Files
markov-discord/cline_docs/activeContext.md

116 lines
2.7 KiB
Markdown
Executable File

# Active Context
Last Updated: 2024-12-27
## Current Focus
Integrating LLM capabilities into the existing Discord bot while maintaining the unique "personality" of each server's Markov-based responses.
### Active Issues
1. Response Generation
- Need to implement hybrid Markov-LLM response system
- Must maintain response speed within acceptable limits
- Need to handle API rate limiting gracefully
2. Data Management
- Implement efficient storage for embeddings
- Design context window management
- Handle conversation threading
3. Integration Points
- Modify generateResponse function to support LLM
- Add embedding generation pipeline
- Implement context tracking
## Recent Changes
- Analyzed current codebase structure
- Identified integration points for LLM
- Documented system architecture
- Created implementation plan
## Active Files
### Core Implementation
- src/index.ts
- Main bot logic
- Message handling
- Command processing
- src/entity/
- Database schema
- Need to add embedding and context tables
- src/train.ts
- Training pipeline
- Need to add embedding generation
### New Files Needed
- src/llm/
- provider.ts (LLM service integration)
- embedding.ts (Embedding generation)
- context.ts (Context management)
- src/entity/
- MessageEmbedding.ts
- ConversationContext.ts
## Next Steps
### Immediate Tasks
1. Create database migrations
- Add embedding table
- Add context table
- Update existing message schema
2. Implement LLM integration
- Set up OpenAI client
- Create response generation service
- Add fallback mechanisms
3. Add embedding pipeline
- Implement background processing
- Set up batch operations
- Add storage management
### Short-term Goals
1. Test hybrid response system
- Benchmark response times
- Measure coherence
- Validate context usage
2. Optimize performance
- Implement caching
- Add rate limiting
- Tune batch sizes
3. Update documentation
- Add LLM configuration guide
- Update deployment instructions
- Document new commands
### Dependencies
- OpenAI API access
- Additional storage capacity
- Updated environment configuration
## Implementation Strategy
### Phase 1: Foundation
1. Database schema updates
2. Basic LLM integration
3. Simple context tracking
### Phase 2: Enhancement
1. Hybrid response system
2. Advanced context management
3. Performance optimization
### Phase 3: Refinement
1. User feedback integration
2. Response quality metrics
3. Fine-tuning capabilities
## Notes
- Keep existing Markov system as fallback
- Monitor API usage and costs
- Consider implementing local LLM option
- Need to update help documentation
- Consider adding configuration commands