related caches when data changes"""
        patterns = [
            'search_results_*',
            'location_filters',
            'geocoding_*'
        ]
        
        if location_type:
            patterns.append(f'{location_type}_search_*')
        
        # Use cache versioning for efficient invalidation
        for pattern in patterns:
            cache.delete_pattern(pattern)

7.3 Performance Monitoring

Search Performance Metrics

class SearchPerformanceMonitor:
    """Monitor search performance and spatial query efficiency"""
    
    def __init__(self):
        self.metrics_logger = logging.getLogger('search.performance')
    
    def track_search_query(self, query_type: str, query_params: Dict, 
                          execution_time: float, result_count: int):
        """Track search query performance"""
        
        metrics = {
            'query_type': query_type,
            'has_spatial_filter': bool(query_params.get('user_location')),
            'has_text_search': bool(query_params.get('search')),
            'filter_count': len([k for k, v in query_params.items() if v]),
            'execution_time_ms': execution_time * 1000,
            'result_count': result_count,
            'timestamp': timezone.now().isoformat()
        }
        
        # Log performance data
        self.metrics_logger.info(json.dumps(metrics))
        
        # Alert on slow queries
        if execution_time > 1.0:  # Queries over 1 second
            self._alert_slow_query(metrics)
    
    def _alert_slow_query(self, metrics: Dict):
        """Alert on performance issues"""
        # Implementation for alerting system
        pass

8. API Enhancement Design

8.1 Location-Aware Search Endpoints

Enhanced Search API

class LocationSearchAPIView(APIView):
    """REST API for location-enhanced search"""
    
    def get(self, request):
        """
        Enhanced search endpoint with location capabilities
        
        Query Parameters:
        - q: Search query (text)
        - lat, lng: User coordinates for proximity search
        - radius: Search radius in miles (default: 50)
        - bounds: Geographic bounding box (format: north,south,east,west)
        - types: Entity types to search (park,ride,company)
        - filters: Additional filters (status, operator, etc.)
        """
        
        try:
            search_params = self._parse_search_params(request.GET)
            results = self._execute_search(search_params)
            
            return Response({
                'status': 'success',
                'data': {
                    'results': results['items'],
                    'total_count': results['total'],
                    'search_params': search_params,
                    'has_more': results['has_more']
                },
                'meta': {
                    'query_time_ms': results['execution_time'] * 1000,
                    'cache_hit': results['from_cache'],
                    'location_used': bool(search_params.get('user_location'))
                }
            })
            
        except ValidationError as e:
            return Response({
                'status': 'error',
                'error': 'Invalid search parameters',
                'details': str(e)
            }, status=400)
    
    def _parse_search_params(self, params: QueryDict) -> Dict:
        """Parse and validate search parameters"""
        
        # Parse user location
        user_location = None
        if params.get('lat') and params.get('lng'):
            try:
                lat = float(params['lat'])
                lng = float(params['lng'])
                if -90 <= lat <= 90 and -180 <= lng <= 180:
                    user_location = Point(lng, lat)
            except (ValueError, TypeError):
                raise ValidationError("Invalid coordinates")
        
        # Parse bounding box
        bounds = None
        if params.get('bounds'):
            try:
                north, south, east, west = map(float, params['bounds'].split(','))
                bounds = Polygon.from_bbox((west, south, east, north))
            except (ValueError, TypeError):
                raise ValidationError("Invalid bounds format")
        
        return {
            'query': params.get('q', '').strip(),
            'user_location': user_location,
            'radius_miles': min(float(params.get('radius', 50)), 500),  # Cap at 500 miles
            'bounds': bounds,
            'entity_types': params.getlist('types') or ['park'],
            'filters': self._parse_filters(params),
            'page': int(params.get('page', 1)),
            'page_size': min(int(params.get('page_size', 20)), 100)  # Cap at 100
        }

Autocomplete API with Location Context

class LocationAutocompleteAPIView(APIView):
    """Autocomplete API with location awareness"""
    
    def get(self, request):
        """
        Location-aware autocomplete for search queries
        
        Returns suggestions based on:
        1. Entity names (parks, rides, companies)
        2. Location names (cities, states, countries)
        3. Address suggestions
        """
        
        query = request.GET.get('q', '').strip()
        if len(query) < 2:
            return Response({'suggestions': []})
        
        user_location = self._parse_user_location(request.GET)
        
        suggestions = []
        
        # Entity name suggestions (with location context for ranking)
        entity_suggestions = self._get_entity_suggestions(query, user_location)
        suggestions.extend(entity_suggestions)
        
        # Location name suggestions
        location_suggestions = self._get_location_suggestions(query)
        suggestions.extend(location_suggestions)
        
        # Address suggestions (via geocoding)
        if self._looks_like_address(query):
            address_suggestions = self._get_address_suggestions(query)
            suggestions.extend(address_suggestions)
        
        # Rank and limit suggestions
        ranked_suggestions = self._rank_suggestions(suggestions, user_location)[:10]
        
        return Response({
            'suggestions': ranked_suggestions,
            'query': query
        })

8.2 Enhanced Response Formats

Unified Location Response Format

class LocationSearchResultSerializer(serializers.Serializer):
    """Unified serializer for location-enhanced search results"""
    
    id = serializers.CharField()
    type = serializers.CharField()  # 'park', 'ride', 'company'
    name = serializers.CharField()
    slug = serializers.CharField()
    
    # Location data
    location = serializers.SerializerMethodField()
    
    # Entity-specific data
    entity_data = serializers.SerializerMethodField()
    
    # Search relevance
    relevance_score = serializers.FloatField(required=False)
    distance_miles = serializers.FloatField(required=False)
    
    def get_location(self, obj):
        """Get unified location data"""
        if hasattr(obj, 'park_location'):
            location = obj.park_location
            return {
                'coordinates': [location.point.y, location.point.x] if location.point else None,
                'address': location.formatted_address,
                'city': location.city,
                'state': location.state,
                'country': location.country,
                'highway_exit': location.highway_exit
            }
        elif hasattr(obj, 'ride_location'):
            location = obj.ride_location
            return {
                'coordinates': [location.entrance_point.y, location.entrance_point.x] 
                    if location.entrance_point else None,
                'park_area': location.park_area,
                'park_location': self._get_park_location(obj.park)
            }
        # Add other location types...
        return None
    
    def get_entity_data(self, obj):
        """Get entity-specific data based on type"""
        if obj._meta.model_name == 'park':
            return {
                'status': obj.status,
                'operator': obj.operating_company.name if obj.operating_company else None,
                'ride_count': getattr(obj, 'ride_count', 0),
                'coaster_count': getattr(obj, 'coaster_count', 0),
                'website': obj.website,
                'opening_date': obj.opening_date
            }
        elif obj._meta.model_name == 'ride':
            return {
                'category': obj.category,
                'park': {
                    'name': obj.park.name,
                    'slug': obj.park.slug
                },
                'manufacturer': obj.ride_model.manufacturer.name 
                    if obj.ride_model and obj.ride_model.manufacturer else None,
                'opening_date': obj.opening_date
            }
        # Add other entity types...
        return {}

9. User Experience Design

9.1 Search Interface Enhancements

Location-Aware Search Form

<!-- Enhanced search form with location features -->
<form id="location-search-form" class="search-form">
    <!-- Primary search input -->
    <div class="search-input-group">
        <input type="text" 
               id="search-query" 
               name="q" 
               placeholder="Search parks, rides, or locations..."
               autocomplete="off"
               data-autocomplete-url="{% url 'api:autocomplete' %}">
        
        <!-- Location context button -->
        <button type="button" 
                id="use-my-location" 
                class="location-btn"
                title="Search near my location">
            <i class="icon-location"></i>
            <span class="sr-only">Use my location</span>
        </button>
    </div>
    
    <!-- Location context display -->
    <div id="location-context" class="location-context hidden">
        <span class="location-label">Searching near:</span>
        <span id="location-display"></span>
        <button type="button" id="clear-location" class="clear-btn">×</button>
    </div>
    
    <!-- Advanced filters toggle -->
    <div class="filter-controls">
        <button type="button" 
                id="toggle-filters" 
                class="filter-toggle"
                aria-expanded="false">
            <i class="icon-filter"></i>
            Filters
        </button>
        
        <!-- Location-specific filters -->
        <div id="location-filters" class="filter-section hidden">
            <label for="search-radius">Within:</label>
            <select id="search-radius" name="radius">
                <option value="25">25 miles</option>
                <option value="50" selected>50 miles</option>
                <option value="100">100 miles</option>
                <option value="250">250 miles</option>
            </select>
            
            <label for="entity-types">Show:</label>
            <div class="checkbox-group">
                <label><input type="checkbox" name="types" value="park" checked> Parks</label>
                <label><input type="checkbox" name="types" value="ride"> Rides</label>
                <label><input type="checkbox" name="types" value="company"> Companies</label>
            </div>
        </div>
    </div>
</form>

Location Permission Handling

class LocationPermissionManager {
    constructor() {
        this.permissionStatus = 'unknown';
        this.setupEventHandlers();
    }
    
    setupEventHandlers() {
        // Location button click handler
        document.getElementById('use-my-location').addEventListener('click', 
            () => this.requestLocation());
        
        // Privacy-conscious permission checking
        if ('permissions' in navigator) {
            navigator.permissions.query({name: 'geolocation'})
                .then(permission => {
                    this.permissionStatus = permission.state;
                    this.updateLocationButton();
                    
                    permission.addEventListener('change', () => {
                        this.permissionStatus = permission.state;
                        this.updateLocationButton();
                    });
                });
        }
    }
    
    async requestLocation() {
        // Show privacy notice if first time
        if (this.permissionStatus === 'prompt') {
            const consent = await this.showPrivacyConsent();
            if (!consent) return;
        }
        
        try {
            this.showLocationLoading();
            const location = await this.getCurrentPosition();
            this.handleLocationSuccess(location);
        } catch (error) {
            this.handleLocationError(error);
        }
    }
    
    showPrivacyConsent() {
        return new Promise(resolve => {
            const modal = document.createElement('div');
            modal.className = 'location-consent-modal';
            modal.innerHTML = `
                <div class="modal-content">
                    <h3>Use Your Location</h3>
                    <p>ThrillWiki would like to use your location to show nearby parks and improve search results.</p>
                    <p>Your location data is not stored or shared with third parties.</p>
                    <div class="modal-actions">
                        <button class="btn-secondary" data-action="deny">No Thanks</button>
                        <button class="btn-primary" data-action="allow">Allow Location</button>
                    </div>
                    <a href="/privacy" target="_blank">Privacy Policy</a>
                </div>
            `;
            
            modal.addEventListener('click', (e) => {
                if (e.target.dataset.action === 'allow') {
                    resolve(true);
                } else if (e.target.dataset.action === 'deny') {
                    resolve(false);
                }
                modal.remove();
            });
            
            document.body.appendChild(modal);
        });
    }
}

9.2 Results Display with Location Context

Distance-Enhanced Results

<!-- Results template with location context -->
<div class="search-results">
    {% for result in results %}
    <div class="result-item" data-type="{{ result.type }}" data-id="{{ result.id }}">
        <div class="result-header">
            <h3 class="result-title">
                <a href="{{ result.get_absolute_url }}">{{ result.name }}</a>
            </h3>
            
            {% if result.distance_miles %}
            <div class="distance-badge">
                <i class="icon-location-arrow"></i>
                {{ result.distance_miles|floatformat:1 }} miles away
            </div>
            {% endif %}
        </div>
        
        <div class="result-location">
            {% if result.location.address %}
                <i class="icon-map-pin"></i>
                {{ result.location.address }}
                
                {% if result.location.highway_exit %}
                <div class="highway-info">
                    <i class="icon-highway"></i>
                    Exit: {{ result.location.highway_exit }}
                </div>
                {% endif %}
            {% endif %}
        </div>
        
        <div class="result-actions">
            <a href="{{ result.get_absolute_url }}" class="btn-primary">View Details</a>
            
            {% if result.location.coordinates %}
            <button type="button" 
                    class="btn-secondary get-directions"
                    data-lat="{{ result.location.coordinates.0 }}"
                    data-lng="{{ result.location.coordinates.1 }}"
                    data-name="{{ result.name }}">
                <i class="icon-directions"></i>
                Directions
            </button>
            {% endif %}
            
            {% if user_location and result.location.coordinates %}
            <button type="button" 
                    class="btn-secondary show-on-map"
                    data-result-id="{{ result.id }}">
                <i class="icon-map"></i>
                Show on Map
            </button>
            {% endif %}
        </div>
    </div>
    {% endfor %}
</div>

9.3 Map Integration

Search-Map Bidirectional Integration

class SearchMapIntegration {
    constructor(mapInstance, searchForm) {
        this.map = mapInstance;
        this.searchForm = searchForm;
        this.searchResults = [];
        this.setupIntegration();
    }
    
    setupIntegration() {
        // Update search when map viewport changes
        this.map.on('moveend', () => {
            if (this.shouldUpdateSearchOnMapMove()) {
                this.updateSearchFromMap();
            }
        });
        
        // Show search results on map
        this.searchForm.addEventListener('results-updated', (e) => {
            this.showResultsOnMap(e.detail.results);
        });
        
        // Handle "Show on Map" button clicks
        document.addEventListener('click', (e) => {
            if (e.target.matches('.show-on-map')) {
                const resultId = e.target.dataset.resultId;
                this.highlightResultOnMap(resultId);
            }
        });
    }
    
    updateSearchFromMap() {
        const bounds = this.map.getBounds();
        const boundsParam = [
            bounds.getNorth(),
            bounds.getSouth(), 
            bounds.getEast(),
            bounds.getWest()
        ].join(',');
        
        // Update search form with map bounds
        const boundsInput = document.getElementById('search-bounds');
        if (boundsInput) {
            boundsInput.value = boundsParam;
            this.searchForm.submit();
        }
    }
    
    showResultsOnMap(results) {
        // Clear existing result markers
        this.clearResultMarkers();
        
        // Add markers for each result with location
        results.forEach(result => {
            if (result.location && result.location.coordinates) {
                const marker = this.addResultMarker(result);
                this.searchResults.push({
                    id: result.id,
                    marker: marker,
                    data: result
                });
            }
        });
        
        // Adjust map view to show all results
        if (this.searchResults.length > 0) {
            this.fitMapToResults();
        }
    }
}

10. Implementation Phases

Phase 1: Foundation (Weeks 1-2)

Goal: Establish basic location search infrastructure

Tasks:

  1. Enhanced Filter Classes

    • Extend ParkFilter with spatial search mixins
    • Create DistanceSearchMixin and GeographicFilterMixin
    • Add location-based filter fields (state, country, metro area)
  2. Geocoding Service Integration

    • Implement GeocodingService with OpenStreetMap Nominatim
    • Add address detection and coordinate parsing
    • Set up caching layer for geocoding results
  3. Database Optimization

    • Add spatial indexes to location models
    • Create composite indexes for common filter combinations
    • Optimize existing queries for location joins

Deliverables:

  • Enhanced filter classes with location capabilities
  • Working geocoding service with caching
  • Optimized database indexes

Phase 2: Core Search Enhancement (Weeks 3-4)

Goal: Integrate location capabilities into existing search

Tasks:

  1. Search View Enhancement

    • Extend AdaptiveSearchView with location processing
    • Add user location detection and handling
    • Implement hybrid text + proximity ranking
  2. API Development

    • Create location-aware search API endpoints
    • Implement autocomplete with location context
    • Add proper error handling and validation
  3. Query Optimization

    • Implement spatial query optimization patterns
    • Add performance monitoring for search queries
    • Create caching strategies for search results

Deliverables:

  • Location-enhanced search views and APIs
  • Optimized spatial query patterns
  • Performance monitoring infrastructure

Phase 3: User Experience (Weeks 5-6)

Goal: Create intuitive location search features

Tasks:

  1. Frontend Enhancement

    • Implement "near me" functionality with geolocation
    • Add location permission handling and privacy controls
    • Create enhanced search form with location context
  2. Results Display

    • Add distance information to search results
    • Implement "get directions" functionality
    • Create map integration for result visualization
  3. Progressive Enhancement

    • Ensure graceful fallback for users without location access
    • Add IP-based location approximation
    • Implement accessibility improvements

Deliverables:

  • Enhanced search interface with location features
  • Map integration for search results
  • Accessibility-compliant location features

Phase 4: Advanced Features (Weeks 7-8)

Goal: Implement advanced location search capabilities

Tasks:

  1. Cross-Domain Search

    • Implement unified search across parks, rides, companies
    • Create location-aware ranking algorithms
    • Add entity-specific location features
  2. Advanced Filtering

    • Implement metropolitan area filtering
    • Add route-based search (search along a path)
    • Create clustering for dense geographic areas
  3. Performance Optimization

    • Implement advanced caching strategies
    • Add query result pagination for large datasets
    • Optimize for mobile and low-bandwidth scenarios

Deliverables:

  • Unified cross-domain location search
  • Advanced geographic filtering options
  • Production-ready performance optimizations

Performance Benchmarks and Success Criteria

Performance Targets

  • Text + Location Search: < 200ms for 90th percentile queries
  • Spatial Queries: < 300ms for radius searches up to 100 miles
  • Geocoding: < 100ms cache hit rate > 85%
  • API Response: < 150ms for location-enhanced autocomplete

Success Metrics

  • User Adoption: 40% of searches use location features within 3 months
  • Search Improvement: 25% increase in search result relevance scores
  • Performance: No degradation in non-location search performance
  • Coverage: Location data available for 95% of parks in database

Monitoring and Alerting

  • Query performance tracking with detailed metrics
  • Geocoding service health monitoring
  • User location permission grant rates
  • Search abandonment rate analysis

Risk Mitigation

Technical Risks

  1. Performance Degradation: Comprehensive testing and gradual rollout
  2. Geocoding Service Reliability: Multiple fallback providers and caching
  3. Privacy Compliance: Clear consent flows and data minimization

User Experience Risks

  1. Location Permission Denial: Graceful fallbacks and alternative experiences
  2. Accuracy Issues: Clear accuracy indicators and user feedback mechanisms
  3. Complexity Overload: Progressive disclosure and intuitive defaults

Conclusion

This integration plan provides a comprehensive roadmap for enhancing ThrillWiki's search system with sophisticated location capabilities while maintaining performance and user experience. The phased approach ensures manageable implementation complexity and allows for iterative improvement based on user feedback and performance metrics.

The integration leverages existing Django-filters architecture while adding powerful spatial search capabilities that will significantly enhance the user experience for theme park enthusiasts planning visits and exploring new destinations.